Question

Let *E* be an elliptic curve over \mathbb{Q} , and $\chi : G_{\mathbb{Q}} \to \mathbb{C}^{\times}$ a character. *How likely is it that* $L(E, \chi, 1) = 0$?

Question

Let *E* be an elliptic curve over \mathbb{Q} , and $\chi : G_{\mathbb{Q}} \to \mathbb{C}^{\times}$ a character. *How likely is it that* $L(E, \chi, 1) = 0$?

Is $\{x : L(E, x, 1) = 0 \text{ and } x \text{ has order } d\}$ finite for large d?

Is $\{ \chi : L(E, \chi, 1) = 0 \text{ and } \chi \text{ has order } d \}$ empty for large d?

Question

Let *E* be an elliptic curve over \mathbb{Q} , and $\chi : G_{\mathbb{Q}} \to \mathbb{C}^{\times}$ a character. *How likely is it that* $L(E, \chi, 1) = 0$?

Is $\{x : L(E, x, 1) = 0 \text{ and } x \text{ has order } d\}$ finite for large d?

Is $\{ \chi : L(E, \chi, 1) = 0 \text{ and } \chi \text{ has order } d \}$ empty for large d?

One can ask similar questions with $\mathbb O$ replaced by any number field and *E* replaced by a form of weight greater than 2.

Conjecture (David-Fearnley-Kisilevsky)

Let p ≥ 7 *be a prime and E an elliptic curve over* Q*. Then there are only finitely many* χ *of order p such that* $L(E, \chi, 1) = 0$.

They also made a prediction for the growth of the number of such χ (ordered by conductor) when $p = 3$ or 5.

This conjecture was motivated by random matrix statistics. More on this tomorrow.

The following conjecture is (sort of) motivated by the statistics of modular symbols and θ -coefficients.

Conjecture

Suppose E is an elliptic curve over Q*. Then there are only finitely many* $\chi : G_{\mathbb{Q}} \to \mathbb{C}^{\times}$ *such that*

- $L(E, \chi, 1) = 0$, and
- φ (*order of* χ) $>$ 4*.*

Conjecture

The previous conjecture implies:

Conjecture

Suppose E is an elliptic curve over Q*, and L*/Q *is an (infinite) abelian extension such that* Gal(*L*/Q) *has only finitely many characters of order* 2*,* 3*, and* 5*. Then E*(*L*) *is finitely generated.*

Conjecture

The previous conjecture implies:

Conjecture

Suppose E is an elliptic curve over Q*, and L*/Q *is an (infinite) abelian extension such that* Gal(*L*/Q) *has only finitely many characters of order* 2*,* 3*, and* 5*. Then E*(*L*) *is finitely generated.*

This is known if $Gal(L/\mathbb{Q}) \cong \mathbb{Z}_\ell \times$ (finite group) (Kato, Rohrlich). The hypotheses also apply if:

- **1** Gal $(L/\mathbb{O}) = \mathbb{Z}$, or
- 2 *L* is the maximal abelian ℓ -extension of \mathbb{Q} , with $\ell > 7$, or
- ³ *L* is the compositum of all such fields (1) and (2).

4 伊)

Vertical line integrals

Let *E* be an elliptic curve over Q and

$$
f_E(z)dz = \sum_{n=1}^{\infty} a_n e^{2\pi i nz} dz
$$

the modular form attached to *E*, viewed as differential form on the upper-half plane.

For any rational number $r = a/b$, form the integral

$$
2\pi i \int_{r+i0}^{r+i\infty} f_E(z)dz.
$$

Integrating over vertical lines in the upper half-plane

 $+5 + 1$

Raw modular symbols

Symmetrize or anti-symmetrize to define **raw** (±) **modular symbol** attached to the rational number *r*:

$$
\langle r \rangle_E^{\pm} := \pi i \bigg(\int_{i\infty}^r f_E(z) dz \pm \int_{i\infty}^{-r} f_E(z) dz \bigg)
$$

Symmetrize or anti-symmetrize to define **raw** (±) **modular symbol** attached to the rational number *r*:

$$
\langle r \rangle_E^{\pm} := \pi i \bigg(\int_{i\infty}^r f_E(z) dz \pm \int_{i\infty}^{-r} f_E(z) dz \bigg)
$$

The raw modular symbols $\langle r\rangle_E^\pm$ $^{\pm}_{E}$ take values in the discrete subgroup of $\mathbb R$ generated by $\frac{1}{D}\Omega_E^\pm$ $_E^{\pm}$ for some positive $D.$

In this discussion, for simplicity, we'll consider only the $+$ -raw modular symbols:

$$
\langle r \rangle := \langle r \rangle_E^+.
$$

L-functions and modular symbols

Theorem

For every even primitive Dirichlet character χ *of conductor m,*

$$
\sum_{a\in(\mathbb{Z}/m\mathbb{Z})^\times}\chi(a)\langle a/m\rangle=\tau(\chi)L(E,\bar{\chi},1).
$$

Here $\tau(\chi)$ is the Gauss sum.

For a cyclic extension *L*/Q of conductor *m* we have a canonical surjection

$$
(\mathbb{Z}/m\mathbb{Z})^{\times} \longrightarrow \text{Gal}(\mathbb{Q}(\mu_m)/\mathbb{Q}) \longrightarrow \text{Gal}(L/\mathbb{Q})
$$

$$
a \longmapsto \sigma_{a,L}.
$$

which allows us to think of Dirichlet characters as Galois characters, and vice-versa.

θ -elements

For a cyclic extension *L*/Q the θ**-element**

$$
\theta_{L/\mathbb{Q}}:=\theta_{E,L/\mathbb{Q}}
$$

is the element in the group ring $\mathbb{R}[\text{Gal}(L/\mathbb{Q})]$

$$
\theta_{L/\mathbb{Q}} \hspace{2mm} := \sum_{a \in (\mathbb{Z}/m\mathbb{Z})^\times} \langle a/m \rangle \cdot \sigma_{a,L} \hspace{2mm} = \sum_{g \in \mathrm{Gal}(L/\mathbb{Q})} c_{E,g} \cdot g,
$$

where the θ -coefficients $c_{E,g}$ are given by

$$
c_{E,g}=c_g=\sum_{a\;:\;\sigma_{a,L}=g}\langle a/m\rangle.
$$

L-functions and θ-elements

One has

$$
L(E, \chi, 1) = 0 \iff \sum_{a \in (\mathbb{Z}/m\mathbb{Z})^{\times}} \chi(a) \langle a/m \rangle = 0
$$

$$
\iff \sum_{g \in \text{Gal}(L/\mathbb{Q})} \chi(g)c_g = 0
$$

$$
\iff \chi(\theta_{L/\mathbb{Q}}) = 0.
$$

We are interested in the statistics of

- the raw modular symbols $\langle a/m \rangle$,
- **•** the θ -coefficients c_g ,

and we want to use computational exploration to suggest how often $L(E, \chi, 1) = 0$.

Let *N* be the conductor of *E*. For every $r \in \mathbb{Q}$, modular symbols satisfy the relations:

Let *N* be the conductor of *E*. For every $r \in \mathbb{Q}$, modular symbols satisfy the relations:

$$
\bullet \boxed{\langle r \rangle = \langle r+1 \rangle} \quad \text{since } f_E(z) = f_E(z+1)
$$

Let *N* be the conductor of *E*. For every $r \in \mathbb{Q}$, modular symbols satisfy the relations:

\n- \n
$$
\sqrt{\langle r \rangle = \langle r + 1 \rangle}
$$
\n since $f_E(z) = f_E(z + 1)$ \n
\n- \n $\sqrt{\langle r \rangle = \langle -r \rangle}$ \n by definition\n
\n

Let *N* be the conductor of *E*. For every $r \in \mathbb{O}$, modular symbols satisfy the relations:

\n- \n
$$
\boxed{\langle r \rangle = \langle r+1 \rangle}
$$
\n since $f_E(z) = f_E(z+1)$ \n
\n- \n $\boxed{\langle r \rangle = \langle -r \rangle}$ \n by definition\n
\n

• Atkin-Lehner relation: if w_E is the global root number of E , and $aa'N \equiv 1 \pmod{m}$, then $\left| \langle a'/m \rangle = w_E \cdot \langle a/m \rangle \right|$

Let *N* be the conductor of *E*. For every $r \in \mathbb{O}$, modular symbols satisfy the relations:

$$
\bullet \ \boxed{\langle r \rangle = \langle r+1 \rangle} \quad \text{since } f_E(z) = f_E(z+1)
$$

 \bullet $\langle r \rangle = \langle -r \rangle$ by definition

• Atkin-Lehner relation: if w_E is the global root number of E , and $aa'N \equiv 1 \pmod{m}$, then $\left| \langle a'/m \rangle = w_E \cdot \langle a/m \rangle \right|$

Hecke relation: if a prime $\ell \nmid N$ and a_ℓ is the ℓ -th Fourier coefficient of f_E , then $a_\ell \cdot \langle r \rangle = \langle \ell r \rangle + \sum_{i=0}^{\ell-1} \langle (r+i)/\ell \rangle$

4. 点

Regularities in the modular symbols data

There are some significant *regularities* in the values of modular symbols.

For example, consider the behavior of contiguous sums of the modular symbol:

$$
\lim_{m\to\infty}\frac{1}{m}\sum_{a=0}^{\lfloor mx\rfloor}\left\langle\frac{a}{m}\right\rangle\qquad=\qquad\frac{1}{2\pi i}\sum_{n=1}^{\infty}\frac{a_n}{n^2}\sin(\pi nx).
$$

Regularities in the modular symbols data

There are some significant *regularities* in the values of modular symbols.

For example, consider the behavior of contiguous sums of the modular symbol:

$$
\lim_{m\to\infty}\frac{1}{m}\sum_{a=0}^{\lfloor mx\rfloor}\left\langle\frac{a}{m}\right\rangle\qquad\equiv\qquad\frac{1}{2\pi i}\sum_{n=1}^{\infty}\frac{a_n}{n^2}\sin(\pi nx).
$$

Conjecture of M-R-S recently proved by Kim & Sun.

Random distribution of modular symbols

Theorem (Petridis-Risager)

The distribution determined by the data

$$
\frac{\langle a/m\rangle}{\sqrt{C_E \log(m)}} \; : \; m \geq 1, a \in (\mathbb{Z}/m\mathbb{Z})^{\times}
$$

is normal with variance 1*.*

Here C*^E* is an explicit constant: if *E* is semistable then

$$
\mathcal{C}_E := \frac{6}{\pi^2} \cdot \prod_{p \mid N} \frac{p}{p+1} \cdot L(\text{Sym}^2(f_E), 2).
$$

$E = 11a1$

4. 点

The variance

Let Var(*E*, *m*) denote the variance of $\langle a/m \rangle$, $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$.

This is a graph of Var(*E*, *m*) versus *m* for the curve 11*a*1. The two lines correspond to $gcd(m, 11) = 1$ and $gcd(m, 11) = 11$.

[For Number Theorist's Seminar](#page-0-0) Contract Contract Contract Contract Contract Contract Contract 16/31

The variance

Let Var(*E*, *m*) denote the variance of $\langle a/m \rangle$, $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$.

This is a graph of Var(*E*, *m*) versus *m* for the curve 45*a*1. The lines correspond to the six possible values of gcd(*m*, 45).

The 'Variance slope' and 'Variance shift'

Conjecture (M-R)

For every divisor κ *of* N_E *there is a* $\mathcal{D}_{E,\kappa} \in \mathbb{R}$ *such that*

$$
\lim_{\substack{m\to\infty\\ \gcd(m,N)=\kappa}} \text{Var}(E,m) - C_E \cdot \log m = \mathcal{D}_{E,\kappa}
$$

Conjecture (M-R)

For every divisor κ *of* N_E *there is a* $\mathcal{D}_{E,K} \in \mathbb{R}$ *such that*

$$
\lim_{\substack{m\to\infty\\ \gcd(m,N)=\kappa}} \text{Var}(E,m) - C_E \cdot \log m = \mathcal{D}_{E,\kappa}
$$

Petridis & Risager recently announced a proof of an "averaged over *m*" version of this conjecture, including an explicit formula for $\mathcal{D}_{E,\kappa}$.

Recall θ -coefficients and θ -elements

Suppose *L*/Q has conductor *m*.

$$
c_g := \sum_{a \,:\, \sigma_a = g} \langle a/m \rangle \quad \text{for } g \in \text{Gal}(L/\mathbb{Q}),
$$

$$
\theta_L := \sum_{g \in \text{Gal}(L/\mathbb{Q})} c_g \cdot g \in \mathbb{R}[\text{Gal}(L/\mathbb{Q})].
$$

Then for all faithful $\chi : \operatorname{Gal}(L/{\mathbb Q}) \hookrightarrow {\mathbb C}^\times,$

$$
\chi(\theta_L) = \tau(\chi)L(E, \bar{\chi}, 1).
$$

We want to know how often this vanishes.

Distribution of θ-coefficients

For simplicity suppose that $\ell := [L : K]$ is an odd prime, and suppose χ is a nontrivial character of $Gal(L/K)$.

$$
\bullet \ \ \chi(\theta_L) = 0 \iff \text{all } c_g \text{ are equal.}
$$

² The Hecke action shows that

$$
\sum_{g \in \text{Gal}(L/K)} c_g = \prod_{p|m} (a_p - 2)L(E, 1).
$$

3 Atkin-Lehner duality induces an 'involution' $g \rightarrow g'$ such that

$$
c_{g'} = w_E \cdot c_g.
$$

We call the unique fixed point of this involution the **sensitive** element of Gal(L/\mathbb{Q}).

4. 点

Combining these properties, let *X* be a set of representatives of the $(\ell - 1)/2$ orbits $\{g, g'\}$ under the involution. Then

$$
\chi(\theta_L) = 0 \iff c_g = \prod_{p|m} (a_p - 2)L(E, 1)/\ell \quad \text{ for every } g \in X
$$

Combining these properties, let *X* be a set of representatives of the $(\ell - 1)/2$ orbits $\{g, g'\}$ under the involution. Then

$$
\chi(\theta_L) = 0 \iff c_g = \prod_{p|m} (a_p - 2)L(E, 1)/\ell \quad \text{ for every } g \in X
$$

Question

 H ow likely is it that $c_g = \prod_{p \mid m} (a_p - 2) L(E,1)/\ell$?

Fix *d* odd. For [*L* : Q] cyclic of order *d* and conductor *m*, each θ -coefficient c_g is a sum of $\varphi(m)/d$ modular symbols.

If this were a *random* sum of modular symbols, we would expect the variance of the c_g to be close to $(C_E \log(m) + \mathcal{D}_{E,\kappa})\varphi(m)/d$.

Fix *d* odd. For [*L* : Q] cyclic of order *d* and conductor *m*, each θ -coefficient c_g is a sum of $\varphi(m)/d$ modular symbols.

If this were a *random* sum of modular symbols, we would expect the variance of the c_g to be close to $(C_E \log(m) + \mathcal{D}_{E,\kappa})\varphi(m)/d$.

Let $\Lambda_{E,d}(t)$ be the distribution determined by the data

$$
(L, g, m) \mapsto \frac{c_g}{\sqrt{(C_E \log(m) + \mathcal{D}_{E,\kappa}) \cdot \varphi(m)/d}}
$$

where (L, g, m) runs through all triples such that:

- *L*/Q is cyclic of order *d*,
- $g \in \text{Gal}(L/\mathbb{Q})$ is not the *sensitive element*,
- *m* is the conductor of *L*/Q.

 $(5 - 1)$

We originally expected the $\Lambda_{E,d}(t)$ would be a normal distribution with variance 1.

 $+5 + 1$

We originally expected the $\Lambda_{E,d}(t)$ would be a normal distribution with variance 1. However, when $E = 11a1$ and $d = 3$:

(the red curve is the normal distribution with variance 1). This histogram is typical of other elliptic curves for $d = 3$.

The spikiness seems to disappear as *d* grows:

Questions

¹ *Does the distribution* Λ*E*,*d*(*t*) *make sense (converge) for fixed d?*

Questions

- ¹ *Does the distribution* Λ*E*,*d*(*t*) *make sense (converge) for fixed d?*
- ² *If so, is* Λ*E*,*d*(*t*) *bounded?*

Questions

- ¹ *Does the distribution* Λ*E*,*d*(*t*) *make sense (converge) for fixed d?*
- ² *If so, is* Λ*E*,*d*(*t*) *bounded?*
- 3 *If it's not bounded, what is the behavior near t* = 0*?*

Questions

- ¹ *Does the distribution* Λ*E*,*d*(*t*) *make sense (converge) for fixed d?*
- ² *If so, is* Λ*E*,*d*(*t*) *bounded?*
- 3 *If it's not bounded, what is the behavior near t* = 0*?*
- ⁴ *Do the* Λ*E*,*d*(*t*) *converge to a limiting distribution as d grows?*

Questions

- ¹ *Does the distribution* Λ*E*,*d*(*t*) *make sense (converge) for fixed d?*
- ² *If so, is* Λ*E*,*d*(*t*) *bounded?*
- 3 *If it's not bounded, what is the behavior near t* = 0*?*
- ⁴ *Do the* Λ*E*,*d*(*t*) *converge to a limiting distribution as d grows?*
- 5 *If so, is* lim*d*→∞ Λ*E*,*d*(*t*) *the normal distribution with variance* 1*?*

Questions

- ¹ *Does the distribution* Λ*E*,*d*(*t*) *make sense (converge) for fixed d?*
- ² *If so, is* Λ*E*,*d*(*t*) *bounded?*
- 3 *If it's not bounded, what is the behavior near t* = 0*?*
- ⁴ *Do the* Λ*E*,*d*(*t*) *converge to a limiting distribution as d grows?*
- 5 *If so, is* lim*d*→∞ Λ*E*,*d*(*t*) *the normal distribution with variance* 1*?*
- ⁶ *How does* Λ*E*,*d*(*t*) *depend on E?*

"Expectation" of *L*-function vanishing

Fix *E*. We originally expected that $\Lambda_{E,d}(t)$ would be the normal distribution with variance 1, but the data contradicts this.

"Expectation" of *L*-function vanishing

Fix *E*. We originally expected that $\Lambda_{E,d}(t)$ would be the normal distribution with variance 1, but the data contradicts this.

We next expected that the $\Lambda_{E,d}(t)$ would be bounded independently of *d*. We suspect this may not be true either.

Fix *E*. We originally expected that $\Lambda_{E,d}(t)$ would be the normal distribution with variance 1, but the data contradicts this.

We next expected that the $\Lambda_{E,d}(t)$ would be bounded independently of *d*. We suspect this may not be true either.

When *d* is prime, $\chi(\theta_I) = 0$ if and only if $(d-1)/2$ of the θ coefficients take a specified value. For general $d > 2$, we need the θ -coefficients to lie in a sub-lattice of codimension $\varphi(d)/2$.

This all leads to the following heuristic:

"Expectation" of *L*-function vanishing

Heuristic

Suppose $\Lambda_{E,d}(t) \ll_E t^{-a}$ for some $a \geq 0$. Then there is a constant γ*^E depending only on E such that*

$$
\text{``Exp"}[L(E, \chi, 1) = 0] \leq \left(\frac{d}{\varphi(m)} \cdot \frac{\gamma_E}{\log(m)}\right)^{\frac{\varphi(d)}{4} - a}
$$

where d is the order of χ *and m its conductor.*

This should hold for all χ of order greater than 2.

4 €

Consequences of the heuristic, small *d*

Heuristic

If
$$
\Lambda_{E,d}(t) \ll_E t^{-a}
$$
 then "Exp" $[L(E, \chi, 1) = 0] \leq \left(\frac{d}{\varphi(m)} \cdot \frac{\gamma_E}{\log(m)}\right)^{\frac{\varphi(d)}{4} - a}$

Example $(d = 3)$ \sum "Exp"[$L(E, \chi, 1) = 0$] $\ll \sum$ χ *order* 3*, conductor < X X m*=2 $(\log(m)\varphi(m))^{a-1/2}$ $\ll X^{1/2+a}$.

If $a > 0$ this is consistent with the prediction of David-Fearnley-Kisilevsky.

 \overline{a}

Consequences of the heuristic, small *d*

Heuristic

If
$$
\Lambda_{E,d}(t) \ll_E t^{-a}
$$
 then "Exp" $[L(E, \chi, 1) = 0] \leq \left(\frac{d}{\varphi(m)} \cdot \frac{\gamma_E}{\log(m)}\right)^{\frac{\varphi(d)}{4} - a}$

Example $(d = 5)$ \sum "Exp"[$L(E, \chi, 1) = 0$] $\ll \sum$ χ *order* 5*, conductor < X X* $m=2$ $(\log(m)\varphi(m))^{a-1}$ $\ll X^a \log \log X$.

If *a* > 0 this is consistent with the prediction of David-Fearnley-Kisilevsky.

Consequences of the heuristic, small *d*

Heuristic

If
$$
\Lambda_{E,d}(t) \ll_E t^{-a}
$$
 then "Exp" $[L(E, \chi, 1) = 0] \leq \left(\frac{d}{\varphi(m)} \cdot \frac{\gamma_E}{\log(m)}\right)^{\frac{\varphi(d)}{4} - a}$

Example $(d = 7)$

$$
\sum_{\chi \text{ order } 7, \text{ conductor } < X} \text{``Exp"}[L(E, \chi, 1) = 0] \ll \sum_{m=2}^{X} (\log(m)\varphi(m))^{a-3/2}
$$

$$
\ll X^{a-1/2}
$$

If $0 < a < 1/2$ this is consistent with the prediction of David-Fearnley-Kisilevsky.

Consequences of the heuristic: all large *d*

Proposition

Suppose $t : \mathbb{Z}_{>0} \to \mathbb{R}_{\geq 0}$ *is a function, and* $t(d) \gg log(d)$ *. Then* \sum $d : t(d) > 1$ \sum χ *of order d and conductor m d* $\varphi(m)$ $\frac{\gamma_E}{1-\gamma_E}$ log(*m*) $\bigwedge^{t(d)}$ *converges*.

Consequences of the heuristic: all large *d*

Proposition

Suppose $t : \mathbb{Z}_{>0} \to \mathbb{R}_{\geq 0}$ *is a function, and* $t(d) \gg log(d)$ *. Then* \sum $d : t(d) > 1$ \sum χ *of order d and conductor m d* $\varphi(m)$ $\frac{\gamma_E}{1-\gamma_E}$ log(*m*) $\bigwedge^{t(d)}$ *converges*.

Applying this with
$$
t(d) = \varphi(d)/4 - a
$$
 shows

Heuristic

If $\Lambda_{E,d}(t) \ll_E t^{-a}$ *then*

$$
\sum_{d\;:\;\varphi(d)>4+4a}\;\sum_{\chi\;\text{order}\,d}\text{``Exp''}[L(E,\chi,1)=0]^{n}\quad\text{converges}.
$$

For $a < 1/2$ this leads to the conjectures stated at the beginni[ng](#page-60-0)[.](#page-61-0)