Arithmetic_ip the Geometry of Symmetric Spaces

B, Mazur

Introduction. The interesting homology of the classical modular curves

XO(N) , N= 1, occurs in dimension one. Viewing XO(N) as the compactifi-
cation of the quotient of the upper half plane H by the action of the subgroup
[_O(N) — SLZ(Z), one has available a ‘'natural family' of (relative) one-
dimensional cycles -- paths on the Riemann surface whose endpoints lie in the
set of cusps——- with which one may systematically understand the relative
homology group Hl( XO(N), cusps; Z) and the action of the Hecke operators.

These cycles are, in effect, the modular symbols whose study was in-
itiated by Birch, and concerqing vhich a sigzeable literature has developed

. Their study was motivated by consideration of the
special values of L functions arising as Mellin transforms of parabolic mod-
ular forms. They are, moreover, an indispensible tool in the p-adic analysis
of these special values.

The family of cycles is readily defined: to each rational number r,
consider the closed vertical line Ir = { r+iy \ 0 y<+ 00} in the
extended upper half plane B H (U i (Q) ( ). The natural
parametrization of XO(N) by B maps I to a path in XO(N) whose endpoints are
cusps., Orienting Z[r from oG to r , we obtain a relative cycle, whose class
is denoted {rk c Hl(xo(N), cusps; %). This relative cycle depends only on

r modulo one, and thus we may view the classical modular symbol as a mapping

{ bz ———> H (X)), cuspsi Z).
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The object of this note is to draw attention to a generalization of the
classical modular symbol to arbitrary reductive groups over Q. The construction
we shall outline produces 'natural families' of relative cycles in r\x the
quotient of the symmetric space of a reductive algebraic group G /% by an arith-
metic subgroup I— . One such family is obtained for each admissible (ef. § )
parabolic subgroup P <= G defined over Q. The dgep questions concerning

these 'natural families' remain unanswered in any great generality:

(a) What portion of the compact homology of r\X is generated by

each of the families constructed?

(b) ¥hat is the relation between these families and special values of

L functions associated to automorphic representations of G /R ?

Nevertheless, some fragmentary reults already obtained impel . us to focus

on these questions in a broad context.

In § it will be shown that when G = SLn and P is an admissible Borel
subgroup, the associgted family of cycles 'interpolate p-adically' in a suitable
sense. I understand that Michael Harris has generalized the construction of §
to the case of L an arbitrary Chevalley group over Q ( Je

In § question (a) will be answered in what may be the only easy case!

G a split group over Q, and F an admissible borel subgroup.

In a joint paper with David Kazhdan, we will then answexr (b) for certain
L functions L(R,& ,% , s) considered by Jacquet and Piatetski~Shapiro
( )} where 7o is a ("special” cf. ) cuspidal automorrhic

representation of bL3 /R’ &’ ig a classical automorphic representation of

(of weight 2), and )(, is a finite Dirichlet character. As-a—remwli

GrL2 /Q
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1. The modulaxr svmbol.
Fix a reductive group G over Q, and K, a maximal compact subgroup

in its group of real points G(R). ILet X = G(R)/K. Then X is diffeomorphic

to euclidean space. lLet d(G) denote the dimension of X. Fix | < G(Q),

an arithmetic subgroup. The group r acts properly on X, let Y = r\x .
If M is a reductive subgroup of G defined over Q, we shall say that

M is sdmissible (relative to the fixed data: K,V ) if

(a) MR)NK  is a maximal compact subgroup of M(R) .
(v) TN M(R) is torsionfree and operates as a group of orientation—

preserving transformations on the euclidean space M(R)/ K(R)NK,

By an ad_pissible parabolic F we shall mean a parabolic subgroup
iven .

&
of G defined over Q@ (also denoted P ) with a\’fs;—i;decomposition P = MKU
defined over Q, whose reductive part ¥ is admissible, and such that M(R)/M(R)OK
is endowed with an orientation.

If P = MNXU is an admissible parabolic, and u& U(Q), let

Y(u,) = [N ul ﬂm(n)\m(a) / NER) MK .

Then the spaces Y(u,M) are connected oriented manifolds of dimension m = a(M).

Let
Fo Y(u,M) ——> ¥

denote the natural map induced by

n(r) ——> G(B) ; Rr—> ux ze M

Proposition (Borel, Prasad): The mappings F~ ane proper.
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Let H, denote Borel-Moore homology with infinite supports ( )e
Thus, if A is a finite polyhedron, and BC=. A a finite closed sub-
polyhedron, H (A; 2) ¥ H,(A; B) am  H,(A-B; 2) ¥ H(AB) 2)
wherxe Hi denotes singular homology.

If X denotes the Borel-Serre completion of X ( )} ‘then l_ acts
properly on X amd Y= '\5(- is compct ( 9.3); Y is a compactification
of ¥ (the Borel-Serre compactii‘ication) . If I is torsionfree, Y has, in
a natural way, the structure of C® mpanifold with corners. One has an iso-
morphisms

(v 2) 2 K@, 3N 2) .

Since the spaces Y(u,M) (u € U(Q)) coming from an admissible parabolic
P are oriented, connected m-dimensional manifolds, compactifiable in the Borel-

Serre manner, we have canonical isomorphisms:
e
i (uh) 3 2 ) g 2

Since the mapping Fu is proper, it induces a homomorphism on Borel-lMoore
homology ( ). Define & (u,M) € l-l_m(Y 1 2) = Hm( Y, 9Y; Z) to

be the image of 1&Z under the compositions

¥
R u
z —> gm(x(u,n);Z)_-——-——»gm(Y;z)

njo

Since $(u,M) depends only on the right coset of u modulo unl , we

obtain the mapping

&+ u(Q) vnl” ~ & (¥;2) & H (T ¥ z)
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which we shall call the medular symbol associated to the (admissible)
parabolic subgroup P . A close analysis of special values of 1 series
coming from adelic integrals leads one to study the geometry of modular
symbols. Here are some questions that arise naturally, and have applications
to the theory of L functions, If P is an admissible parabolic, let H(P)
denote the sub- vector space of Hm(Y,aY;Q) generated by the cycles ¢ (u,M)
for all u € U(Q). Determine a finite set of elements u,...,u & U(Q) such
that H(P) is generated by ¢>(uj,m) 71,000, . What is H(P) for the various

admissible parabolics? 1Is (Y, 9Y; @ ) generated by all the H(P) ?

Examples:
* *
1. G=5L, 2 Q) P (0*) ; m=1 3 X= upper half-plane , If

ue (%) 1 ) forré Q , then &(u,h) is the image of the vertical half-line
{r + iy }oo};y;Ok in Hl('f,a.f; 2 ). Thus, Cb is the 'classical'’
modular symbol.

o 1 )

2. G rL/Q( 2/ L where L is a number field, and TrL /Q denotes
the 'Weil trace' from L to Q. Let P be the 'Weil trace' of the parabolic (0 :)
in SL2 /i Here m x, T, where T, = the number of real primes of L, and T, =

the number of complex primes of L. The modular symbol is then a mapping

Ct) 1 Lo —> Hr'+r2(Y , 3Y) 2)

1

where we have identified U(Q) with the additive group of the field L, and oL

2n +hna Frantianel ide2l in 1. siven as the image of U(Q.)f\‘_ under this identifi-



cation.

3. G= SL3 R Then Y is a 5-dimensional topologjcal space (a manifold
if r_ is torsionfree). Its relative homology groups Hi(Y,a ¥; Q) can
be nonzero only when i =0, 2,3, or 5 . Thus the *interesting’ homology occurs

in dimensions 2 and 3 . Taking P to be the Borel subgroup
* * *
P= 0 * %
00 *

Wwe get m = 2, and the associated modular symbol is a mapping

G+ u@)/ u@N T ——= B, 37 2 )

whose image generates the vector space nz(?‘,a'f; Q. C§ )

Taking P to be one of the two meximal parabolics, e.g.
* * *
Pol|** *
00 *

we get m=3. What is H(P) in this case?
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%’2. Hecke operators in_symmetric spaces for SLm :

Let V be an m-dimensional real inner product space, with O(V)C GL(V)
the associated orthogonal group. let nO(V) be the subgroup of GL(V) gen~
erated by O(V) together with real homotheties. By a lattice in V with full
level structure we mean a pair (L,a) where LV is a lattice, and a:L-4>Zm
is a surjective (hence bijective) homomorphism. Equivalently, such a pair
is given by a homomorphism a': QP-__; V  such that a'®@K is a bijection
of real vector spaces. The correspomndence a'é—%r(L,a) is given by setting
L= a'(z") and a=(a"‘1 ) L) .

The group GLm(Q) operates on the set of lattices with full level
structure by the rule a' —sa'e ¥t for Ye GLm(Q) while GL(V) operates
by a't+—>g.a' for g€ GL(V). Two lattices with full level structure
a' and b' are equivalent if b' = g.a' for some g € r0(V). The inner
product structure of V determines a canopical equivalence class of lattices
with full level structure. Indeed a' is a member of the canonical equivalence
class if and only if a' applied to the standard basis of Zm<::Qg is an ortho-
normal basis of V. Thus, for such an a', a'gfR. s Zm®lR ——a V  is an
jsomorphism of inner product spaces. A choice of a member a' of the canonical
equivalence class determines a Z-structure on the inner product space V via

the above isomorphism., KFix such a 'Jattice with full level structure':

a' «——> (L,2) ( Yhe base Datrie)
and hever a Z—Qh«.«c\'u.uz on V.
If X = RO(V)\\GL(V) is the symmetric space, we may make the
identification:

X &Y—F— > equivalence classes of lattices in V with
full level structure
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by the rule: RO(V)+g ¢——> RO(V)-a'
(a'9R)- (2'eR) ™ -1
where g = (a®@k). a'eR) (later we shall merely say: g=a'.a’ )

.._.- . Our choice of base lattice also determines an injection

1t GL (Q) = GL(V) by the rule at ¥t = i@)ea .

Viewing GL(V) as the Lie group of real-valued points of
GLm /Q (here we have made use of the fixed Z- (and hence Q-) structure on V),
we may complete X to obtain X , & manifold with corners, in the Borel-Serre

manner. The action of GLm(Q) on X

of>x) s xi ()7

extends to an action on X.

The discrete subgroups of interest to us will be:

(a) For N a positive integer [ (N) , the principal subgroup
of SLm(Z) of level N, is defined to be the subgroup of SLm(Z) consisting in

all matrices congruent to 1 modulo N,
(b) For p a prime number and r an integer 0 Lrg'm Tip,x)
is the subgroup of SLm(Z) consisting in matrices which stabilize the kernel of

last .
the projection 4" —>» (2/p2)*  (projection to the ¥ r coordinates

modulo p).  [over)
(c) For N a positive integer, p a prime number not dividing N

and T an integer o r ¥ m set Ygpr) = THO Vip,x) .

Also, for p,r as above, define wp r to be the Fgonglr matrix
9
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M- r
mr [O | -
W Cemte - -] € 6L Q)
PJ" r ™
P ©

Note that if (L,a) is a lattice with full level structure, then | ‘ir(L,a)
1

o
is a lattice with full level structure (L,‘E) vwhere
T <1 <;:;p"1 X v

and L/L is an Fp—vector space of dimension r.

= =D the operators w and

Since w_ _.,¥W = W W W
Py’ p,M=T PyM=X° P,T P Py~-r

on X are two~sided inverses of one another, [overI

set I(N) = X/FN) , Y@ = x/ T ; Y(¥;p,x) = X/ MN;p,r)
and Y(NBPJ‘) = X/ r(Nﬁppr) .
There is a natural one-one correspondence between the points of Y(§;p,r)

and triples (T-,L a.N) up to RO(V) -equivalence, where,

(1) L is a lattice in V

~n Sulr~
(3i) 1T is aYlattice such that

1

T=1L <=7L and L/ is an I-‘p-vector space of dimension r

(£ will ve called a (p,r)-modification of L )

(131) &, is a level N structure on L. That is, ay is a surjective
homomorphism from L to (z/n2)™,
Indeed if a' represents a point of X, then its image in Y(N;p,r) is rep~
resented by the triple ('i’-,L,a,N) where 1= a'(2") , T = (w;‘-}r.a')(zm), and

a.N = a modulo N,



Hecke (§)

>

The mappin W 31 X—
pping W .

induces an isomorphism (of manifolds with corners)

w;‘ R I(N;p,r) — Y(W;p,m-x)

?
The inclusion | (N;p,r)<= (™) induces # proper morphisms

i+ Y(N;p,xr) —P Y(N)

Y(N;p,x) —> Y(N)

Define the Hecke operator Tp(r) to be the endomorphism of

L g - +* R .
H(T(N), DY(N); &) = HC(Y(N) s A) given by the composition

I%:(Y(N)sA) ﬁH:(Y(N;p.r);A) — H:(Y(N;p.m-r); a) —>= HZ(Y(N); A)
* wg,r L

for an arbitrary coeff jcient ring A. In this manner ke nave defined operators
Tp(r) for all p+ N and all integersr 0 S rg m. These commute With
each other. Moreover, Tp(r) and Tp(m—r) are ad joint with respect to cup-prod-

uct in the sense that

T . = L ‘l'
p(r)xuy x U Tp(mr)y



5& The modular symbol associated to admissible Borel subgroups.

Let G= SL iy /g and let B<Z G denote the (Borel) subgroup
of upper triangular matrices. Fix ]_' a torsionfree subgroup of SL n+1( Z)
(of finite index). The arguments of this section will in fact work in a some-
what broader context (G a Q-split semisimple group, and B an aimissible
\Subqvroup- _

Borel). We retain the notational conventgions of & 1. In particular, X

denotes the Borel-Serre completion of X, and Y = ')T/\—v is the (Borel-

Serre) compactification of Y. Since {7 is assumed torsionfree, [7 acts freely
on X .
LEMMA 1 , The natural map
ir HMY, 3Y; A) — H'X, 3%; A )[—'
is an isomorphism, where A is any coefficient group.
Proof: Cohomology will mean with coefficients in A, unless explicitly stated

Lawma 1 @5 stondond W w=1 3 swppese w4 .
to the contrary. /The atove lemma follows more or less directly from the resulis

proved in Borel-berre. Note that n is the Q-rank of G. OSince I acts freely
on X and on X we have the Hochschild-Serre speciral sequences for both
actions. Using that ¥ is contractible and OX 1® @ wedge of n-i spheres ywe

evaluate these spectral sequences to produce the following commutative diagram:
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WP 7.0 (9T)) —» HP( I KO3 T) )—> HPGT) ——= HPL(IT, WL GX))

fe T

HP(™ HO(X)) —> HP(Y)

!

i
HP(Y,37) —> HE(X, 9X)
? A
WL 4L (5X)) —> KPR rO@EX)) — HPTHGT) ——> BT (X))

Te T

WP (X)) —> #P (1)

-

In the above diagram the vertical "column” is the cohomology sequence of
the pair ¥, 3Y). The vertical troken arrow represents a morphism which
exists only when p=n. In this case it is merely the map induced from the
coboundary isomorphism 1) — W'({, 2X%) .

When the broken arrow exists, the square that it forms is immediately
seen to be commutative.

If we make use of the asserted isomorphisms, the above diagram "collapses"
to the following diagram when p=ni

* (X, 93

0 —> Hn-l (-Y-) _ Hn-l(,a Y) / J, \ Hn('f)——% Hn( 37)
™~ H“(I;ai)n’/

where both horizontalish routes are exact. The lemma follows from the fivewlemma,



Now note that in our case, I is the Cartan subgroup of diagonal matrices
in 8L ., , and PAM is trivial, We may identify M(Rj/\ K  with diagonal
matrices in SL o+ Whose entries are +1 . Thus Y(u,k) may be identified with
M(R)* , the subgroup of diagonal matrices in SL 1 (R) whose entries are all

positive real numbers.

The boundary:
Using the results of Borel-Serre ( 8B ) we have

isomorphims (m >1)

WTAT A BT A) = N (1l 4 oa)

where T is the Tite building of SL bl /Q . As in » 1f we make the
choice of s an m-1 dimensional simplex in T (we YoSIBNR- choose the
‘s‘iniplex s corresponding to the Borel subgroup ‘B %) then IT ‘ is homotopic
@y a canonical ma.pping) to a wedge of m=1 spheres'. each m-l sphere being the
geometric realigation of an "apgrtment” of T containing s. ‘ihe set of suouh
aperiments Yean be identified.with the set of split tori im (defined over Q)
in B(Q). Since B(Q) acts transitively on this set (by conjugation) we may,

in turn, identify ERE e rrtssrorUR-GPstroNo with elements in B(Q)/M(Q).

. e
In this way we get an isomorphism O\\;>

H*(X,3X; A) ——>> Functs( B(Q)/M(Q) ; A) = Functs( U(Q) ; A)

—

which is compatible with the action of P » Wheré \ acts on the spaces

N D ed am eeln b oudbemw natnral armtinn on the Tits bﬁiIdiMT - mwmz
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We shall show that X(u,l) 4is compact, isomorphic to the closed
m-dimensional disc, and that its boundary maps (by a homotopy equivagence)

to the subspace SuMu'i in X .

BRXXBRYKXBERX PEXEINPR AR AR XX NXAX XX BUEXNEY R

We need only consider the case u=l, for mexumui& the case of a general

u then follows by comsidering the natural action of U(Q) on X and X

let X,C— X  be the subspace X, = L.l e@® . Ths
M M g

XM Xy = PRI

We mugjl'_.,,shof"{hét the closure of % N(R)* in_X, is compact, .

~,

‘ and- that itsboundary is }‘m{otopically equivalgpt""fb SM' For this, me ‘ "\\
o + e
" pxamimexkhEx set A = M) , and’ A(P) = the closure of A in X(P). \

=af set A= M(R)+



Qo os:u-')
Baépg— Ris isomorphism—begesex- with the isomorphism i of lemma 1,

we obtain

QR (Y, 27; 4) _—,_\_-)-—»7 Functs( U(Q); A)

e s e

/W%M

The modular symbol Cb engenders another map from H (Y 8!; A)

to Funct( U(Q); A)r— ; namely, if ol e i*(Y, BY; A), let &

(¢}

h H (7,3T;8)—> A denote cap-product with o  and set ‘f h*@B

Propositions There is a choice of orientation of the basic apartment

so that 1\(= N

Proof: Since M is trivial, the cycles Y(u,M) 1ift to X
and we must study their closure jin the Borel-Berre bordification of X.
Explicitly, there ijs a commutative diagram

+*
2 oy =— s

+ _&g i;

Y(u,M) >

= X

|

[~y

and let X(u,M) denote the clusure of M(R)"' in X.



. éL\, Intemeting cohomology classes ag functions on lattices

Keep to the notation of but make the following hypothesis:
[aB@ = B(2).

To any cohomology class & (Y,8Y; R) we obt.a.'ui‘ a function ton

double q«d‘i&f
B(Q) (\_["\B(Q)/M(Q) with values in R. After our hypothesis, the latter
nay be written B(Z)\B(Q)/M(’Q). Let L denote the set of 2-lattices

in the vector space @  (n=m¥l). There is a natural injection:

Funct(B(2)\ B(Q)/ ¥(Q) s R) = Funct( L 3 R)

. -

{0 &hﬂ P
enabling us to pass from fo(. toyf, s+ L —r R .

To describe the natural injection, let G* denote the subgroup of GLn(Q)
consisting in matrices with positive determinant. let B+ denote the subgroup
of upper triangular matrices in G*; 't the diagonal matrices in ¢’ » and

G*(Z) = G(Z)\ c¢*. There is the following chain of mappings, all induced

by inclusion omamerphisms:

BENBQ/M@) 5> BENE" / W €d— B\ P = c*(Z)\G*

where the latter bijection can be deduced from « Since G+
hayitive - '
actdon L "Ly g/\ -(tg) , A , and G+(Z) is the isotropy

subgroup of the standard lattice 7P c: Q", we have a naturdl identification

® ct\ ¢ = L-



§S~ Hecke operators_on lattices.
If p is a prime number, r an integer 0rg n and AcCcd

a lattice, by a pr-modification of_ /\ ¢ is meant a lattice /’\/ stch

that A AN< F"“/\

and /\///\ is of arder I . .',.,j 1
Define the Hecke operator ‘I‘p r OB Z[_Ii-:( to be the endomorphism
|
given ty A i—> = ~N where the A range through all p -mbdif-

jcations of /\ .

Proposition (compatibility) If p is a prime number not dividing the

level of r , then the square

1T, 23 R) —-—e-——> Functs( L 3 R)

T
T
¥, 97 R) ----—-—>> Functs( L ; K)

Tp(r)

is commutative.

Proof:



%G The basic p-edic manifold.

1f E is any set, and T i:E—>E a map, define the {T -adic completion

of E, E.“- , to be the projective 1imit of the system

where each of the Ei‘s ijs E and the mappings, as indicated, are all wo,

We view Equ as mapping to E by the natural projection to E1 .

Now let [ \ denote the automorphism of U(Q) obtained by con jugation

with the matrix

(aij)1-—--> (%-ja.ij) .

Since | | brings U(Z) into itself, jt induces am a mappingson

the quotient space U(Z)\U(Q) 4hich we denote Xy

is surjective, and has finite pre-images. li~ome—decomposes—the-Finite

., Clearly,
rémgof

agetesyrant-finite—in 24,0188 - into-ExPrEd UEXXBEXERRPRAERLEXPX
If we write b = As X Q_p
-‘II'I\ — —,{7\ (] e E



then  U(ZNU(Q) == u(ﬁ")\u(mt:) X U(zp)\U(Qp)-
amd¢ The U -adic completion of U(Z)\U(Q) is then immediately

seen to be

e Naoglyx foe o] - pe o) < uey.

The first factor in the product decomposition
above iéa discrete space, while the second is
taken with its usual p-adic topology.

Denote this topological mam space M . It is a p-adic manifold of dim-

ension W equal to the dimension of U(Q,p) (i.e. n(n-1)/2 ).

4

of which is giveén below: ‘_,./ ..-/ - e

'rheorég ; Let ™ :ne a funcuon on | B(Z) B(Q)/ NQQ) Hith ’vglues
in R. Suypo e that/%ha associa.ted ‘ﬂu\nction T on L " i.s an engnfuctt;n
for the ;}’(ecke operators Tp (for a ﬁxed P and 0 o ‘\ Xwith

eigenyﬁlues t
y,
units (O
s
omia) P(X) -~
/ /’
, tha.;/ Oﬁ/ﬁ i

Uppose” furthér\kfat the eiggnvalues t \are p-adlc

0,.;... < pei < \\pe the n roots of the

/

/ / ./ | /'/

We fpcrepare to state our main theorem. ] /

pors

M‘
/__-——-.....,.- =y ’.————m“
ma <&J v,

/" - o em
—— 1% is on M that our p-adic measures"vull be constructed. Indeed,

if Y js a function on U(Z)\U(Q) & B(Z)\B(Q)/M(Q) with values
in a p-adically complete ring K, let f denote the associated function on

L, the space of lattices in Q" Suppose that.f is an eigenfunction for

the T . (0 r{ n) with eigenvalues t. .. which are p-adic units (f is
1 ] ’

an “"ordinary" eigenfu'nction )e 5%:1

It is on M that our p-a:hc ‘measures will be constructed ;& d'escniﬁ'&; ~
\

( 1)1' o(r-1 )&xn-r \uiexed nxnnhx 80 /



let do"'“’ °(n-1 be the n roots of the polynomial

1
P(X) = Z(.x)r.pr(r-l)/z,tp.rxn-r
F=c

organized im such a way that ozdp o(i = i . This is possible

since the tp r 8T pradic units.

Ak
To define a.VEQnenase on M = U(Z)\U(Q) it suffices to
define /,( on the tasic open sets O(x,k) = pr;l(x) where k» 0

is an integer, x & U(ZNU(Q) , and prpt M —> U(Z)\U(Q) is

projection to the k-th copy of U(Z)\U(Q) in the projective system defining

For a2 k
M. Wﬁﬁ(o(x.k)) YWESEME Dby the formula
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where w(n) 1is such that the parenthetical expresaionTs a p-adic unit,
-1

Explicitly, w(n) = Zi «(n-i) .

tvo

1f Y is axRumptikmmodikxx -~ an £ ~valued function B(Z)\B(Q)/!(Q)
which is an oxdinary eigenfunction for the Tp . gF /ad /W,{ j_?*

istributzon
Thespssmires  1linits EE¥ew existy defining a moamommxx

If R is a peadic field, and ¥ is a bounded Tuntioon,

M then /,(, is & Rmeasure.
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‘é ? Construction of p-adic measures

Let K be a nonarchimedean local field, with ring of integers 6,
uniformizer Jr , residue field k = 671-8’ of order q - p and whose
normalized valuation is denoted [ | ( Im| = q” )

Let n >> 2 be an integer, and V an n-dimensional vector space
over K. A lattice in V has the usual meaning: it is a free 6~module AN
contained in V such that /\@@1_{ q v,

Let M denote the K-vector epace of (formal) finite K-linear
combinations of lattices in V.

If A isa lattice, A, will demote TL-A/A viewed
as n-dimensional vector space over k. If r ie an integer (0 r g n)
by a ¢“-modification of /\ we shall mean a lattice N such that

A= N =TA

and  A/A  is a k-vector subspace of /\k of dimension r.

' The standard Hecke operator T.: M —>HM (x= Oyessyn)
.is defined on lattices by the formula

A N> Z_ N

N:q*-modification of /\

Thus, T, is the identity, and T sends N\ to =1, /\ .

The natural operation of the opera.tors T on the space of linear
functionals on N is a "right action" denoted by £ i—> f\ ‘.l‘

The subalgetra of End(M) generated over Z by the standa.:d Hecke .
operators Tr (1-0,...,11) will be denoted H , the Hecke algebra. '



Let'g denote a choice of a complete flag of subspaces of V. That is,
g 0=V0£V1g_':;vzg;_ EV = V.

We see that dimK Vi = i . For each lattice AN ’ '3 determines
a complete flag on the k-vector space /\ K

et 1 & z0 denote the set of n-tuples whose entries are

either Oori1.1f a €1, a= (a,i.a.z....,a.n) we shall :define the
Jjump indices of a to be the integers j such that a =1 . By the length
_of a we shall mean the number of its jump irdices, or equivalently, 2 a 5

Jd
/
if /\ isa qr-modification of /\ say that J is a jump index for

N it
/\’nvj_l + A ¥ /\/(\V‘j + A

/
1t N is a *-modification of A\ am acl we say that

/N is of type a if /N and & have the same set of jump indices. If
/X is of type a, one has that the length of a is r.

For acI define the partial Hecke operator of type a DT(a.):M—a N by
the rule

(a)s \ —> — A7
/X modification of /\
of type a

Clearly,

(1) T,= ) Xa) = 0yu0e,n

length a = r



Set

ed- (0,0,”,1.---,0) €1 (j'lo'"vn)
N
J
and AJ = (0.0,.0.1.1,v-0,1) €—I (jﬂi,oon'n)a
f
J
imn
Thus A;j -'Ze‘i .
i=3

Denote T(ej) by E(3); we shall refer to it as the j-th elementary
partial Hecke operator.

(2) Formulas

a) If a€l has jump indices J,> Jo > oo > then

B3R e Ky = R )

Note: The partial Hecke operators do.not necessarily commute with one
another, and so the oxder in the above formula is important.

b) ’I‘(Ai)"l‘(Aj) - T(AJ)°T(ai) for any i,§ £ ne.

If b (by,byeeeerdy) ez with 0 < b <---XY

we may write
b= m1-A1 + mz'Az‘.’ sesse ¥ mn'An

with ny >/ 0. For such a b, set



SP wm(a)"L T(A)"2eeunnne T(A))"

where, in the above formula, the ordexr of the factors does not
matter, by [g.b] .

We refer to the S.D as averaging operators .

Let 1-1S denote the H-alge®ra generated by the "abstract elements”
T(a) for a € I, subject to the relations (1) amd (2.2, b) (T(ej)u E(3) ).

Then 1-1ﬁ opezates on M (WW
$o--cheek-thig). Let > < denote the subalgebra generated by

the averaging operators sP, We call the subalgebra _> the algebra

of averaging operators.

Our main construction will be to start with a linear functional f on K, .
vhich is an eigenfunction for H (am\whoe eigenvalues satisfy a wi3d conci Hm)
propexty) and to produce a linear functional F which is an eigenfunction
for Z (indeeds which is a fixed vector for all the averaging operators).
Such a linear functional F may be interpreted as a p-adic measure.

The following formul® is immediate from (2.a)1

(3.2) T(ej>-sAj+1 G IS J(-3) Ayt *+ e

(as follows from the conventions we have set up e.g. shi = T(A,) and

(2.a)). Note: this works for j=n, if we make the convention tha 3

n‘.‘ln 0.

if a€1. has the jump indices jl' jz""' jr y let MWW

¢
w(a) = - x(x-1)/2 - Zji .
L=



Leta- (algcoo-' a-n) C—I

Iﬁm‘ Let b = m10A1 + mz‘Az + ceee ¥ mn'An ‘ﬂith mi >/. &,i
Then
(3.b) T(a)-Sb - qﬂ(a). sa-"'b
(2mrswetenl

Proof : we use commutativity of the T(Ai) (2.b> to rearrange
the factorization (*) of s®  in such a way so as to exploit (3.a)
proceeding by induction on the number of Jjumps.

ot z o ,\ \
Eigenfunctions for H: °"‘"¥ “?“ b’\‘&i‘&) .
‘a K-valued linear functional on I which is ) A
let T an eigenfunction for the Hecke algebra H. Thus 60::%}:2
“?“(*\-a
GEE: \ T, o= tf for r = Oy1,.00, B

'I.S a w-u}' ¢a
where t_ G kK ( tgel). He make the hypothesis that t, = ©.

C e £ isan'adounry’ o 3«;

We obtain a homomorphism H —Y,y X (Tr —=t and in -

general an operator is sent to its eigenvalue). Moreover, it is
evident from relations (1) and (2a) that Y extends Kimx to

homomorphisms

by arbitrarily sending the elementary partial Hecke operators T(e j)
(31,.++,n) to the n roots of the polynomial

PRR) = 245{}1‘1)/2-.:#‘xn~?\ |
(itioh, b oun Lgpblats, oy Be 422 bl i K ol

tall 04232 o i)
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If b-( .o-nu.b) with bl <b2§ o-co<b
set
P, - “br | s® .
ield
o~
Then 1lim F.b converges to\a linear functiomal F
ivl— o

such that F|sB =¥ | ovkeeciin-2 ’ se
PR AP ey aph 22— fgh am lse Z wg,f%mﬂ Ipl >

Proof; Combining (1) and (&), we have (for =1,2,.0.,m) and
b as in the proposition )

Zf IT(::L).S‘b - Z t(a) f ‘ sP .

length a = ¢ length a =1

Using (3.D) and (5) we get:

(6) = @) (F o Fy) = O .

length a = T

For r=n, ' . (6) yisrldsi:

() FA,_+‘n = y

(fecalll Al- (1 .1.000'1) ) .




Lemma; if ol > nk, and a @I, then

|

® | Fat N Y S

(lattice)
for any ANin k.

Proof: Fix A and write G(b) = F(A). Ve
proceed by induction on k, the case k=0 holding because sb is
a unit. Suppose the lemma true for k (2 0); we prove it for k+l.

.

Note that the assumption of oxdinariness gives us:

) Ha) < o ta)

for any & ¢ A in I, of length r.

Combining (6), (9) and (8) {for the case k:_( we see
that

(10) laagn) - el < (e, ¢

for any b such that Nb} > nk and r=1,2,...,n.
Since

G(er-i-b)-G(b) = G(er+b;-G(er+brA rl-1)+ G(bl-Ar)-G(b)

and | er+bh S bl -1, we apply (10) to get:

(11) [o(esn) -am)) < o ).e
for any b such that fjbll > nk+i.

Now suppose that ) b) 3> nktn , and a = e, +e. +.ote, &£ 1
| ) Iy

is of length r (and by () we may suppose that r < n ). For
j» Ol,e0e,xr, write »



e

b(i) = e.+e. teeote, + b .
Jgp 92 Ji

\ b(i)“ > nkrn-i D nk+l; consequently (11) applies

Then
yielding
az ety - et < gD,
and thereforet

an  \on -om | < T
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