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(This is joint work with Karl Rubin)

1. Introduction

As I understand it, a “basic notions” seminar should be about some aspect
of mathematics—which can be very elementary, but—which has relevance to the
whole of mathematics. Furthermore, Joe Harris tells me that this particular seminar
should also give a sample of the type of mathematical question I’m working on at
the moment.

So, to try to fulfill both requirements,
• my “basic notion” is the truism that if a subject has more than one facet,

one should try to make use of intuitions that are available from the view-
point, or in the vocabulary of, any one of its facets, to further progress in
the other facets.

• the mathematical problem I’m working on, jointly with Karl Rubin, is [to
simply blurt out my entire lecture in one sentence:] to make use of the
very well developed, but almost entirely conjectural, theory of “signs” as
computed via local constants in Hasse-Weil L-functions to come up with a
theory of parities for ranks of Selmer modules that is entirely unconditional,
[i.e., proved, dependent upon no conjectures.]

To begin, let me draw this basic triangle on the board

DRAWING OF TRIANGLE WITH VERTICES LABELED
arithmetic, analysis, cohomology

.

Discuss the race between the
• arithmetical
• cohomological
• analytic

aspects of the theory of elliptic curves.

Let E/k be an elliptic curve over a number field k and F/k a finite Galois
extension.

To study: the behavior of the arithmetic of E over varying number fields F/k.

The race I want to discuss has to do with “parity issues” in the arithmetic and
cohomological discussion, corresponding to “sign” issues in the analytic discussion.
For certain aspects of the study of elliptic curves one or another of the three facets
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(arithmetic, cohomological, analytic) are “ahead” of the others and therefore can
be used to motivate progress in the “lagging” two facets.

2. On the arithmetic side

The basic arithmetic question connected with an ellipic curve E over a number
field F is the Mordell-Weil group E(F ); that is, the (finitely generated, abelian)
group of F -rational points of E. The fundamental numerical invariant of E(F ) is
the Mordell-Weil rank

rarith(E;F ) := dimQ(E(F )⊗C).

More delicately, since E(F ) ⊗C is natural a G-representation, we can, for any
(C-valued) character τ of a continuous representation of G, also consider

rarith(E; τ) := the multiplicity of τ in E(F )⊗C.

3. On the cohomological side

Here one chooses a prime number p and one forms the p-Selmer module Selp(E;F )
that fits into the exact sequence,

0 → E(F )⊗Qp/Zp → Selp(E;F ) → Sha(E;F )[p∞] → 0,
and forms the Q̄p[G]-module

Sp(E;F ) := Hom(Qp/Zp,Selp(E;F ))⊗Zp Q̄p.

Define the p-Selmer rank of E over F to be

rcoho
p (E;F ) := dimQ̄p

Sp(E;F ),

and also, for any Q̄p-valued character, τ , of G let

rcoho
p (E; τ) := the multiplicity of τ in the G-representation Sp(E;F )⊗Zp

Q̄p.

4. On the analytic side

Let τ now be the character of an irreducible complex valued continuous represen-
tation of the Galois group G = Gal(F/k). The Hasse-Weil L-function L(E/k, τ ; s)
is defined as a Dirichlet series convergent in an appropriate right-half palne, and
is conjectured to have an entire analytic continuation and to satisfy a functional
equation of a specific sort:

L(E/k, τ ; s) = ε(E/k, τ, s)L(E/k, τ̄ ; 1− s)

where ε(E/k, τ, s) is given as a product of (finitely many, and comparatively ele-
mentary) local factors. Moreover,

The order of vanishing of L(E/k, τ ; s) at s = 1 is conjectured to be equal to
r(E, τ).

Let ran(E/k; τ) denote the order of vanishing of L(E/k, τ ; s) at s = 1.
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Sometimes but not always (rarely, in fact) one can actually establish the ana-
lytic continuation and functional equation mentioned above. But whether or not
this functional equation is proved, one can make perfectly explicit, in many cases,
the expected ε(E/k, τ, s) that should occur in the functional equation, and also the
corresponding local factors.

5. Change of Sign and Parity

We shall be interested in the parity of the three versions of rank described above,
and more specifically, in changes of parity. To give vocabulary for this, let τ and τ ′

be two irreducible representation of the Galois group over k (what the value field
of these representations should be will be discussed in a moment) and put:

—

• δarith(E/k; τ, τ ′) := rarith(E/k, τ)− rarith(E/k, τ
′) modulo 2,

• δan(E/k; τ, τ ′) := ran(E/k, τ)− ran(E/k, τ
′) modulo 2,

• δcoho
p (E/k; τ, τ ′) := rcoho

p (E/k, τ)− rcoho
p (E/k, τ

′) modulo 2.

In the first two bullets above, the τ and the τ ′ are C-valued characters, while in
the last bullet they should be taken to be either Q̄p-valued, or Cp-valued characters.

Nevertheless, it makes sense to formulate the blanket conjecture that all three
δ(E/k; τ, τ ′)’s are

(1) independent of the GQ-conjugacy class of the τ and the τ ′,

and

(2) “equal.”

Here (1) is reasonable, given that the rarith(E/k; τ) and rarith(E/k; τ ′) count the
multiplicities of irreducible representation in a representation defined over Q, al-
lowing (2) to make sense, since although we cannot make a natural identification
of irreducible representations defined over C with those defined over Q̄p, we can
indeed find a natural identification of GQ-conjugacy classes of irreducible repre-
sentations defined over C with GQ-conjugacy classes of irreducible representations
defined over Q̄p.

In the race for understanding, you would naively think that δan lags very much
behind the other two quantities, since—at the very least–the other two quantities
have a rigorous definition, while the very existence of the quantity δan depends on
the conjectured analytic continuation of L-functions, and this conjecture has been
verified in very few cases. Nevertheless . . .
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6. A semi-local theory for δan

Things simplify when the character of our C-valued repesentation τ is real-valued
for then the expected functional equation reads:

L(E/k, τ ; s) = ε(E/k, τ, s)L(E/k, τ ; 2− s)
from which we immediately see that the value of the local factor ε(E/k, τ, s) at s = 1
is ±1. This sign is called the root number W (E/k, τ) and governs the parity of the
order of vanishing of L(E/k, τ ; s) at s = 1: if W (E/k, τ) = +1 then L(E/k, τ ; s)
has a zero of even order at s = 1. If W (E/k, τ) = −1 then L(E/k, τ ; s) has a
zero of odd order, and in particular it is zero, at s = 1. For a discussion of root
numbers of elliptic curves, see, for example, section 3 of Rohrlich’s Compositio
article Galois theory, elliptic curves, and root numbers, Compositio Mathematica
100 (1996) 311-349.

In discussing the passage from global to local, it is (at least notationally) useful
to work with the more general “ Galois extensions of étale algebras” as discussed
in Bourbaki, rather than considering only Galois field extensions. Specifically, if
F/k is our global field extension with Galois group G and if v is a place of k,
we will happily work with the étale kv-algebra Fv := F ⊗k kv viewed and Fv/kv

we view as Galois extension with Galois group G. With this understanding, if τ
is an irreducible representation of G = Gal(F/k) we denote by τv the very same
representation τ , but where we are thinking of G as Gal(Fv/kv).

With these conventions, the global root numberW (E/k, τ) is defined as a product
of local root numbers almost all of the local factors being +1, and all of them being
defined in such a way that they are amenable to explicit calculation.

Aside on local constants: The Deligne theory of local constants, over a
local field kv produce “epsilon-factors” ε(π, dx, ψ) where π is a representation of
the Weil-Deligne group, dx is a Haar measure on K and ψ is an additive character
on K∗, where these factors do depend on these auxilary local choices dx and ψ.
Rohrlich defines his root number by setting

W (E/kv
; τ, ψ) :=

ε(π(E, τ), dx, ψ)
|ε(π, dx, ψ)|

where τ is a given Weil-Deligne representation, and π(E, τ) is defined to be the
Weil-Deligne representation that is the tensor product of τ with the Weil-Deligne
representation associated to E/kv

. This no longer depends upon the choice of dx,
but still depends on ψ. [Rohrlich fixes his ψ, though, so he can suppress it from
the notation.] Now, however, define for a pair τ, τ ′ of Deligne-Weil representations
with the same determinant and real-valued characters the quantity

δanv = δanv (E/kv
; τ, τ ′) ∈ Z/2Z

by the formula

(−1)δan
v =

W (E/kv
; τ, ψ)

W (E/kv
; τ ′, ψ)

which makes sense since the RHS is ±1; and it is well-defined, independent of either
dx or ψ.
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For any elliptic curve E over a global field k, and for Galois representations τ, τ ′

of k where τ and τ ′ have the same determinant and have real-valued characters,
we have that δanv (E/kv

; τv, τ ′v) is defined for all places v, vanishes for all but a finite
number of places v of k, and we have the following conjecture.

Conjecture:

δan(E/k; τ, τ ′) =
∑

v

δanv (E/kv
; τv, τ ′v).

For fairly general characters τ, τ ′ over k satisfying the above hypotheses we have
explicit formulas allowing us to compute change of root number, depending upon
change of character. The beauty, here, is that from standard conjectures together
with this excursion into the analytic side of things, we get some quite precise expec-
tations regarding how the parity of ran(E,K; τ) and therefore rarith(E,K; τ) and
rp(E,K; τ) change (when we pass from one character τ to a different character τ ′,
both of the same determinant and with real-valued characters).

We will refer to the above conjecture as giving us a semi-local theory for the
change of root number δan(E/k; τ, τ ′).

7. Generalized dihedral field extensions

The type of number field extensions F/k we will have particular interest in is as
follows.

The extension F/k is assumed to be Galois, and we also assume that there is a
quadratic intermediate extension K/k in F/k (denote by c ∈ Gal(K/k) the nontriv-
ial automomorphism). Until further notice Gal(F/K) will be either a finite abelian
p-group (for p an odd prime number) or else an abelian pro-p group. Towards the
end of the hour we will be considering more general groups. Letting G± ⊂ G be
the ±-eigen-subgroups of the conjugation action of c, and F±/K the subfield of F
consisting in elements fixed under G∓, we have that F is the composite of F+ and
F−, and Gal(F±/K) = G±.

We shall be considering characters over k of the form

η = IndK
k (χ)

where χ is a Dirichlet character over K. The necessary and sufficient condition for
η to be real-valued is that χ be a character belonging to the minus-subextension
F−/K. If χ belongs to F−/K, let us call χ a minus-character.

More striking, though, is the fact that—assuming that the conductor of the real-
valued character η is relatively prime to the conductor of E—the root numbers
W (E,K;χ) do not depend on η. That is,

δan(E/k; η, η′) = 0.
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8. A “cohomological theory” of (relative) local constants

Karl Rubin and I set ourselves the following problem. Working entirely in the
cohomological (i.e. “Selmer”) facet and working “unconditionally,” (i.e., using no
outstanding conjectures) we wish to set up the analogue of a semi-local theory of
“relative local constants” that performs the same function cohomologically that the
theory of local constants perform (conjecturally) for the analytic theory. That is,
we have the following program:

(1) For suitable pairs τv, τ ′v define relative local invariants

δcoho
p,v (E/kv

; τv, τ ′v) ∈ Z/2Z

purely by local cohomological means.
(2) For any elliptic curve E over a global field k, and for suitable pairs τ, τ ′

prove that δcoho
p,v (E/kv

; τv, τ ′v) vanishes for all but a finite number of places
v of k.

(3) Prove that when the relative local invariants are defined we have the local
to global equation

δcoho(E/k; τ, τ ′) =
∑

v

δcoho
p,v (E/kv

; τv, τ ′v).

(4) Give explicit computations of the relative local invariants.

We feel we have made progress in setting up such a theory in the generalized
dihedral context. We fix a quadratic extension of number fields K/k.

(1) (Local Invariants) For a place v of K, an elliptic curve Ev/kv and a local
minus-Dirichlet character χv over Kv we define the arithmetic (relative)
local invariant

δcoho
p,v (Ev, kv; ηv) ∈ Z/2Z

where η = IndK
k (χ) as in the previous section. I’ll give the definition in

a moment; these δcoho
p,v ’s will be “cohomological analogues” of the δanv ’s we

have previously discussed.

We prove, via “visiblity methods,” the following

(2) (Global sign as a sum of local signs) If E/K is an elliptic curve, and
χ, χ′ are global Dirichlet minus-characters of K, then the corresponding
local invariants δcoho

p,v = δcoho
p,v (E/kv, ηv, η

′
v) vanish for all but finitely many

places v. Moreover, we have the formula

δcoho(E/k; η, η′) =
∑

v

δcoho
p,v (E/kv, ηv, η

′
v)

(3) (Computability) The local invariants δcoho
v are reasonably computable,

and when we do actually make the computation they conform to the ex-
pectations we have using the analytic theory as heuristic.
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In particular, we obtain as corollary:

Corollary: Let F−/K be an abelian p-extension that is a minus-extension
in the sense defined above and that is unramified at all primes where E has bad
reduction and all primes above p split in K/k. If rp(E,K) is odd, then rp(E,F−) ≥
[F− : K].

9. Discussion of previous results

Cornut-Vatsal, Nekovár, Skinner-Urban

10. Definition of the local invariants

In our article, Rubin and I define these invariants in somewhat greater generality,
but to get the idea, suppose given an odd prime number p, a local field Kv, an
elliptic curve E over Kv, and a cyclic extension Lw/Kv of order a power of p.

By the Weil trace of E relative to the Galois extension Lw/Kv, denoted
TrLw/Kv

(E), we mean the abelian variety over Kv of dimension [Lw : Kv] which is
characterized functorially as that abelian variety whose group of R-valued points,
for any Kv-algebra R, are given by:

TrLw/Kv
(E)(R) := E(R⊗Kv

Lw).
There is a natural action of G = Gal(Lw/Kv) on E(R ⊗Kv Lw) as group of au-
tomorphisms and hence on the abelian variety TrLw/Kv

(E) (over Kv). By the
Lw/Kv-twist of E we mean the abelian subvariety A := ELw/Kv

defined over Kv

of the Weil trace of E,
A ⊂ TrLw/Kv

(E),
that is characterized by the following properties:

• A is stable under the action of G,
• G acts faithfully on A,
• A is a simple abelian variety.

If the order of the cyclic group G is pν and R is the unique integral domain
quotient of Z[G] on which G act faithfully, then R ∼= Z[ζpν ] where ζpν is a primitive
pν-th root unity. The Lw/Kv-twist of E ELw/Kv

inherits, from the action of G, an
action of the ring R as ring of endomorphisms.

Let π = (1− ζpν ). One proves:

E[p] = ELw/Kv
[π],

this equality, of Fp-vector spaces with Galois action, taking place in TrLw/Kv
(E)[p].

The Kummer cohomology exact sequence for E, coming from

0 → E[p] → E
p−→E → 0

gives us an Fp-vector subspace,

E := E(Kv)/pE(Kv) ↪→ H1(Kv, E[p]),
and the Kummer cohomology exact sequence for ELw/Kv

coming from

0 → ELw/Kv
[π] → ELw/Kv

π−→ELw/Kv
→ 0
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gives us an Fp-vector subspace,

F := ELw/Kv
(Kv)/pELw/Kv

(Kv) ↪→ H1(Kv, ELw/Kv
[π]).

Since, by the equality of Fp vector spaces with Galois action displayed above, we
have an equality

H1(Kv, E[p]) = H1(Kv, ELw/Kv
[π])

let us denote denote these (equal) Fp-vector spaces by the same letter, V.
Both E and F are Fp vector subspaces of V. Define:

D :=
E

E ∩ F
.

We define our local invariant which is an integer modulo 2 by the formula:

δcoho
v := δcoho

v (E,Lw/Kv) = dimFpD modulo 2.

11. Questions and Conjectures

(1) Do Euler Systems exist in this generality? Let F/K be the maximal
pro-p abelian Galois extension of K unramified at primes dividing the con-
ductor of E, and denote by F−/K its minus part, relative to the quadratic
extension K/k. Our results show that there is sufficiently large Selmer rank
to “support” the existence of an Euler system for (E,F−/K). Is there, in
fact, such an Euler System?

(2) Large Selmer rank in non-abelian extensions. Let K/K be a Ga-
lois extension with Galois group a (not necessarily abelian) p-group, and
suppose again that it is unramified at primes dividing the conductor of E.
Suppose further that K/k is Galois. By the minus-degree, [K : K]−, of K
over K let us mean the following. Put G = Gal(K/K) and G̃ = Gal(K/k).
Choose an element of order two, c̃ ∈ G̃ and consider the subset G− ⊂ G
consisting of elements of G that are brought to their inverse under conju-
gation by c̃. This set depends upon the choice of c̃ but its cardinality, |G−|,
is independent of this choice. Define

[K : K]− = |G−|.
Conjecture: Let K/K be unramified at all primes where E has bad

reduction. If rp(E,K) is odd, then

rp(E,K) ≥ [K : K]−.


