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Part I

Introduction

What a great idea to have this conference celebrating the mathematical work of Glenn Stevens!
And what a pleasure it is to think about the excellent contributions Glenn has made so far in
his—what I think of from my vantage point—still young life, and to see how it inspires and folds
into the many current projects of the grand subject—p-adic variation in automorphic forms and
in the wider context of arithmetic.

Glenn was a student of mine, and already as a graduate student had such firm drive, direction,
and maturity that —when we went running together around Fresh Pond in Cambridge, chatting
about mathematics, I would often feel I learned vastly more than I was teaching. His thesis and
first book has served as source-works for me as soon as he wrote them. His grand contributions—so
important for our subject—start from stunningly simple ideas. One of Glenn’s constructions, the
subject of Part IV of these notes, begins with the extremely original opening move1 of embedding
the module of polynomials of degree ≤ k into a power series ring. And from there, it takes off!

Glenn has also been the architect and energetic force behind the astonishingly effective Promys
program, an institution that has enriched our subject, mathematics, in ways that other intellectual
disciplines must envy. That young people—enthusiastic learners and counselors—be introduced
to both the subject and to each other, strengthening bonds of friendship to shape the eventual
intellectual community in the marvelous way that our mathematical community enjoys, is of ex-
treme importance. And the tack taken in the day-to-day work of Promys just radiates with such
pragmatic optimism and joy: “prove it, disprove it, or deal with it,” being one of the mottoes.

Some of the things Glenn’s been quoted as having said to students, I try to take as guides for my
own teaching. Glenn has a knack of crisply pointing out to students ways of navigating within
our subject, and of achieving a deep appreciation of what it means to do mathematics. Here
is an example of such a (seemingly simple) piece of advice, but one that gets to the heart of
things: a student came to Glenn, swamped by perplexity when thinking about a certain problem
in mathematics, and Glenn pressed the point:

It is good to be confused!

I think it is important to tell students this: that confusion is a tool, a useful goad, an unavoidable
aspect of our work, and yet: it can be flipped from being an irritant to a deep source of enjoyment2.

1
as Kevin Buzzard reflected in the banquet of this conference

2
I don’t mean this to deflect blame from me, though, if this lecture turns out to be confusing!
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1 The classical ‘Arithmetic Questions’ about elliptic curves

Here is a basic list of arithmetic issues that we tend to ask about, when we study elliptic curves
over number fields.

• Periods,

• Mordell-Weil groups endowed with their Néron-Tate heights; the corresponding regulators,

• Shafarevich-Tate groups,

• (Related asymptotics:)

• Frobenius distributions,

• Variation over ‘twist families.’

We often have these tools to make a two-pronged attack:

(p−adic )L−functions

��
Arithmetic Questions

“Selmer cohomology classes”

��

At times, a more extensive toolkit is available:

Modular Forms

��
(p−adic) L−functions

����
Euler systems

��

��

Arithmetic Questions

“Selmer cohomology classes”

��

But what about variation? For example, if we are dealing with an elliptic curve E over the rational
number field, we can replace E by its uniformizing modular eigenform, fE and note that fE lives in
the eigencurve, a one-parameter p-adic analytic family of p-adic (overconvergent) Hecke eigenforms,
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each of these eigenforms raising ‘Arithmetic Questions’ somewhat similar to the questions raised
by the elliptic curve E. The picture of the above chart, when available, gets even more interesting
when you consider its variation over the eigencurve.

Part II

Deformation, Overconvergence, and Euler Systems

and their variants

The concepts in the title above, and in the chart below, represent some intensely pursued programs
in number theory, and will be themes well-covered in this conference.. They connect to basic
constructions and arithmetic questions through the intermediary p-adically varying families:

Modular Symbols

��
Overconvergent eigenforms

��

��

��

p− adic L− functions

��
Zeta elements, Euler Systems

��

��

Arithmetic Questions

“Selmer cohomology classes”

��

Let’s start with an overview by first merely listing some of the ways these concepts show up—both
in Glenn’s work and in what we will be hearing about this week. Once this is done, I’ll back up
and present a more introductory view of some of these structures.

2 Rigid-analytic deformations

One challenge to our subject is to establish p-adic rigid analytic families of the constellation of
structures that form the chart above. That is we might aim for rigid analytic variations

• of overconvergent modular and automorphic forms (organized in eigenvarieties) and

• of the p-adic L functions of these modular and automorphic forms (organized as functions on
the corresponding eigenvarieties)

• of their associated modular symbols; specifically, of Glenn’s theory of families of overconver-
gent modular symbols and more generally of overconvergent cohomology of arithmetic sub-
groups of reductive groups with coefficients in certain modules of distributions.
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• of ‘zeta-elements,” and whatever generalized Euler systems of various “core ranks” are al-
lowed, in each specific context.

Glenn’s work has been fundamental for all of these topics over decades. For example, the notes
for his IHP (2000) course on families of overconvergent modular symbols has been instrumental in
providing a fluid approach to many of these ideas. His breakthrough, a decade earlier, with Ralph
Greenberg—expressing L-invariants as the derivative (with respect to weight) of the eigenvalue
of Atkin-Lehner’s operator Up—opened up a still-vital chapter of our subject. His more recent
construction (2013) with Rob Pollack of p-adic L-functions associated to overconvergent eigenforms
at critical slopes is both beautiful and revelatory of subtle issues in the theory of eigencurves. An
impressive list of pdf files of published work, and yet-to-be-published preprints, of Glenn and
collaborators on these issues can be found in http://math.bu.edu/people/ghs/research.html.

Much of the program of this conference will involve exactly these themes, with on-going construc-
tions in new important directions, of eigenvarieties3 as parameter spaces for: finite slope families
of overconvergent automorphic eigenforms and their corresponding families of modular symbols4,
Galois representations5 L-functions and/or their ζ-elements, Euler systems, and regulators6.

We will also see an intriguing differential aspect (in the form of a DGA algebra structure related
of Hecke algebras as one climbs p-powers in level)7, an application of the work of Ash and Stevens
in the computation of certain periods on rigid analytic spaces related to modular forms8, and
a technique, via averaging, for guaranteeing the nonvanishing of certain moments of L-function
values9.

3 Forms of Euler Systems

One exciting phenomenon that seems to be emerging, and is visible in the subjects of a few of
the talks in this conference, is the evolution of what one might call “forms of Euler systems.” The
basic template for Euler Systems had been given in the fundamental work of Kolyvagin [3]. In Karl
Rubin’s book Euler Systems [6] it was formatted in an extremely efficient way that encompassed
circular- and elliptic-unit Euler systems, as well as those coming from Heegner points and higher
dimensional cycle constructions, or from Kato’s construction using Beilinson classes (cf. Tony
Scholl’s [7]). Other formats appeared in the work of Matheus Flach [2] (or the “coherent Flach
systems” in [4] and Weston [9]) which didn’t have the full range of the original Kolyvagin-type
collection of cohomology classes in large quantities of abelian extensions of the base field. We see
emerging even more new configurations of cohomology classes that control arithmetic behavior,
among which are interpolation over p-adic parameters, and conjectured ’higher core rank’ systems–

3
as in the talks of Avner Ash, Joel Bellaiche, Ellen Eischen, Michael Harris and Eugene Hellman

4
as in the talks of Fabrizio Andreatta, and Ander Steele

5
as in the talks of Benoit Stroh and Jacques Tilouine

6
as in the talks of Francesc Castella, Masataka Chida, David Hansen, Masato Kurihara, David Loeffler, Jan

Nekovar, Viktor Rotger, Eric Urban, and Sarah Zerbes
7
in the talk of Jeehon Park

8
in the talk of Marco Seveso

9
in the talk of Jeehon Park
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i.e., classes in wedge-powers of cohomology groups as had already been envisioned in the work of
Perrin-Riou.

Part III

Interpolation

A fundamental way of constructing p-adic variation, or p-adic deformation, is via p-adic interpola-
tion. ‘Interpolation’ itself has a long (and mostly unwritten, I think) history.

4 The relevant interpolations over C

Interpolation has many aspects, but for us, the great classical moments that precede our p-adic
subject comes from these acts of interpolation.

1. Exponentiation: fn(k) := n
k; for k ∈ Z −−−−− → fn(s) := n

s = e
s·logn for s ∈ C.

2. Analytic Continuation: Euler’s ζ(k) =
�∞

n=1 n
−k (for k ∈ Z, k ≥ 2) to Riemann’s zeta-

function ζ(s) (for s ∈ C− {1}).

This passage, ζ(k) (k ≥ 2)−−−− → ζ(s) (s �= 1), can be viewed as an honest interpolation
in various ways. For example,

• A theorem of Deninger [1] tells us that—given the known growth properties of the
complex analytic function ζ(s) arising from some Dirichlet series—such a function is
uniquely determined by its integral values—and even by the values: k �→ ζ(k) for k ≥ k0

(for any k0 > 1).

• A theorem of Hasse simply gives ζ(s) as a limit of this convergent series:

ζ(s) =
1

s− 1

∞�

n=0

1

n+ 1

n�

k=0

�
n

k

�
(−1)k

(k + 1)s−1
.

3. Variation of automorphic forms parametrized by weight

Consider the interpolation of Eisenstein series at classical integral weights s = 3, 4, 5, . . . to
provide either the non-analytic parametrized family of Eisenstein series

Eis
{∞}
s (z) :=

1

2

�

gcd(m,n)=1

y
s

|mz + n|2s
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for z = x + iy in the upper half plane y > 0. that had beginnings in work of Hecke and
Reidemeister, and was developed by Maass (and, of course, later much more substantially
developed by Langlands). Or, perhaps more directly germane to us, consider:

Es(q) :=
1

2
ζ(1− s) +

∞�

n=1

{
�

d | n

d
s−1}qn

which fits into the following framework:

Let Λ∞ be the ring of complex analytic functions expressible as Dirichlet series in appropriate
half-planes that extend to complex analytic functions on the entire plane, bounded in vertical
strips. Then

Es(q) ∈ Λ∞[[q]]

and has the property that its specializations to s = 2, 4, 6, . . . , 2k, . . . yield the classical
Eisenstein series of level 1 at those weights.

5 The parallel p-adic story

We’ll exclude the case p = 2 from now on.

1. Exponentiation: Fermat’s Little Theorem as expanded by Euler gives the congruence we’lll
call Euler’s Theorem:

n
k� ≡ n

k mod p
r

for any n � ≡0 mod p and pair of exponents k� ≡ k mod (p− 1)pr−1.

It is natural to pass to the (projective) limit of the sequence:

· · · → Z/(p− 1)pr−1Z → · · · → Z/(p− 1)pZ → Z/(p− 1)Z.

When the dust settles—i.e., as r �→ ∞—we get a continuous one-parameter p-adic space (a
commutative Lie group, in fact)

W := lim
r→∞

Z/φ(pr)Z = lim
r→∞

Z/(pr−1(p− 1)Z) = lim
r→∞

Z/pr−1Z × Z/(p− 1)Z

which we will refer to as p-adic weight space. This isomorphism provides W with a canonical
product decomposition

W = Zp × Z/(p− 1)Z

and we’ll write κ = (s, i) following this product decomposition, with s ∈ Zp, and i ∈ Z/(p−1)Z
being the image of κ under the projections to the factors. Any element κ ∈ W can be viewed
as ‘being’ a locally analytic character κ : Z∗

p → Z∗
p by continuity (i.e., approximate κ by an
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integer k modulo (p − 1)pN−1 and note that raising to the k-th power yields a sequence of
characters that converges as k → κ).

Viewing W geometrically, it is a union of p− 1 disjoint closed unit discs:

W = �i∈Z/(p−1)Z Wi

where Wi is the inverse image of i under the natural map W → Z/(p− 1)Z. W contains the
monoid of natural numbers

N ⊂ W

the elements of which are called “classical weights.” Since p is assumed odd, there is a natural
further projection:

W → Z/(p− 1)Z → Z/2Z,

allowing us to decompose W into even weights and odd weights; this will be useful below.

W = Weven � Wodd.

For each point κ ∈ W and any integer d, we can define

d
{κ} := lim

r→∞
d
wr ∈ lim

r→∞
Z/prZ � Zp.

where the sequence {wr}r are positive integers tending to infinity10 such that wr ≡ w

mod φ(pr)Z for all r. Note that if d is divisible by p then d
{κ} = 0.

2. p-Adic Analytic Continuation

For κ ∈ Weven, the important construction of Kubota and Leopoldt—i.e., their “p-adic L-
function”— performs, in effect, an analogous interpolation of the Riemann zeta-function and
Dirichlet L-functions. Appropriately normalized, the values of these functions at odd negative
integers, is packaged by the function

k �→ −bk/2k ∈ Q

where k is the k-th Bernoulli number. A consequence of the classical study of Bernoulli
numbers (The Von Staudt-Clausen Theorem along with the Kummer congruences) is, first,
that for positive integers k ∈ Weven − W0 we may view −bk/2k ∈ Zp and then, fixing a
sequence of even positive integers {kj}j which go to infinity (when viewed in R) and which
have the limit

lim
j→∞

kj = κ ∈ Weven −W0

(when viewed in W ) we obtain the convergent limit

−bκ/2κ := lim
j

−bkj/2kj ∈ Zp,

10
Note that even if w is an ordinary integer, we will want the approximating wr’s to be positive numbers tending

to infinity.
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thereby interpolating the function k �→ −bk/2k to a p-adic analytic function on Weven −W0:

κ �→ −bκ/2κ := lim
j

−bkj/2kj ∈ Zp.

Writing κ = (s, i) as discussed above, one defines the Kubota-Leopoldt p-adic L-function:

Lp(1− s,ω
i) := −bκ/κ.

Here ω designates the Teichmüller character.

3. Variation of automorphic forms parametrized by weight

The power of Fermat’s Little Theorem to generate congruences is illustrated by comparing
the classical Eisenstein series of weight k (here k ≥ 2, k is even; and keep k �≡ 0 mod (p− 1)
in this discussion).

Gk = − bk

2k
+

∞�

n=1

� �

d | n

d
k−1

�
q
n

taken modulo p (i.e., its Fourier coefficients being taken modulo p) with the Eisenstein series
of weight k + p− 1

Gk+p−1 = −
bk+p−1

2(k + p− 1)
+

∞�

n=1

� �

d | n

d
k−1

d
p−1

�
q
n

or, more generally, comparing it modulo p
r with the Eisenstein series of weight k + φ(pr):

Gk+φ(pr) = −
bk+φ(pr)

2(k + φ(pr))
+

∞�

n=1

� �

d | n

d
k−1+φ(pr)

�
q
n
.

Here it is Euler’s Theorem that guarantees that the nonconstant coefficients of Gk+φ(pr) are
congruent to the corresponding nonconstant coefficients of Gk modulo p

r. And it is the clas-
sical Kummer congruence that guarantees the analogous result for the constant coefficients,
giving us that

Gk+φ(pr) ≡ Gk mod p
r
.

In fact, an argument of Serre developed by Katz allows you to use modularity of these Fourier
series together with the congruences we’ve just discussed between nonconstant coefficients
to prove the analogous congruence for the constant coefficients; i.e., to prove the classical
Kummer congruences as a derivative of, in effect, Euler’s Theorem.

Putting all this together we have a construction of Serre11: a p-adic interpolation of the
Fourier coefficients of the classical family of Eisenstein series. More exactly we may form, for
every weight κ ∈ Weven such that κ projects to the even number i �= 0 modulo p − 1, the
p-adic continuous series of ’p-adic Hecke eigenforms on Γ1(p)’:

11
in [8]: Formes modulaires et fonctions zêta p-adiques
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G
{p}
κ (q) := −1

2
Lp(1− s;ωi) +

�

n

� �

d | n

d
{κ}−1

�
· qn ⊂ Zp[[q]].

The half-scare quotes around ’p-adic Hecke eigenforms on Γ0(p)’ are just to record that one
has to give a sense of what this means, specifically for nonclassical weights κ: these are p-adic
overconvergent eigenforms. But even when κ is the image of an even integer k ≥ 2, and even

though, in this case, G{p}
κ (q) is identifiable with a classical eigenform, there is a significant

difference between Gk(q) and G
{p}
κ (q). For one thing, the coefficients of G{p}

κ (q) are just p-adic
numbers; however they are in the image of

Q(µp−1) �→ Qp

where we make an identification
µp−1

σ� F∗
p

and then embed
F∗
p ⊂ Z∗

p ⊂ Q∗
p ⊂ Qp

in the natural way. Using such an identification we may view G
{p}
κ (q) as a genuine classical

modular form with Fourier coefficients in Q(µp−1) �→ C; it has weight k and is on the group
Γ0(p) with a nebentypus character that depends on σ and k.

Also, we don’t just throw away the Eisenstein series with weights 2 ≤ k ≡ 0 mod p−1, these
having—by the von Staudt-Clausen Theorem—a constant term − bk

2k with negative ordp. We
have other plans for these Eisenstein series: We just divide by their constant terms to get a
sequence

Ek(q) = 1− 2k

bk

∞�

n=1

� �

d | n

d
k−1

�
q
n

which has the very useful property of being ≡ 1 mod p, and which interpolates to give
another family

E
{p}
κ (q)

for κ ∈ W0 ⊂ Weven. The Fourier expansion of any member of this family is congruent to 1
mod p, and if κ = 0 ∈ W0 then

E
{p}
κ (q) = E

{p}
0 (q) = 1,

a fact that plays an important role in this story.

These families of eigenfunctions, varying p-adic analytically in their weights were first put
forward by Serre, and can viewed as the starting point of a significant amount of modern
(p-adic) number theory.
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6 Nonparallelism

We have described three types of interpolation—exponentiation, zeta-function, Eisenstein series—
in the classical context (i.e., over the complex numbers) and the corresponding interpolations over
the p-adic numbers. So far, we have discussed parallel developments in these contexts. But the
p-adic context has further tools of analysis that is missing, at least at present, in the classical
context.

The basic structures and properties that we encounter in the p-adic world of automorphic forms
for which we don’t quite see–or at least, don’t yet see— corresponding concepts in the classical
C-valued world of automorphic forms are:

• the distinction of ordinary and supersingular,

• the corresponding notion of overconvergence and—topping the list—

• the existence the Atkin-Lehner operation Up, especially as its appearance as a compact op-
erator on the p-adic Banach modules of overconvergent modular forms.

The p-adic modular eigenfunctions, and all the others we will be dealing with today all have the
technical property of being overconvergent in the sense that

• they can be viewed ’geometrically’ as sections of the appropriate line bundle on the appro-
priate p-adic modular curve,

• they are allowed to have essential singularities–but only of a specific controlled type—in small
p-adic discs centered above the supersingular points in characteristic p.
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The Hecke operators and the Up operator act as correspondences on the modular curves and in-
duce operators on the corresponding spaces of overconvergent sections. By “eigenform” we will
always mean an overconvergent p-adic modular form that is an eigenvector for the appropriate
Hecke operators. Since these sections may have (allowed) singularities at the supersingular points,
one is dealing with noncompactness—when working with any of these families—whether or not
one requires regularity at the cusps. This is the underlying reason why there can be continuous
families of p-adic cuspidal eigenforms, i.e., despite the fact that the classical members of the family
correspond to the discrete series in the (classical) harmonic analysis of these modular curves12.

Part IV

Overconvergent Families of Modular Symbols

7 Classical Modular Symbols

If E is an elliptic curve over Q uniformized by the modular form ωE , with ±-periods Per±E given
as the integrals of ωE over the real and imaginary loci in E(C), and τE := the order of the torsion
subgroup of E(Q) then we have this chart where all the double-headed arrows mean what they
indicate: you can determine (given Per±E and τE) the upper object from the lower and vice versa13.

12
Perhaps the most succinct way of seeing an operation ‘missing in the classical context’ is to form the continuous

families of ‘modular forms’ as follows. Multiply the continuous family of Eisenstein series (in the classical and in the

p-adic context) by a classical cuspform (for example, ∆, the modular form of weight 12, and level 1) The family of

modular forms you now have will be an interpolation of classical cusp forms in even weights = 2, 4, . . . but will no

longer be eigenforms. The interpolated range of weights of your family will be, in the complex context, the entire

complex plane; and will be p-adic weight space in the p-adic context. The natural impulse, then, would be to try to

perform a spectral analysis of your family so as to achieve, at least for small ranges of weights, a decomposition of the

family into a (presumably infinite) sum of families that are, in integral positive even weights, eigenforms. Thanks to

the Up operator, this ispectral analysis can be done in the p-adic context, but is not (yet) do-able in the archimedean

setting.
13
The top double-headed arrow raises an interesting question, but the other two double-headed arrows are via

simple formulae.
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Analytic issues; e.g.,Regulators, etc.

meromorphic ‘entire� L− functions

��

��

�� {χ �→ L(E,χ; s) ∈ C}

Special L− values

��

��

�� {χ �→ L(E,χ; 1) ∈ Q[χ] · Per±E}

Periods over “closed” geodesics

��

��

�� { a
m �→

�
a
m+iγ ωE}

Modular Symbols

��

��

��

{ a
m �→ [ am ]±E ∈ 1

τE
· Z}

Arithmetic issues; e.g., conjectural MW rank, Sha, etc.

Extremely relevant for the control that one has over this structure is that the modular symbols
a
m �→ [ am ]±E viewed as functions on all of Q/Z are determined, via an elementary algorithm–no more
baroque that the Euclidean algorithm—from the finite set of its values

a �→ [
a

NE
]±E for a = 0, 1, 2, . . . , NE − 1,

where NE is the conductor of E.

The chart, wonderful though it is, is only for a single elliptic curve at a time. Taking an eigenvariety
perspective: it is merely for a single point on the eigencurve!

8 Rigid Analytic Modular Symbols

The fundamental paper introducing this structure is Glenn Stevens’ Rigid Analytic Modular Symbols
(1994).

Let p ≥ 5. As usual, Qp[X] denotes the ring of polynomials in the variable X with coefficients in
Qp. For k ≥ 0 let Pk denote the (k + 1-dimensional) Qp-vector subspace of Qp[X] consisting of
polynomials of degree ≤ k. (Equivalently, you may homogenize these polynomials by introducing
a variable Y and view Pk as the vector space of homogeneous polynomials of degree k in X,Y.

The group GL2(Qp) acts on Pk as the k-th symmetric power of the standard representation on P1

(i.e., via its linear fractional action on homogeneous linear polynomials in X and Y . tThe action
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on the right via the transpose gives, for

γ =

�
a b

c d

�

the formula:
(F |γ)(X,Y ) = F (dX + bY, cX + aY ).

We have
Γ0(p) ⊂ GL2(Q) ⊂ GL2(Qp)

and can consider the Qp-linear action of Γ0(p) on Pk.

Definition 1. The space of classical modular symbols of weight k is the compact one-
dimensional cohomology of Γ0(p) with values in Pk,

Symb(Γ0(p); k) := H
1
c (Γ0(p);Pk).

This terminology “symbol” comes from the alternate description of this cohomology group as given
by equivariant functions φ from the left Γ0(p)-module ∆ of degree zero divisors on P

1(Q)—the
action being the natural linear fractional action—to the right Γ0(p)-module Pk. Since

�
1 1
0 1

�
∈ Γ0(p),

the equivariance property implies that φ([x]− [∞]) = φ([x+n]− [∞]) for any n ∈ Z, so these values
are determined by the image of x in Q/Z and therefore, traditionally, modular symbols are often
described as functions on Q/Z.

Since

c :=

�
−1 0
0 1

�

normalized Γ0(p), c induces an involution on Symb(Γ0(p); k), decomposing it “evenly,” as

Symb(Γ0(p); k) = Symb(Γ0(p); k)
+ ⊕ Symb(Γ0(p); k)

−
.

Note: The Eichler-Shimura correspondence relates the image of this cohomology module in the
corresponding non-compact cohomology module with the space of cuspforms of level Γ0(p) and
of weight k + 2 (i.e., projects Symb(Γ0(p); k) onto this space of cuspforms). The standard Hecke
operators act on H

1
c (Γ0(p);Pk) compatibly with their action on modular forms of that weight and

level.

Glenn’s fundamental construction interpolates symbols, from

k �→ Symb(Γ0(p); k); k = 0, 1, 2, 3, . . .

to establish a continuum of p-adic Banach spaces,
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κ �→ Symb(Γ0(p);κ),

that are parametrized by (p-adic) weight κ, thereby establishing a format for a construction of the
eigencurve. The idea is elegant:

Start with the Tate algebra A := Qp�x� viewed as the Banach algebra over Qp consisting of all
formal power series f(z) =

�∞
k=0 akx

k ∈ Qp[[x]] such that limk→∞ ak = 0 equipped with Banach
norm ||f || given as the sup of the absolute value of its coefficients. Let D denote the Banach space
of Qp-valued continuous functionals on A.

So we have a continuous bilinear pairing: (µ, f) �→ �µ, f� for µ ∈ D and f ∈ A.

Let Σ0(p) denote the semigroup of nonsingular matrices in Mat2(Zp)

γ =

�
a b

c d

�

with a ∈ Z∗
p, and c ∈ pZp. We have the natural inclusion,

Γ0(p) ⊂ Σ0(p).

Moreover, for any locally analytic character κ : Z∗
p → Z∗

p we have the (continuous)weight κ-action
of the semigroup Σ0(p) on A given by the formula:

(γκf)(x) = κ(a+ cx) · f(b+ dx

a+ cx
), .

Define the induced (continuous) weight κ-action of Σ0(p) on D by the (dual) formula

�µγκ, f� = �µ, γκf�.

Denote by Dκ the Qp- Banach space D equipped with the weight κ-action of Σ0(p).

Definition 2. (Glenn) The space of rigid analytic modular symbols of weight κ is the
compact one-dimensional cohomology of Γ0(p) with values in the Qp-Banach space Dκ,

Symb(Γ0(p);κ) := H
1
c (Γ0(p);Dκ).

Again, the standard Hecke operators can be viewed as acting naturally on the Banach space
H

1
c (Γ0(p);Dκ), but most importantly the Atkin-Lehner operator Up acts as a completely continuous

operator, for any p-adic weight κ.
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The essential relationship between p-adic weights and ‘classical’ integral weights is given by the
mapping, for κ = k ∈ Z,

Φ : Dκ → Pk

given as follows. Write (X − x)k :=
�

j=0k fj(X)xj as a polynomial in (‘lower case’) x, giving as
coefficients, a sequence of polynomials, fj(X) ∈ Pk ⊂ Aκ, in (‘upper case’) X. For µ ∈ Dκ viewed
as a linear functional on A, form

µj := �µ, fj(x)� ∈ Qp,

and, finally, organize all these µj as coefficients of a polynomial in X:

Φ(µ) :=
k�

j=0

µjX
j ∈ Pk

giving our mapping
µ �→ Φ(µ).

One shows that Φ is equivariant with respect to the actions of Γ0(p) and Hecke operators, and the
all-important compact operator Up, and therefore induces a correspondingly equivariant homomor-
phism of the modules of modular symbols:

H
1
c (Γ0(p);Dκ)

Φ−→H
1
c (Γ0(p);Pk).

that respects slopes for Up, i.e. if—for h a non-negative real number—the superscript (h) refers to
the submodule of Up-eigenvalue slope ≤ h, we have the cut-offs of Φ for any slope, i.e., homomor-
phisms

H
1
c (Γ0(p);Dκ)

(h) Φ(h)

−→ H
1
c (Γ0(p);Pk)

(h)
,

and Glenn’s Comparison Theorem sometimes referred to as a Control Theorem which is an “overcon-
vergent modular symbol analogue” of Robert Coleman’s classical comparison theorem that relates
p-adic overconvergent eigenforms of slope < k + 1 to classical eigenforms14:

Theorem 1. If κ = k ≥ 0 and h < k + 1 then Φ(h) is an isomorphism:

H
1
c (Γ0(p);Dκ)

(h) Φ(h)

� H
1
c (Γ0(p);Pk)

(h)
.

14
Coleman’s Theorem, in turn, is a generalization of Hida’s Theorem which proved the comparison for eigenforms

of slope 0.
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The fundamental importance of this interpolation, moving from the discrete family of cohomol-
ogy with coefficients in symmetric power representations to continuous (p-adically rigid analytic)
families of cohomology with coefficients in the distribution modules defined by Glenn cannot be
overestimated. What I have alluded to here—the initial definitions and theorems of this technology
introduced by Glenn has led to a substantial amount of excellent mathematics, and will continue
to do so.

Works continuing further in this direction include Glenn Steven’s collaborative work with Avner
Ash that moves from GL2 to to GLn:

• p−adic deformations of arithmetic cohomology (February 2008 preprint)

• p−adic deformations of cohomology classes of subgroups of GL(n,Z), Journées Arithmétiques
(Barcelona, 1995). Collect. Math. 48 (1997), no. 1-2, 1-30.

It includes his collaboration with Avner Ash and David Pollack:

• Rigidity of p−adic cohomology classes of congruence subgroups of GL(n,Z). Proc. Lond.
Math. Soc. (3) 96 (2008), no. 2, 367-388

as well as his collaborative work with Rob Pollack:

• Overconvergent modular symbols and p−adic L-functions. Ann. Sci. Éc. Norm. Supér. (4)
44 (2011), no. 1, 1-42.

• Critical slope p−adic L-functions. J. Lond. Math. Soc. (2) 87 (2013), no. 2, 428-452.

which give a constructive proof of Theorem 1 and use that to establish polynomial-time algorithms
for explicit computation of associated p−adic L-functions (even in the case of critical slope; i.e.,
when h = k + 1).

And his very recent work joint with Fabrizio Andreatta and Adrian Iovita which—among other
things—establishes a p-adically varying Eichler-Shimura-type mapping.

Andreatta, Iovita, and Stevens, viewing H
1
c (Γ0(p);Dκ)(h) for appropriate (p-adic) weights κ as

having a natural GQp = Gal(Q̄p)-action (via its relation to étale cohomology), establish what one

might call an ‘Eichler-Shimura relationship’ for H1
c (Γ0(p);Dκ)(h) ⊗Cp(1), equivariant with respect

to GQp and Hecke-module structures. Moreover, this varies p-adically in the weight κ (they must
exclude some isolated weights from the p-adic parts of weight space over which they work).
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Part V

The derivative of the Up-eigenvalue with

respect to weight

There is not enough time in this hour to do more than mention the far-reaching idea of Ralph
Greenberg and Glenn Stevens (for weight 2) in

• On the conjecture of Mazur, Tate, and Teitelbaum, p−adic monodromy and the Birch and
Swinnerton-Dyer conjecture (Boston, MA, 1991), pp. 183-211 in Contemp. Math. 165 Amer.
Math. Soc., Providence, RI, 1994,

• p-Adic L-functions and p-adic periods of modular forms. Invent. Math. 111 (1993), no. 2,
407-447.

and developed in various ways by Glenn for arbitrary even weights k ≥ 2, e.g., in

• Coleman’s L−invariant and families of modular forms, Astérisque 331 (2010) 1-12.

This issue is to study the case when the order of vanishing at s = k/2 of the p-adic L-function of a
modular newform f of even weight k ≥ 2 is higher than the order of vanishing at the “same” point
s = 1 of the classical L-function. This phenomenon is known to happen when f is of level pm with
(p,m) = 1 and is split multiplicative at p; specifically, when the Up-eigenvalue of the eignform f

is p
k−2
2 . For example, consider the case where the classical L-function does not vanish at s = k/2

and—deprived of its transcendental period—takes some value A ∈ Q∗. The natural question, then,
is the give an interpretation, and theoretical understanding (and an explicit computation) of the
ratio

L
�
p(E, k/2)

A
∈ Qp,

where L
�
p(E, k/2) := d

dsLp(E, s)|s=k/2.

The answer that Ralph and Glenn give in the case k = 2 (and that Glenn extends to general even

weight) is striking. Viewing f as a point on the appropriate eigencurve, the ratio
L�
p(E,k/2)

A is given,
up to a simple factor, by the value—at the point f—of the derivative of the Up-eigenvalue along
the eigencurve with respect to the weight.

This opens up an important channel in our subject, and represents but one of the many contribu-
tions of Glenn Stevens to the expansion and enrichment of number theory.
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