
ABOUT MAIN CONJECTURES

I have been asked by Vasily Golyshev to give a short general lec-
ture ‘About Main Conjectures’ (regarding L-functions) in this summer
seminar (on motivic gamma functions). I’m delighted to do that!

Vasily wrote that the seminar is more of “a ’basic notions’ seminar
focusing on “grand design” so that “we understand what it all is about”
(rather than technical reports, or reports about new work).

And he also mentioned that it should be no more than half an hour
long or a bit more—to allow for questions.

Given such an assignment for this seminar I realized that I had bet-
ter re-consider the scope of ‘Main Conjectures’ viewing that notion as
encompassing classical Iwasawa Main Conjectures but much broader,
in hopes to learning whether motivic gamma functions—i.e., the topic
of this seminar—might eventually fit into that framework .

Of course any mathematical field is entitled to designate one of its
goals as its ”Main Conjecture.” At one time I was very much taken
with issues related to a certain Main Conjecture usually referred to as
the Hauptvermutung; but that was in geometric topology, and over six
decades ago.

The Main Conjectures we will be concerned with here are of a differ-
ent sort. They consist of the ‘coming together’ of two different math-
ematical structures or viewpoints, and are part of a trio consisting of
these things:

The ‘Trio’:

(i) “Analytic Formulas” (AF)
(ii) “Main Conjectures” (per se) (MC)
(iii) “Explicit Formulas” (EF).

I’ve listed them in what I think of as a natural ordering.

I won’t have time today to discuss (EF) and how Explicit Formulas
tie in with the other two categories.

Date: July 28, 2020.
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Analytic Formulas

We’ll organize the ingredients of an Analytic Formula so that its
‘left-hand-side’ (LHS) isolates an interesting arithmetic quantity; and
its ‘right-hand-side’ (RHS) consists of the value of an interesting ana-
lytic function at a specified point (times some elementary factor E).

arithmetic quantity = special value of analytic function × E

The Dirichlet Ideal Class Number Formula

The simplest example of such a formula is the Dirichlet Ideal Class
Number Formula for Imaginary Quadratic Fields. So, take F := Q[

√
−d]

where d is a square-free positive number, and let

• h := the class number of F—i.e., the order of the ideal class
group of F ,

and

• L(χF , s) := the L-function of χF : Z → {±1} the Dirichlet
character attached to F . I.e., the analytic continuation to the
entire complex plane of the Dirichlet series:∑

n≥1

χF (n)n−s.

The Class Number Formula cleanly connects the fundamental arith-
metic invariant of F , namely the class number h, to a fundamental
analytic invariant of F ; namely the value of L(χF , s) at the point s = 1:

cnfcnf (0.1) h = L(χF , 1) · E

Here E is a combination of relatively elementary factors:

E := w ·
√
|DF |/2π.

where
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• w := the number of roots of unity in F (i.e., w=2; unless d = 1,
or d = 3),

and

• DF := the discriminant of F .

This picture of the nature of the analytic formula (AF) persists for
any number field, but more generally the connection is not as simple
as the relationship between:

the class number h on the (LHS) of the formula
and

some simple Dirichlet L-function on the (RHS)

but rather:

• the (LHS) will be the arithmetic invariant

h · Reg

where Reg is the regulator of the field
and

• the(RHS) will have the value at the point s = 1 of

the ratio of the zeta-function of the field, divided by the
Riemann zeta-function (times an elementary factor).

Synopsis: an analytic formula makes the arithmetic/analytic con-
nection:

arithmetic quantity related to F
l

value at s = 1 of an analytic function.

Question: what is the ‘go-between’ that ties the arithmetic to the
analytic in the (AF)?

Answer: a volume computation that gives an asymptotic estimate
for the number of ideals of norm ≤ X.
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The Birch-Swinnerton-Dyer Conjecture

The classical Birch-Swinnerton-Dyer Conjecture is perfectly in this
“(AF)” form.

That is—first, if E is an elliptic curve over a number field K such
that is group of rational points E(K) is finite then the order of the
Shafarevitch-Tate group |Sha(E;K)| of E over K is the arithmetic
quantity associated to E/K that will enter as the (LHS) of the conjec-
ture.

This is the quantity corresponding to the ideal class group of a number
field K.

The set Sha(E;K) is defined to be the collection of isomorphism
classes of curves of genus 1 whose jacobians are equal to E and which
have rational points over any completion of K (and hence are isomor-
phic to E over those completions). It has a natural abelian group
structure, and is conjectured to be finite.

Then if E(K)—the (Mordell-Weil) group of K-rational points of E—
is finite the classical Birch-Swinnerton-Dyer Conjecture offers, for the
arithmetic of E/K , an analogue to Equation 0.1 above:

bscbsc (0.2) |Sha(E;K)| = L(E/K ; 1) · E

where, L(EK , s) is the Hasse-Weil L-function of E over the field K.
And where, again, E is a combination of relatively elementary factors
that includes the period of the elliptic curve E and the number of K-
rational torsion points it has. Moreover, if E(K) is not finite, but of
rank r > 0, then the (LHS) of Equation 0.2 should be replaced by

|Sha(E;K)| · Reg(E;K)

where Reg(E;K) is the regulator of E over K (which is the deter-
minant of an r × r matrix whose entries come from consideration of
the heights of elements in the group E(K)); and the (RHS) should be
replaced by

L(r)(E/K ; 1)
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times a certain concoction of elementary factors. Here L(r)(E/K ; 1)
means the r-th derivative of L(E/K ; s) evaluated at the point s = 1.

Main Conjectures

Conjectures that I want to include in this (MC) category will be
proposing a similar arithmetic/analytic connection. Note that in the
formulation of this category, I’ll still keep the adjective “conjecture”
even for such statements that have already been proved, or once they’re
proved. The apparatus needed for such an (MC) consists of:

A linear space and operator on it
related to the arithmetic of interest

l
zeros of an analytic function.

More specifically:

The arithmetic side:

• (A linear space and operator) First, you have to be given
some type of linear space H and some specified linear operator

γ : H → H

acting as endomorphism on it. Both H and γ should be of
fundamental arithmetic interest—for example H might contain
information classifying certain important arithmetic objects,
the linear operator γ being a natural added feature of this
classification.

The possible kinds of H : The ‘linear space’ H could be

• a finite dimensional p-adic (or complex) vector space;
• a graded vector space;
• or a Hilbert space,
• or Banach space,
• or simply a module over an appropriate ring containing γ, such

as Zp[[γ]] where the action of γ on H is via this module struc-
ture.
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The analytic side:

• (A meromorphic function) Second, you should be given a
specified meromorphic (but usually analytic) function,

λ(s),

complex or p-adic—depending on the situation—of fundamen-
tal interest. It may come from some other mathematical pro-
gram; it could be an L-function; and, at least sometimes if
you’re lucky, it could be more accessible than any construction
of the (H, γ) above.

A “Main Conjecture” (MC) then posits a direct relationship be-
tween:

the eigenvalues of γ and the zeros of λ(s);

—or in the case where H is a Zp[[γ]]-module as alluded to above, the
Main Conjecture might identify:

locus of zeros of λ(s) ↔ support of the Zp[[γ]]-module H.

Ridiculously Broad

The program MC just sketched is so broad that it might ridicu-
lously allow elementary theorems (such as the fact that the zeros of the
characteristic polynomial

λ(X) := det(X · In − A)

are the eigenvalues of the n× n matrix A) to fit it’s framework.

But . . . note: Consider λ(s):= the characteristic series of γ:= the
Laplacian operator ∆ acting on H = the space of L2 functions on a
Riemannian manifold—and this is already interesting, [and it has its
connection, thanks to Selberg, to the lengths of closed geodesics].

Linnaean classification:

Here is a Linnaean classification of the various results that might,
more appropriately, go under that rubric (even though they may not
have been called MC traditionally). I will order them so that items fur-
ther down in the list were (at least in some instances) inspired because
they were analogous to items earlier in the list.
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(i) The Hilbert-Pólya dream is that there is some Hilbert
Space H and self-adjoint unbounded operator

γ : H→ H,

this structure constructed in some essential way from ‘arith-
metic’ in such a way that the classical Riemann zeta-function
(after appropriate normalization) is equal to the characteristic
series of this operator γ. (If this ’dream’ is true–and identifies
the nontrivial zeros of the zeta function with the eigenvalues of
the self-adjoint operator γ—the Riemann Hypothesis would fol-
low.)

Comments: The history behind this ’dream’ is obscure. I’m
not sure to what extent Hilbert himself had anything to do with
it. See Andrew Odlyzko’s correspondence trying to get closer
to its history: http://www.dtc.umn.edu/~odlyzko/polya/

index.html. The first published account of it seems to be:

Montgomery, Hugh L. (1973), ”The pair correlation of zeros
of the zeta function”, Analytic number theory, Proc. Sympos.
Pure Math., XXIV, Providence, R.I.: American Mathematical
Society, pp. 181193, MR 0337821

Mention Alain Connes’ work—and Don Zagier’s.

(ii) Cohomology of varieties over finite fields as an “(MC)”

—Weil, Grothendieck, Deligne, . . .

Let k be a finite field of characteristic p—so k ' Fq for q a
power of p. Denote by k̄ its algebraic closure. The Frobenius
automorphism (which we’ll denote γ : x 7→ xq) is a topological
generator of the profinite Galois group Gal(k̄/k).

If V is a projective variety over k and ` a prime number dif-
ferent from p, we can take H to be the graded finite dimensional
`-adic vector space given by étale cohomology H ·et(Vk̄;Q`) and
the operator γ on it given by Frobenius. Take λ(s) := the
zeta-function of V/k.

Appropriately normalized, the alternating product of the
characteristic polynomials of the operator γ acting on the graded
pieces of H ·et(Vk̄;Q`) is equal to λ(s) := the zeta-function of V/k.

http://www.dtc.umn.edu/~odlyzko/polya/index.html
http://www.dtc.umn.edu/~odlyzko/polya/index.html
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SO again we have the apparatus (H, γ;λ(s)) with the struc-
ture that we’ve characterized above as a ’Main Conjecture.’
The eigenvalues of γ on H give us, after suitable normaliza-
tion the zeros of λ(s).

In fact, André Weil himself seems to have been inspired
by the Hilbert-Pólya dream described above, in conjecturing
such a structure. This structure was later shown to exist by
Grothendieck; and then shown by Deligne to satisfy the ana-
logue of the Riemann Hypothesis.

(iii) The classical Iwasawa Main Conjecture:Iw

Iwasawa, in turn, translated Weil’s work—by analogy—into
a fundamental project in arithmetic.

In analogy with the (algebraically closed) field extension k̄/k
of the finite field k—where we took γ to be the topological
generator of the Galois group Gal(k̄/k) given by the Frobenius
automorphism,

Iwasawa—fixed a (say: odd) prime number p and started
with a number field K as his base field—

(for us, take the simplest such K in Iwasawa’s consideration;
namely K = Q[e2πi/p]).

p-cyclotomic tower as analogue of algebraic closure of a finite
field Iwasawa then considered the infinite degree p-cyclotomic
tower K∞/K obtained by adjoining to K the pn-th roots of
unity e2πi/pn for all n, noting that as in Weil’s set-up the profi-
nite group Gal(K∞/K) is again topologically cyclic and can be
generated by the automorphism γ that sends any pn-th roots
of unity α to α1+p. By the ‘p-cyclotomic tower’ is meant the
sequence of fields:

pcycpcyc (0.3)

K = K1 ⊂ K2 = K[e2πi/p2 ] ⊂ · · · ⊂ Kn = K[e2πi/pn ] ⊂ · · · ⊂ K∞,

This already is a neat global arithmetic set-up that corre-
sponds to Weil’s set-up over finite fields.

Iwasawa defines his global arithmetic linear space H—which
turns out to be a finite-dimensional vector space over the field
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of p-adic numbers Qp, admitting γ as a (naturally defined)
linear operator—as follows:

Let An := the p-primary component of the ideal class group
of the field Kn, i.e., of the n-th rung of the p-cyclotomic tower
(0.3).

Let Ân = Hom(An,Q/Z) be the dual group. These are all
p-power abelian groups; so they can be thought of as (finite)
modules over the ring of p-adic integers Zp.

Inductive sequence of ideal class groups ascending the tower
For m > n there is a natural mapping An → Am given by
assigning to (the class of) any ideal I of the ring of integers in
Kn (the class of ) the ideal generated by I in the ring of integers
in Km. So, passing to the duals, we get natural maps the other
way: Âm → Ân. The projective limit of this sequence,

lim
n→∞

Ân

is then a natural Zp[[γ]]-module.
Our H:
Take:

pcyc2pcyc2 (0.4) H := Qp ⊗Zp lim
n→∞

Ân

as our linear space; the automorphism γ acts naturally on H. Iwa-
sawa showed that H is a finite dimensional vector space (over Qp).
Or. . . if we use class field theory Class field theory establishes a
natural identification of the ideal class group, Cl(K), of a number
field K with the Galois group Gal(L/K) where L is the maximal
(everywhere unramified) abelian extension of K,

Cl(K)
'↔ Gal(L/K),

so we can work out another description of H in terms of a pro-
jective limit of the p-primary components of these Galois groups,
going up the p-cyclotomic tower. The arithmetic side of the Iwa-
sawa Main Conjecture To give a slightly more precise picture one
should note that there’s also the cyclic group of order p− 1,

∆ := Gal(Q[e2πi]/p]/Q)

acting naturally on this H which breaks H up into components Hi

dependent on the characters ωi of ∆ (where ω is the Teichmüller
character, generating the group of characters of ∆ and i is taken
mod p− 1. Each of these components are considered separately.
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This gives us the arithmetic side of the Iwasawa Main Conjecture.
The analytic side is also neat:

Kubota and Leopoldt had produced p-adic analytic functions
that are the “p-adic companions” of Dirichlet L-functions L(χ; s).
By “companions” I mean, that these are p-adic analytic functions
Lp(“χ”; “s”) that—with suitable normalizations—agree with the
corresponding Dirichlet L-function in their values, at enough pairs
(χ, 1)—

Enough, that is, so that the p-adic L-function Lp(“χ”; “s”) is
uniquely determined by this property. These Lp(“χ”; “s”) are, in a
sense, the (p-adic) analytic continuations to the p-adic plane of the
corresponding ‘classical’ Dirichlet L-function.

Explain the quotation marks

The analytic side:

I’ll rename the p-adic L-function Lp(“χ”; “s”) that is the com-
panion of the classical L-function L(ω1−i, s) :

λ(i; s)

(it isn’t referred to this way elsewhere!)

In brief, then, the Iwasawa Main Conjecture makes a direct con-
nection between our arithmetic object and our analytic function:

Eigenvalues of γ on Hi for odd values of i
l

Zeros of λ(i; s).

Two questions might arise:

(a) The Iwasawa Main Conjecture, as described, asks about a con-
nection between something built out of ideal class groups and
something built out of Dirichlet L-functions. BUT. . . we al-
ready have available to us the classical analytic formula as de-
scribed above which makes a neat connection between those
mathematical objects. . . so why is it difficult to make Iwa-
sawa’s conjectured connection as described above?

(b) The format of the Iwasawa Main Conjecture is so much like the
Hilbert-Pólya dream that one can’t help wondering whether
there is some p-adic analogue of the classical Riemann Hy-
pothesis.
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I have no idea about (ii). About (i): the reason is fundamentally
that:

the analytic formula is a statement about the sizes of things,
with nothing much about structure—even nothing directly usable
about the way in which γ acts. To get information about the pre-
cise action of γ, it is helpful to actually have a controlled way of
constructing abelian unramified extensions—or, more gener-
ally, abelian extensions with prescribed ramification—controlled in
such a way that it and the action of γ connects with the behav-
ior of the relevant p-adic L-function. The analytic formula is
certainly helpful though: once you have constructed all the abelian
extensions you need to construct, it ‘guarantees’ that you have don
that: constructed all you need to construct.

The ‘go-betweens’

In the original proof of Iwasawa’s Main Conjecture, Andrew
Wiles and I made use of a method begun by Ken Ribet (used in his
proof of Herbrand’s Conjecture). Wiles and I were guided by the
wonderful fact that the p-adic Eisenstein series has—as constant
term—the appropriate value of the p-adic L-function.

And the go-betweens between the (Hi, γ) and λ(i; s) are:

λ(i; s)

l

continuous p-adic family of Eisenstein series

l

a corresponding collection of cuspforms

l

Galois representations associated to those cuspforms
l

(Hi, γ).

The continuous p-adic family of Eisenstein series: This
is a construction of Serre in Formes modulaires et fonctions zêta
p-adiques: a p-adic interpolation of the Fourier coefficients of the
classical family of Eisenstein series. More exactly we may form, for
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every p-adic weight κ that projects to the even number i 6= 0 mod-
ulo p− 1 , the p-adic continuous series of ’p-adic Hecke eigenforms
on Γ0(p)’:

Eis{p}κ (q) := −1

2
Lp(ω

i; 1− κ) +
∑
n

{ ∑
d | n

d{κ}
}
· qn ⊂ Zp[[q]].

Here ω is the Teichmüller character, and Lp(s, χ) is the Kubota-
Leopoldt p-adic L-function. . . .And if this L-function value
is p-adically close to 0, the Fourier series of that Eisenstein se-
ries would (one shows) be equally close—p-adically—to that of a
cuspidal newform.

Reading this the opposite way: there exists a cuspidal newform
whose Fourier series is p-adically close to that of an Eisenstein se-
ries.

Connecting these cusp forms to the Galois representation on the
torsion points of the jacobian of an appropriate modular curve: the
Galois action on those torsion points constructs, for us, an abelian
unramified extension of the sort we need.

Andrew Wiles extended the result to any totally real base field—
a simpler proof of this Main Conjecture was later given by Karl
Rubin.

(iv) The Main Conjecture for elliptic curves and automorphic
forms:

These conjectures are, in turn, strict analogues or extensions of
Iwasawa’s classical Main Conjecture. They are conjectures concern-
ing the arithmetic of an elliptic curve E over K or an automorphic
form π for a reductive group over K.

• One makes a choice of a prime p and considers, exactly as
before, the p-cyclotomic tower.

• What corresponds to the sequence of p-primary components of
ideal class groups An of the ring of integers in Kn are—once on
takes certain things into consideration—the p-primary compo-
nents of Selmer groups Selm(E;Kn), these being extensions
of p-primary components of Sha(E;Kn) by a contribution re-
lated to the size of E(Kn).

• What corresponds to the p-adic L function Lp(χ, s) are the
p-adic L-functions Lp(E,χ; s) or Lp(π, χ; s)—at least in the
cases where these have been constructed.
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The corresponding “(H, γ, λ(s))”-structure

Once one makes those corresponding changes one comes up with
a (H, γ, λ(s)) allowing us to formulate a “Main Conjecture.” The
role played by the classical analytic formula in our discussion of the
classical Iwasawa Main Conjecture is comparable to the relationship
between the Swinnerton-Dyer Conjecture and the Main Conjecture
for elliptic curves.

A comment on variations of Main Conjectures:

Nowadays there is the broad project of considering classical mod-
ular eigenforms or more general automorphic forms π not singly,
but rather as varying p-adically (i.e., their Fourier expansions are
p-adically interpolated—two eigenforms π, π′ being ‘close’ if the co-
efficients of their Fourier expansions are p-adically close.

Limits of these constitute ’p-adic automorphic forms—their Fourier
expansion having p-adic coefficients.

Eigenvarieties:

The natural parameter spaces of variation are called eigenvari-
eties and have the structure of rigid-p-adic analytic spaces. It’s
natural to study, and conjecture about, corresponding variations of
the apparatus (H, γ, λ(s)) associated to such p-adic automorphic
forms π, the variation being rigid p-adic analytic, parameterized
over these eigenvarieties.

‘Go-betweens’

Returning to the thought that a ‘Main Conjecture’ must bridge:

Eigenvalues of γ on an arithmetic object H
l

Zeros of an analytic object λ(s),

you might ask: what could possibly be the go-between that con-
nect this arithmetic structure with this analytic structure? E.g.,
what sort of thing lives in both worlds at the same time?

Euler Systems as ‘Go-betweens’
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Euler Systems–very roughly—are a tightly connected system of
algebraic cycles on a certain arithmetic scheme ascending a cyclo-
tomic tower: they control,
• on the one hand: L-functions related to this situation, and
• on the other hand, by a ‘Kummer construction” they also

control relevant cohomology related to the associated Galois
representation.

E.g., Very recently, David Loeffler and Sarah Livia Zerbes proved
(under some hypotheses) the Iwasawa main conjecture for qua-
dratic Hilbert modular forms over the p-cyclotomic tower using
an Euler system in the cohomology of Siegel modular varieties
(arXiv:2006.14491).


