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1. Introduction

I want to thank Jennifer Balakrishnan, Netan Dogra, Brian Lawrence, and Carl
Wang-Erickson for organizing the Rational Points and Galois Representations work-
shop, and David Zureick-Brown for organizing this problem session. My “five
minute” question is about quadratic points. I also want to thank Abbey Bourdon,
Maarten Derickx, Jackson Morrow and Filip Najman for important clarifications,
corrections, and additions they gave me, as I revised and extended my draft. There
is nothing particularly original here: even my “five minute” question has essentially
been asked in the literature. I’ve compiled these notes as a guide to myself (and
perhaps it might also be useful to others) for reading some of the recent articles
about this subject.

It has long been known, thanks to a tradition of work culminating in an im-
portant sequence of papers of M.A. Kenku1 that the Q-rational cyclic isogenies of
degree N of elliptic curves defined over Q only occur—and do occur—if 1 ≤ N ≤ 19

1—by the way, see:
http://worldwriterswall.blogspot.com/2013/01/professor-ma-kenku-70-worthy-model-for.
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or if N = 21, 25, 27, 37, 43, 67, or 163. All of these N -isogenies can be given ‘geomet-
ric reasons’ for existing; e.g., the 37-isogenies ‘come by’ applying the hyperelliptic
involution (it is non-modular) to the cusps of X0(37).

A general theorem of Faltings has as a particular consequence that, fixing any
positive integer N and ranging over all elliptic curves defined over Q there are only
finitely many such curves that have a sporadic cyclic N -isogeny rational over some
quadratic field. I want to take “sporadic” to mean that the N -isogeny is non-CM, in
the sense to be defined below, and is not a member of a family of such “quadratic”
cyclic N -isogenies that can be parametrized either by

• rational points on a curve of genus 0 or 1, the parametrization given by a
degree two correspondence between the curve and X0(N);

• or in the case where X0(N) is of genus two, by a degree two correspondence
between an abelian surface and X0(N).

My “five-minute question” then is:

Question 1.

(i) Are there only finitely many sporadic cyclic N -isogenies as we range over
all N and all quadratic fields? Equivalently, are there none at all over any
quadratic field when N � 0?

(ii) Is the same true taking any fixed number field K as base and asking for
sporadic cyclic isogenies over fields of degree two over K?

(iii) Can one “explain” at least some sporadic cyclic isogenies over quadratic
number fields as arising as a consequence of some structural geometric
feature of the relevant modular curve? (E.g., as the existence of the Q-
rational 37-isogenies are “explained”—or perhaps by some more intricate
variant of geometric structure.)

(iv) What about resolving this, case by case, (over Q) for all values of N for
which X0(N) is biellptic and for which it has not currently been resolved;
see the eight ‘boxed values’ of N in Proposition 18 below 2

Remarks 2. A statement formulated as a hypothesis by Pete Clark and Paul
Pollack in the article [13] raises an even broader uniformity question regarding the
existence of `-isogenies (over fields of fixed degree over the base field). Specifically,
their hypothesis, labeled SI(d) is:

Hypothesis SI(K, d) (Clark-Pollack): For any d > 0 there is prime `(K; d) such
that for all primes ` > `(K; d), the modular curve X0(`) has no noncuspidal non-CM
points rational over fields of degree d over K.

Proposition 3. These are equivalent:

(i) An affirmation of Clark-Pollack’s Hypothesis SI(K; 2).
(ii) An affirmative response to Question 1(ii) above for the base number field

K.

2It is already resolved when X0(N) hyperelliptic.
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Proof. Visibly (ii) implies (i). Now assume (i). A counterexample to (ii) would
necessarily involve an infinite sequence of values

(4) N1, N2, . . .

of N for which there are sporadic cyclic N -isogenies over fields that are quadratic
extensions of K; these values of N having all their prime divisors among the finite
set of primes ≤ `(K; 2). It follows that there is at least one prime `(≤ `(K; 2)) such
that for every r > 0 there is an Ni —call it N{r}—such that N{r} is divisible by `r.
In particular, given the projection X0(N{r}) → X0(`r) the existence of sporadic
points of X0(N{r}) rational over a quadratic extension of K implies the same for
X0(`r). So, assuming the existence of a counter-example to (ii), we would have
that

(*) X0(`r) has sporadic points rational over quadratic extensions of K for every
r > 0.

But note that Proposition 18 below gives us that if N > 131 then X0(N) is
neither hyperelliptic nor bielliptic so by Faltings’ Theorem, X0(N) has only finitely
many quadratic points over K. Let, then, r1 be such that `r1 > 131 so that
X0(`r1) has only finitely many points rational over quadratic extensions of K and
let {xj}j∈J be the finite set of those points. If any one of these points (say x1 ∈
X0(`(r1)(K1) (whereK1/K is a quadratic extension) persists as the image of a point
in X0(`r) defined over quadratic extensions of K for all r ≥ r1 it is necessarily either
a cusp or CM. So the sporadic points don’t ‘persist’ contradicting (*). �

Part 1. The format of general quadratic point questions

2. Quadratic points

Let V be a variety over a field K of characteristic different from 2, and denote by
S(V ) the symmetric square of V ; that is, the quotient of V × V by the involution
that swaps factors. The K-valued points of S(V ) consist of either conjugate pairs
of points of V rational over some quadratic extension of K, or unordered pairs of
K-rational points of V . Refer, colloquially then, to any K-rational point of S(V )
as a K-quadratic point of V .

To focus more specifically to the situation I’m interested in, let K be a number
field and X a smooth projective curve, geometrically irreducible, defined over K and
processing at least one K-rational point. Consider, then (X,xo) the pointed curve
over K by fixing on some xo, a choice of K-rational point. What is the structure
of (and in particular instances, what are) the K-quadratic points of (X,xo)?

Denoting by J(X) the Jacobian of X, consider the natural map

S(X)
δ−→ J(X) := Pic0(X) ⊂ Pic(X)

by sending an unordered pair {x, y} of points on X to the divisor of degree 0
D = x+ y − 2xo.

3. Small genus

A. Genus 0. In this instance, the curve X is isomorphic to P1 over K. We
would naturally take such an isomorphism sending our chosen K-rational point xo
to ∞, but we would still have to choose such an isomorphism to get a canonical
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isomorphism S(X) ' P2. So, the answer here is entirely explicit, given explicit
equations for an isomorphism X ' P1, and, one might record this by saying: X
has a single family of quadratic points parameterized by P2.

B. Genus 1. Here we may let E = X be the elliptic curve where the K-rational
point xo is taken to be the origin. We have, by Riemann-Roch, that S(X) is then a
“P1”-bundle over E, where the quotation-marks around the “P1” is to indicate that
the fiber over a point e ∈ E of this bundle is only isomorphic to P1, and is more
explicitly described as the quotient by the unique involution σe of E that has e as
one of its fixed points. The structure of the set of K-quadratic points of X then
depends on the Mordell-Weil group of E, in that for each point e of this Mordell-
Weil group there is a linear system of K-quadratic points of X parametrized by the
K-rational points of the genus zero curve: X/{action of σe} = E/{action of σe}.

4. Genus ≥ 2

Let the genus of X be ≥ 2. There are two possibilities:

• X is not hyperelliptic. In this case δ maps S(X) isomorphically onto a

closed (2-dimensional) subscheme, denoted S̃(X), in the Jacobian, J(X):

δ : S(X)
'→ S̃(X) ⊂ J(X).

• X is hyperelliptic. Let
(i) σ : X → X be the (unique) hyperelliptic involution;

(ii) define the class e := [x + σ(x) − 2xo] ∈ J(X) (which is independent
of the choice of x); and consider

(iii) X
h→ X/{action of σ} =: P the degree two mapping (to P, the genus

zero quotient). The involution σ is call the hyperelliptic involution of
X.

Form the sequence of mappings

X
g−→ X ×X → S(X)

δ−→ J(X)

defined by g : x 7→ (x, σ(x)) and where the middle morphism is the natural
one: passage to the quotient by the involution of X × X that switches
factors. We have a commutative diagram:

X //

g

�� ((

X/{action of σ} = P //

⊂
��

e

ε

��
Weierstrass pts

77

''

X ×X // S(X)
δ // J(X)

X

diag

OO 55

Here the “Weierstrass points” comprise the intersection of the two copies of X
in X ×X as in the diagram.
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Proposition 5. We have a diagram:

P //

⊂
��

e
ε //

ε

��

J(X)

=

��
S(X) // S̃(X)

⊂ // J(X)

S(X) \ P = //

=

OO

S̃(X) \ {e} ⊂ //

=

OO

J(X)

=

OO

Here, S̃(X) is a closed (2-dimensional) subscheme of J(X) and S(X) may be

described as a blow-up of S̃(X) at the point e ∈ S̃(X). (So, if the genus g is equal

to 2 then S̃(X) = J(X).)

Recalling Faltings Theorem, we have that the Zariski closure of the set of K-
rational points of S̃ (in either case described above) is a finite union of translates

of abelian subvarieties ∪iAi and a finite set of isolated points. Given that S̃ is
just an abelian surface, there are only two possibilities: the abelian varieties might
be elliptic curves—and this can happen only if the curve X can be covered by
a bielliptic curve—or this “finite union of abelian varieties” is the single, entire
abelian surface J(X), and this can happens only if the genus of X is 2.

5. Hyperelliptic and bielliptic covers of curves of genus > 1

Except for the case of curves of genus g = 2 (which we will discuss separately
below) by ‘family’ of quadratic points (over K) we will mean a‘ family of points
of X, defined over quadratic extensions of K, the family being parameterized by
the K-rational points of a (‘parameter’) curve of genus 0 or 1 via a degree two
correspondence (defined over K) of this parameter curve covering X. That is, such
a family F comes from a nonconstant mapping f : Y → X (over K) where Y is a
curve that is a degree two cover of B, a curve of genus ≤ 1—and, in particular, Y
is either hyperelliptic or bielliptic (or both). For simplicity of terminology we will
call a curve over K bielliptic if it admits a mapping defined over K to a curve of
genus 1. The family F is the image under f of FY/B := the pullback to Y of B(K),
the set of K-rational points of B as illustrated in the diagram:

(6) FY/B

⊂
��

=
{{

f // F

⊂
��

FY/B

onto

��

⊂ // Y
f //

degree 2

��

X

B(K)
⊂ // B.
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Note that if B is of genus 1 and has a finite (nonempty) set of K-rational points,
it may be a stretch to call F (parametrized by the finitely many elements of B(K))
a family but we’ll do that, just to keep from having to distinguish whether B(K)
is finite or infinite; i.e., to keep the discussion as brief as possible.

Proposition 7. Let X be a curve of genus > 1 defined over a number field K. Let

Y
f−→ X be a (nonconstant) mapping defined over K.

• If Y is hyperelliptic then so is X, and the mapping f is equivariant with
respect to the hyperelliptic involutions of X and Y .

• If Y is bielliptic over K —i.e., if there is a degree two mapping Y →
E where E is an elliptic curve defined over K—then X is bielliptic or
hyperelliptic.

Proof. As Joe Harris and Filip Najman explained to me, the first item—at least
without the equivariance statement—is classical. Namely, assume that we have a

hyperelliptic cover, Y
f−→ X, of a curve X of genus > 1. Let K(Y )/K(X) be the

field extension of the fields of rational functions on Y and on X respectively—the
injection of K(X) into K(Y )given by the mapping f (the base field is our number
field K). Let h ∈ K(Y ) be a rational function that parametrizes a degree two map
of Y onto a curve of genus 0. Since Y is hyperelliptic, such a rational function exists.
Then elementary considerations shows that the norm g := NK(Y )/K(X)(h) ∈ K(X)
parametrizes, similarly, a degree two mapping from X to a curve whose rational

function field is K(g), i.e., a curve of genus zero as well. So Y
f−→ X is a mapping

of hyperelliptic curves.

To check equivariance of f relative to the hyperelliptic involutions, it suffices to
extend the basefield K (to anything, e.g, C). We may embed Y in its jacobian
JY sending a Weierstrass point w ∈ Y to the origin, so that the hyperelliptic
involution of Y is induced by the(“inversion”) mapping z 7→ −z on JY . Now
letting u := f(w) ∈ X and embedding X into its jacobian JX by sending u to the
origin we get a commutative diagram

Y
⊂ //

f

��

JY

f

��
X

⊂ // JX

noting that the mapping JY
f−→ JX is (a homomorphism of groups, and hence) is

equivariant relative to inversion mappings. Since Y is stabilized by inversion and X
is its image, X is also stabilized by inversion. Since the quotient of Y by inversion is
a curve PY of genus zero, and since the quotient of X by inversion, PX , is mapped
onto by PY , it follows that PX is also of genus zero, and consequently the inversion
mapping of JX restricted to X is the hyperelliptic involution of X. Consequently
the mapping f is equivariant with respect to hyperelliptic involutions.

The second item is Proposition 1 of [20]. More specifically, consider a bielliptic
curve π : Y → B admitting a mapping to X as in Diagram 6. The induced
(two-valued) mapping of B to X yields a single-valued mapping B → S(X) →
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S̃(X). If the composite morphism B → S̃ is trivial—which can only happen if
X is hyperelliptic—the family of K-quadratic points parameterized by Y → B
would then be ‘majorized’ by the family of K-quadratic points parameterized by
the hyperelliptic structure of X. If it is not trivial, then letting E denote the image
of B in S̃, we have that E ⊂ S̃ ⊂ J(X) is a curve of genus 1. Denote by Yo ⊂ X×X
the ‘pullback’ of E to X ×X under the mapping

X ×X → S(X)→ S̃(X)

where the scare-quotes indicate that—in the case where X is also hyperelliptic—if
the pullback also contains the exceptional locus of S(X)→ S̃(X), we discard that
exceptional locus. We have a commutative diagram:

Y //

π

��

Yo //

πo

��

X

B // E.
�

6. The method of ‘quadratic’ Chabauty

The adjective “quadratic” will occur in two quite different senses in the discussion
below. It is used on the one hand, in the phrase “quadratic points,” as we have
been discussing. But it is also used in the phrase “quadratic Chabauty” and there
it is referring to a specific framework within the method of Chabauty-Coleman-
Kim—a format that has been recently extremely successful to compute the full set
of rational points for many curves of genus > 1. For this see the articles of Jennifer
S. Balakrishnan, joint with Amnon Besser, Francesca Bianchi, Netan Dogra, Jan
Steffen Müller, Jan Tuitman and Jan Vonk listed as [2] [3] and [4] in the bibliography
below.

I want to thank Jackson Morrow for his comments about quadratic Chabauty
specifically related to symmetric powers, and for suggesting the following references:

(i) Samir Siksek (cf. [32]) has adapted the Chabauty-Coleman-Kim method
to symmetric powers of curves—particularly relevant for us being the sym-
metric square of curves; see for example the two examples he works out in
loc. cit. for curves X of genus 3 whose jacobians have Mordell-Weil rank
1.

(ii) See also Jennifer Park’s [29] Effective Chabauty for symmetric powers of
curves, in which tropical geometry is used with symmetric power Chabauty.

(iii) In the article [19] of Joseph Gunther and Jackson Morrow the focus is on
the “unexpected points” of hyperelliptic curves (e.g., X0(29) is an example
chosen). In that article the work of Bhargava and Gross on average ranks of
Jacobians of hyperelliptic curves together with the work of Park (loc. cit.)
is used to get statistical density bounds on unexpected points (conditional
on a certain hypothesis being met).

(iv) Let K be a number field and OK its ring of integers. If X ↪→ J(X) is
a choice of embedding over K of a curve X of genus > 1 to its jacobian
J(X), denote by X ⊂ J the natural extension of this over OK , where J
is the Néron model of J(X) and X is the corresponding model of X over
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OK . If there is a projection (defined over OK) J → A where A is an
abelian scheme whose generic fiber over K has finite Mordell-Weil group,
and such that the composite morphism X → A satisfies a certain “formal
immersion” condition, one is in a convenient setting to (at times) be able
to compute quadratic ( and higher— but reasonably low—degree) rational
points on X. This is addressed, for example, in section 3 (see, in partic-
ular Theorem 3.2) of the paper of Maarten Derickx, Sheldon Kamienny,
William Stein and Michael Stoll [14]3

(v) The method of symmetric square Chabauty-Coleman was also employed
in work of Ozman-Siksek and Box, which will be referred to in Section 11
below. See also [34].

7. Summary

Recalling that (X,xo) is a pointed curve of genus > 1, the K-rational
quadratic points of X are of these possible types:
• If X is hyperelliptic where the quotient by the hyperelliptic involution

is isomorphic over K to P1 and the point is a member of the family
of K-quadratic points of X parametrized by the K-rational points of
P1.
• If X can be covered by a bielliptic curve—or equivalently if there is

an elliptic curve E contained in S(X)—and the point is a member of
the family of K-quadratic points of X parametrized by the K-rational
points of E.
• If the genus of X is 2 and the point is a member of the family of
K-quadratic points of X parametrized by the K-rational points of
J(X) and finally:
• the (finitely many) K-quadratic points of X that don’t fit into any of

the frameworks listed above.

Definition 8. Call this finite set of points Isol(X;K), the set of isolated
quadratic points4 of X.

Following [11] and [12] one might ask:

Question 9. For any genus g ≥ 3 is there a finite upper bound U(g)
such that for any number field K there are only finitely many different K-
isomorphism classes of curves over K of genus g such that |Isol(X;K)| >
U(g)?

3The method involving the “formal immersion” condition is also used in the preprint ([15]
Sporadic Cubic Points) of Maarten Derickx, van Hoeij Etropolski, Jackson Morrow, and Zureick-

Brown to complete the classification of torsion subgroups appearing for elliptic curves over cubic
number fields. They use the formal immersion criterion specifically to determine the rational
points of X1(65) and X1(121).

4I’m calling these “isolated” because I’ve already use the adjective “sporadic” to mean some-
thing a bit different in the question framed in the introduction above.
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Part 2. Modular Curves

8. CM N-isogenies

Definition 10. A CM N-isogeny defined over a field K is an endomor-
phism (defined over K) of an elliptic curve with kernel equal to a cyclic
group of order N .

Remarks 11. (a) Any elliptic curve admitting a CMN -isogeny (forN >
1) is a CM elliptic curve.

(b) Let E be a CM elliptic curve with ring of endomorphisms (over K)
equal to O ⊂ F , where F is a quadratic imaginary field, and O is an
order in F . For any prime p for which there exists an element π ∈ O
such that NF/Q(π) = p, and for any positive number r, multiplication

by πr gives us a mapping E
πr

−→ E that is a cyclic (CM) isogeny of
degree pr rational over K. So, any such CM-elliptic curve admits an
infinite chain of cyclic isogenies each of degree p (for r = 1, 2, 3, . . . ):

(12) . . . E
π−→ E

π−→ . . . E
π−→ E,

and combining to produce cyclic (CM) isogenies (from E to E) of
degree pr rational over K for any r > 0.

(c) There’s a sort of converse to the previous item:

Proposition 13. Let E be an elliptic curve over a number field K.
If p is a prime number for which E has cyclic isogenies of degree pr

defined over K for all r > 0 then E is a CM elliptic curve and the
isogenies are of the form displayed in Equation 12 above.

Proof. This follows from Serre’s open image theorem ([31]). �

For recent results—with base equal to K = Q but regarding the
general problem of classifying the (isomorphism classes of) subgroups
in GL2(Q`) arising as the image of the Galois representation given
by Galois action on `-power torsion of elliptic curves over Q—see the
work of Rouse, Sutherland, Zureick-Brown and Voight in [30] (and
see the bibliography there).

(d) An equivalent formulation of Proposition 13 is:

Corollary 14. For every number field K and prime number p there
exists a positive number r(K; p) such that if r > r(K; p) the K-
rational points of the modular curve X0(pr) are either cusps or CM-
points associated to cyclic isogenies of degree pr of the form displayed
in Equation 12 above.

Proof. If r is sufficiently large X0(pr) is of genus > 1 so it has only

finitely many K-rational points. Consider mappings X0(pr+1)
φ−→

X0(pr) given by the natural ‘forgetful mapping’ φ : (E,Cpr+1) 7→
(E,Cpr ) where Cpr is a cyclic subgroup of the pr-torsion points of E,
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and the comparisons between the r-th level and the next level is as
follows.

Cpr+1
⊂ // E[pr+1]

Cpr
⊂ //

⊂

OO

E[pr].

⊂

OO

We get the chain of mappings of sets (finite sets, once r is sufficiently
large)

(15) . . . X0(pr+1)(K)∗
φ−→ X0(pr)(K)∗

φ−→ . . .

where the superscript ∗ means that we are forming the complement of
the subset consisting of CM-points and cusps. It follows that either
X0(pr)(K)∗ is empty for r � 0 or else there is an elliptic curve E
possessing cyclic pr-isogenies defined over K for all r—and this would
contradict Proposition 13. �

9. The Families

• Quadratic points of the family X1(N) for (N ≥ 1) have been largely
classified and understood (see [25] and the results of Sheldon Kami-
enny: [7], [9], [10]. For an extensive discussion of the results regarding
the finite number of conductors N for which X1(N) has a quadratic
(or rational) point that is not a cusp (explicitly: 1 ≤ N ≤ 18; N 6= 17)
see [30]; see that article as well for its very useful bibliography. See
also [21]).

• Q-rational points the family X0(p+). This is a case where the MW-
rank of the Jacobean is a positive multiple of the genus, and often
the MW-rank is equal to the genus and therefore presents a natural
example to study using quadratic Chabauty. See [2], [3]; also [4]. For
recent results about quadratic points on ‘nonsplit Cartan’ modular
curves, see [26].

10. Sporadic (quadratic) points coming from rational points
on quotients of X0(N) by involutions

Specifically, see the papers5 of Noam Elkies [16] and Stephen Galbraith—
[17] and [18] ∼ (2000)— on rational points on X0(N)+; also [8].

Denote by ν(N) = ν the number of distinct prime factors of N , and let
W (N) be the subgroup of automorphisms of the curve X0(N) generated
by its r Atkin-Lehner involutions. Elkies, in [16] defines X∗(N) to be the
quotient of X0(N) by W (N) ' Z/2Z)r. We have

X0(N) −→ X+
0 (N) = X0(N)/{∼ wN}) −→ X∗(N)

Here wN is the fundamental Atkin-Lehner involution and any rational
point on X+

0 (N) gives us a quadratic point on X0(N).

5I want to thank Abbey Bourdon for suggesting them.
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Elkies ([16]) point out that when the curve X∗(N) is hyperelliptic (for
example, when it is of genus 2) then its hyperelliptic involution may take
a cusp or CM point to an unexpected rational point on X∗(N) and this
happens for N = 191, the largest prime for which X∗(N) has genus 2.

Elkies goes on to say:

I made the rash conjecture. . . that this might be the only source
of rational points on X∗(N) other than cusps and CM points,
once the genus of X∗(N) exceeds 1. But this guess was disproved
by S. Galbraith [17], [18] who computed explicit models for many
curves X∗(N) and found rational non-CM points and noncuspi-
dal points on the curves X∗(N) for N = 137 and N = 311 (with
X∗(N) of genus 4 in both cases). . .

In communication with Maarten Derickx, I learned that he and Michael
Stoll are preparing an article that prove that for primes in a large range,
i.e. for a certain number n � 1, 000, 000 (that they are at present trying
to optimize) and for primes p such that n < p < 1, 000, 000 all quadratic
points on X0(p) actually come from X0(p)+. They also conjecture (in
a slightly weaker format) that the question posed at the beginning has
a positive answer. Namely, they conjecture that for integers N � 0 all
quadratic points on X0(N) come from rational points on X0(N)+.

11. References to some of the literature about quadratic points on
X0(N) over Q.

Given that so much interesting work is currently going on in the actual com-
putation of quadratic points on ‘interesting’ curves, I found it helpful to do some
personal bookkeeping and collect what’s known today—so that one can add to it
as further things become known. I’m not at all sure that I have a complete current
record even for the families of curves I want to think about—how could I?—things
are moving; but here’s an attempt, as well as some questions. First:

There are the two parameters over which one might quantify such questions:

(i) We might fix the quadratic field K and vary N ; or
(ii) fix N and vary the quadratic field K.

A. Fixing the quadratic field K. Here there is significant recent progress;
specifically focusing on isogenies of prime degree:

Definition 16. The set Isog .Prime.Deg(K) is the set of prime numbers p for
which there exists an elliptic curve E defined over a number field K possessing a
K-rational p-isogeny.

See the detailed the discussion in [6] describing the recent work of David, Larson-
Vaintrob, Momose, Bruin-Najman, Ozman-Siksek, and Box regarding this question;
see also his intriguing Theorem 1.10:

Theorem 17. (Bar) Assuming GRH, we have the following.

Isog .Prime.Deg(Q(
√

7)) = Isog .Prime.Deg(Q(
√
−10))) = Isog .Prime.Deg(Q),
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and

Isog .Prime.Deg(Q(
√
−5)) = Isog .Prime.Deg(Q) t {23}.

B. Some literature about quadratic points in X0(N) in the cases where
X0(N) is hyperelliptic, bielliptic, or both.

A classical theorem of Ogg [27] gives the nineteen values of N for which X0(N)
is hyperelliptic (we take hyperelliptic to require that the genus is > 1):

N : 22 23 26 28 29 30 31 33 35 37
genus : 2 2 2 2 2 3 2 3 3 2

N : 39 40 41 46 47 48 50 59 71
genus : 3 3 3 5 4 3 2 5 6

The levels N that appear in boldface above are those values of N such that
X0(N) is bielliptic as well as hyperelliptic. All sporadic quadratic points for any
of those modular curves X0(N) (except for X0(37)) have been computed by Peter
Bruin and Filip Najman in their article [10] (which has other interesting results
as well). The case of X0(37) is taken care of in Josha Box’s paper [9], in which
all sporadic quadratic points have also been computed for the curves X0(N) with
N = 43, 53, 61, 65, these being bielliptic curves covering elliptic curves of positive
Mordell-Weil rank.

Proposition 18. These are the values of N for which X0(N) is of genus > 1 and
bielliptic (over Q):

26 30 34 35 37 38 39 40 43 44 45 48 50 51 53

54 55 56 61 62 64 65 69 79 83 89 92 94 101 131

Proof. If X0(N) (of genus > 1) is bielliptic —i.e., if there is an involution

σ : X0(N)→ X0(N)

defined over Q with quotient of genus 1, denoting

(19) E := X0(N)/{action of σ}
we have that E is an elliptic curve of conductor N and of modular degree 2, and
the induced mapping X0(N)→ E exhibits X0(N) as bielliptic over Q.

Conversely, given an elliptic curve E of conductor N of modular degree 2 we
get that X0(N) is bielliptic with the natural modular uniformization X0(N) → E
expressing X0(N) as bielliptic over Q.

So the modular curve X0(N) is bielliptic if and only if there is an elliptic curve of
conductor N with modular degree equal to 2. By a theorem of Harris and Silverman
[20] we have that if N > 344 the modular curve X0(N) is not (hyperelliptic or)
bielliptic.

I thank John Cremona and William Stein for pointing to databases of elliptic
curves going their modular degrees6. The list in Proposition 18 is precisely the list

6John Cremona wrote:
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of values of N < 345 that are levels of elliptic curves with modular degree 2. So,
by [20] these are all values of N with modular degree 2. �

Remarks 20.

(i) For all but five values of N in this list (N = 26, 38, 37, 50, 54) the modular
curve X0(N) has a unique elliptic curve quotient with modular degree 2
and this elliptic curve is listed as Na1 in the Cremona or LMFDB database.

(ii) For N = 26, 37, 50 the modular curve X0(N) has two elliptic curve quo-
tients with modular degree 2, these being listed as Na1 and Nb1 in the
Cremona or LMFDB database.

(iii) X0(38) and X0(54) each have unique elliptic curve quotients with modular
degree 2 and these are listed as Nb1 in the Cremona or LMFDB database.

(iv) Ekin Ozman and Samir Siksek [28] have computed the sporadic quadratic
points in X0(N) for quite a number of values of N including

(21) N = 34, 38, 42,44,45,51, 52,54,55,56, 63,64, 72, 75, 81,

the ones in boldface being values for which X0(N) is bielliptic7.
(v) The boxed values of N in the above display correspond to all values of

N for which X0(N) is of genus > 1 and either hyperelliptic or bielliptic
and (to my knowledge) no full account of their sporadic quadratic points
occurs in the literature.

(vi) If N does not occur in either of the two lists of values of N displayed
above, then by Faltings’ Theorem X0(N) has only finitely many quadratic
points.
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