
‘Educating your beliefs’ versus ‘Testing your Hypotheses’

This is the handout for our session about Bayesian issues.— B. Mazur

1. ‘Bayesian intertwining’

Here are a few words about the Bayesian point of view. But first a disclaimer: I know
very little statistics; I’m a total outsider to this field1 and especially to the extended
conversation—and the somewhat sharp disagreements—that Bayesians and Frequentists
have.

But I do want to make sense of the issue for myself, insofar as it reflects on our under-
standing of the interplay between hypothesis, data, conclusions, those basic building blocks
of empirical investigation. Now I have just listed those “building blocks” in the standard
(expected) order of procedure of an empirical investigation.

Set-up and Hypotheses −→ Data Collecting −→ Processing Data and Conclusion

The Bayesian viewpoint will methodically intertwine the first two steps.

In our discussion last week, we saw a hint of another kind of intertwining possible in the
interpretive work of Art History. One might imagine that the standard order of procedure
in front of a work of art—say the Arnolfini double portrait—is to gather evidence of all sorts
about it, and then to use this mass of evidence to develop an interpretation or viewpoint
of it or perhaps a deeper emotional connection with it. But the suggestion was made that,
at times, it is (at least) possible—and perhaps necessary–to read back from the arrived-at
interpretation to its supporting evidence; in that the depth of the interpretation—or lack
of depth—might lead us to reassess the value of various pieces of evidence2.

Beyond Bayesian intertwining there are other essential contrasts between the Bayesian’s
and the Frequentist’s work; their methods are not the same, and they even seem to have
slightly different primary goals. We’ll get to that, eventually.

1I learned about the Bayesian point of view largely from a phone conversation this week with Susan
Holmes, who is a statistician at Stanford.

2The suggestion was that we have something akin to the Dworkinian moral normative attitude towards
law, in that one might value more the kind of evidence that leads to the best (deepest) interpretation of a
work of art.
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2. Prior information and the Birthday problem

To introduce ourselves to this ’Bayesian intertwining’ (taking as a black box—at least
at first—some of the mathematical procedures involved) let’s revisit a famous problem:
the birthday problem. You have a class of fifth graders in an elementary school. Suppose
there are 23 students in the class. What is the probability that two of them have the same
birthday? Or, to seem more mathematical, suppose there are n students. What is the
answer as a function of n?

Here is the simple naive analysis of this problem. We assume, of course, that the
probability of anyone having a birthday at any specific day, e.g., April 22, is 1/365 (ignoring
the leap year issue). Think of the teacher marking off—successively— on a calendar the
birthdays of each student. We are going to gauge the possibility that in his class of n
students there are no two birthdays on the same calendar day. The first student’s birthday
is duly marked. We can’t possibly have a concurrence of birthdays (call it a hit) at this
point, there being only one mark. So we can record “1” as the probability that we didn’t
get a hit at least so far3.

As for the second student, the probability of him or her not having a birthday on the
same day as student #1—i.e., that there not be a hit— is

1− 1

365
=

364

365
.

Given this situation, and passing to the third student, in order for there not to be a hit,
his or her birthday has to avoid two days, so that probability is

1− 2

365
=

363

365
.

Putting the two probabilities together we get that–so far in our count—the probability
that there isn’t a hit with these three students is

(1− 1

365
)(1− 2

365
) = (

364

365
) · (363

365
).

Working up (by mathematical induction) the probability that there’s no hit, with n
students is then:

(1− 1

365
)(1− 2

365
) · · · (1− n− 1

365
),

3We are going to write probabilities as numbers between 0 and 1. So if the probability of an event is 1
2

that’s the same as saying that it is even odds of it happening or not happening or that 50% of the time it
happens, or one sometimes simply says that there’s is a 50/50 chance of it occurring.
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which when n = 23 is close to 1
2 . That is, for a class of 23 students the chances are 50/50

that there’s a concurrence of birthdays—given this analysis.

My Bayesian friend Susan Holmes tells me that she has actually tried this out a number
of times in real live classes, and discovered that the odds seem to be much better than
50/50 for 23 students; you even seem to get 50/50 with classes of as low as 16 students.

There is something too naive in the analysis above, says Susan. We should, at least,
make the following (initial) correction to our setting-up of the problem. We said above:

We assume, of course, that the probability of anyone having a birthday at
any specific day, e.g., April 22, is 1/365

We actually know stuff about the structure of our problem that we haven’t really regis-
tered in making that assumption.

For example, it is a class of fifth-graders so, chances are, they were all (or mostly) born in
the same year. In particular, the years of their birth all (or mostly) had the same weekends
and weekdays. In the era of possible c-sections and induced births—given that doctors and
hospital staff would prefer to work on weekdays rather than weekends—one might imagine
that the probability of being born on a weekday is somewhat skewed. We also know more
that might make us think that fixing 1/365 at the rate is too naive.

Perhaps then, instead of sticking to the probability p = 1/365 per day hypothesis, allow
a bit of freedom and a priori allow that there are different probabilities

p1, p2, p3, · · · , p365
for each day of the year4, about which we can make very very rough guesses. But let us not
write this in stone yet. Make a mildly educated guess of these pi; e.g., if “i” is a weekend,
then pi is slightly less than 1/365; if a weekday, slightly more. This initial guess we’ll call a
Prior. From the prior we can deduce—essentially as we did above with the “1/365”—all
the expected odds and whatever statistics one wants. But we have hardly gotten our best
answer!

For, we now consider whatever Data we’ve actually accumulated by sampling classes of
sixth-graders. What the Bayesians have developed is a somewhat uniform way of actually
it using the accumulated data to “correct” the prior, so that it is more in tune with the
data. This corrected-prior is called (naturally) the Posterior.

The movement here is as follows:

Prior
Data−→ Posterior.

In this protocol, the Data enjoys a slight augmentation of its principal role: no matter
what else it will be used for, it will be used to educate the Prior!

4these summing to 1
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Starting anew with this Posterior as if it were a more educated-guess than the original
Prior we can deduce—essentially as we did above with the “constant 1/365” or the prior
Prior —all the expected odds and whatever statistics one wants.

This is a preliminary move in the Bayesian direction, but we aren’t quite there yet.
Another–and better–way of viewing this move (reflecting our most up-to-date version of
belief about the set-up) is that the initial values

p1, p2, p3, · · · , p365

should not be taken as hard unchangeable numbers but rather are to be viewed as “random
variables” in their own right, and subject to their own distribution, which we are bent on
determining, given enough Data. The grand function of the data is to educate the prior.

The black box—so far—is that I have not yet said anything about the mathematical
procedure Bayesians use to feed back (as an afterburner) information obtained by the Data
into the prior assumptions, in order to effect the “education” of these prior assumptions and
thereby produce the Posterior. For the moment—in this discussion—it is more important
for me simply to say that whatever this procedure is it is, in fact, a predetermined procedure.

3. Predesignation versus the self-corrective nature of inductive reasoning

Now you might well worry that this Bayesian ploy is like curve-fitting various hypotheses5

to the data—a kind of hypothesis-fishing expedition, if you want. You keep changing the
entire format of the problem, based on accumulating data. The Bayesians have, as I
understand it, a claim: that any two ’reasonable’ priors, when “corrected” by enough data
will give very close posteriors. That is, the initial rough-hewn nature of the prior will iron
out with enough data. Their motto:

Enough data swamps the prior.

I’ve been playing around with another formulation of that motto:

Any data-set is, in fact, a ‘data point’ giving us information about the
probability distribution of priors.

In contrast, there is a motto that captures the sentiment of a Frequentist:

5I want to use the word hypothesis loosely, for the moment; that is, the way we generally use the word;
and not in the specific manner that statisticians use it.
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Fix hypotheses. This determines a probability distribution to be expected in
the data. Compute data. If your hypotheses are good, in the limit the data
should conform to that probability distribution.

About the above, one of the early great theorizers in this subject (and specifically regard-
ing probability, randomness, and the law of large numbers) was Jacob Bernoulli. He also
was a theologian preaching a specifically Swiss version of Calvinism. You see the problem
here! There is a strict vein of predetermined destiny or fatalism in his theology, someone
who is the father of the theory of randomness. How does he reconcile these two opposites?
Elegantly, is the answer! He concludes6 his treatise Ars Conjectandi, commenting on his
law of large numbers, this way:

Whence at last this remarkable result is seen to follow, that if the obser-
vations of all events were continued for the whole of eternity (with the
probability finally transformed into perfect certainty) then everything in
the world would be observed to happen in fixed ratios and with a con-
stant law of alternation. Thus in even the most accidental and fortuitous
we would be bound to acknowledge a certain quasi necessity and, so to
speak, fatality. I do not know whether or not Plato already wished to as-
sert this result in his dogma of the universal return of things to their former
positions [apokatastasis], in which he predicted that after the unrolling of
innumerable centuries everything would return to its original state.

Apokatastasis is a theological term, referring to a return to a state before the fall (of Adam
and Eve)7.

At this point we might connect the above discussion with C.S. Peirce’s 1883 paper “ A
Theory of Probable Inference” as mentioned in the Len O’Neill reading. O’Neill points out
the fundamental distinction that Peirce makes between statistical deduction and statistical
induction the first being thought of as reasoning from an entire population to a sample,
and the second being reasoning from sample to population. As O’Neill says: in the first
it is a matter of long run frequency (i.e, the Frequentist’s motto) whereas the second is
related to a Peircean conception of the self-corrective nature of inductive reasoning (and
this sounds like the Bayesian protocol).

6 It is, in fact, the conclusion of the posthumously published treatise (1713) but it isn’t clear to me
whether or not he had meant to keep working on the manuscript.

7In the class discussion, Noah suggested that Calvinists might be perfectly at home with random pro-
cesses leading to firm limiting fatalism, in that the fates of souls—in Calvinist dogma—are randomly assigned
and not according to any of their virtues; i.e., to misquote someone else: “goodness had nothing to do with
it.”
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Peirce dwells on the issue of predesignation in the Frequentist’s context (i.e., you fix a
model and then collect evidence for or against it; you don’t start changing the model mid-
stream in view of the incoming evidence). There is a curious type of meta-predesignation in
the Bayesian context, in that the manner in which you change the model, given incoming
evidence, is pre-designated. We’ll take a brief look at this.

4. Priors as ‘Meta-probabilities’

Suppose you are a cancer specialist studying a specific kind of cancer and want to know
if there is a gender difference: do more men than women get this type of cancer? Or more
women than men?

Now suppose I asked you (cancer specialist) to make some kind of guess—when consid-
ering groups of people that get this cancer—about the proportion of men-to-women that
get it. You might tabulate this as a probability P that a random choice of person in this
group is male. So P is a number between 0 and 1. You might actually give me a number
if you are very confident, but more likely, for a spread of possible values of P , you’ll give
me an estimate of greater or lesser levels of confidence you have that this P is indeed
the sought-for-probability. Taking the question I asked more systematically, you might
interpret it as follows:

As P ranges through all of its possible values, from 0 (no males get it) to
1 (only males get it) tell me (your guess of) the probability that P is the
ratio M

M+W where M is the number of men and W the number of women
in the group? In effect, draw me a graph telling your probability-estimate
for each of the P ’s in the range between 0 and 1.

Your initial guess, and initial graph, is the Prior ( I privately call it the meta-probability).
It will be educated by the data accumulating.

Let’s imagine that you say “I have no idea! This probability P could–as far as I know–
equally likely be any number between 0 and 1.” If so, and if you had to draw a graph
illustrating this noncommittal view, you’d draw the graph of a horizontal line over the
interval [0, 1]. Or, you might have some reason to believe that P is close to 1/2 but no
really firm reason to believe this and you might have no idea whether gender differences
enter at all. Then the graph describing your sense of the likelihood of the values of P would
be humped symmetrically about P = 1/2. Or if you are essentially certain that it is 1/2
you might draw it to be symmetrically spiked at P = 1/2.

What you are drawing is–in a sense–a meta-probability density since you are giving a
portrait of your sense of how probable you think each value between 0 and 1 might be
the actual probability-that men-get-this-type-of-cancer. Your portrait is the graph of some
probability density function f(t).

There are theoretical reasons to suggest, for some such problems, that you would do well
to be drawing the graphs of a specific well-known family called beta-distributions. These
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beta-distributions come as a two parameter family8 βa,b(t). That is, fix any two positive
numbers a, b (these numbers a, b are called the shape parameters of the beta-distribution)
and you get such a graph.

Here are some general ground-rules for choosing these βs: shape parameters that are
equal give distributions symmetric about 1/2; i.e., you choose such a β if you expect that
gender plays no role in the probability of contracting this cancer. Choosing a > b means
that you are skewing things to the left; i.e., you believe that men get this type of cancer less
frequently than women; choosing b > a means the reverse. The larger these parameters,
the sharper the peak of the curve; i.e., the more “sure” you are that the probability occurs
at the peak.

Choose parameters, say, a = 2, b = 5; or, say, a = 2, b = 2 and you have probability
distributions β2,5(t), or β2,2(t), these being the blue and the magenta graphs in the figure
below.

8These are distributions ta−1(1 − t)b−1dt normalized to have integral equal to 1 over the unit interval.
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5. Back to our three steps

(1) (Choosing the Prior) Now, Bayesian cancer doctor that you are, when you start
doing your statistics, choose a Prior. For this type of question you might do well,
as I said, to choose some beta-distribution. If you imagine that there might be a
gender bias here, but have no idea in which direction, you might choose one that is
symmetric about t = 1/2 (which, as it turns out, means that you’d be taking shape
parameters a equal to b). But size up the situation as best as you can, taking into
account everything that you think is important to the problem and come up with
a choice of a Prior. Let us say that your Prior is βa,b(t).
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(2) (The Data) Suppose you now get a data sample of 100 people with cancer—
perhaps the result of some specific study of some particular population, and suppose
that 60 of these cancer victims are men (so 40 are women).

(3) (Passing to the Posterior) The beauty of the family of beta-distributions is that
when you appropriately educate a beta-distribution (the Prior) with new data, the
new distribution (the Posterior) is again a beta-distribution. The only thing is that
the shape parameters may change; say, from (a, b) to a new pair of numbers (a′, b′):

βa,b(t)
new data−→ βa′,b′(t)

I’m told that this change can be very easily computed. That is, in this example
problem, the a′, b′ will depend on hardly more than the original a, b, the percentage
of men with cancer, and the size of the study.

6. A numerical example and a question

For this example I’m normalizing things so the numbers work simply so we don’t get
bogged down in mere arithmetic. Imagine that your Prior is β20,20 and you test a sample
population (of just the right size for the normalizations to work out as I’m going to assume
they do below) and in that population Men/ Women cancer ratio is 60/40. The Posterior is
then (I’m told) β20+60,20+40. And if you compute (based on that Posterior) the probability
that men get this type of cancer more than women, that probability is:

0.955 . . .

If you did the analogous thing with the Prior β10,10, getting, as Posterior, β10+60,10+40

you’d compute (based on that Posterior) the probability that men get this type of cancer
more than women to be:

0.966 . . .

Question: Why is it reasonable that the second estimate of probability of gender-
difference be bigger than the first?


