
Logic, Elliptic curves, and Diophantine stability



Hilbert’s classical Tenth Problem

Given a diophantine equation with any

number of unknown quantities and

with rational integral numerical

coefficients:

To devise a process according to

which it can be determined in a finite

number of operations whether the

equation is solvable in rational

integers.



Successes, Non-successes

Nowadays one has a large number of different processes in our
experience (i.e., successes).

From algorithms to find the maxima of functions on convex
polytopes (e.g.: Linear programming)

to procedures for factoring numbers into product of primes.

The basic questions we tend to ask about these have to do
with running time.



Non-successes

We also have quite a number of guaranteed non-successes:

I There is no finite algorithm to determine, given a finite
presentation of a group, whether or not the group is
trivial. Or whether two finite presentations present
isomorphic groups.

I The recognition problem for manifolds in dimension four
or higher is unsolvable (it being related directly to the
recognition problem for finitely presented groups).



Infinite versus Finite

And even when one looks for interesting Diophantine
examples, they often come in formats somewhat different from
the way Hilbert’s Problem is posed. For example,

sometimes we’re interested in procedures to determine
whether any given polynomial equation over the rational field
Q has finitely many or infinitely many solutions.

But: finitely many ↔infinitely many

is not a distinction that Hilbert formulates.
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Families
And, often, we’re interested not in answering the yes-or-no
question about rational solutions for any single polynomial
equation but, rather for whole families of them.

For example, the congruent number problem is the problem of
determining those rational numbers r that can be expressed as
the area of a right triangle with three rational number sides.

6, 15, 30, 210, 210, 21, 126, 70, 5, . . .

This turns out to be equivalent to asking that the equation

y 2 = x3 − r 2x

have a rational solution with y 6= 0.
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Back to Hilbert

So you might ask why—except for historical reasons—might
one be interested in pursuing the question as Hilbert posed it?

One answer (which is already enough to spark interest!) is
that it is a problem that has led to great developments in the
intersection of mathematical logic and number theory.

But also, Hilbert’s Problem calls for the answers to new kinds
of questions in number theory, and specifically in the
arithmetic of elliptic curves.



The Program for these lectures

(1) Hilbert’s Tenth Problem and Diophantine Stability

(2) Elliptic Curves and their rational points

(3) Methods



Solving polynomial equations over finitely

generated rings

Hilbert Problem for A

Given an infinite, but finitely generated, commutative ring A is
there an algorithm to determine—in finite time—whether a
polynomial in finitely many variables with coefficients in A has
a solution or not?



INPUT =⇒ OUTPUT

INPUT: A finite collection of polynomial equations

fi(X1,X2,X3, . . . ,Xn)

with coefficients in A.

OUTPUT: “Yes,” or “‘No,” answering the question of
whether or not there is an n-tuple of elements of A
(a1, a2, a3, . . . , an) such that

fi(a1, a2, a3, . . . , an) = 0

for all i .
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Solving polynomial equations over finitely

generated rings
Immense amount of classical work on precursors to, and
variants and extensions of such problems.

J. Robinson, M. Davis, H. Putnam, Y. Matiyasevich

as well as more recent work of

J. Denef,
G. Cornelissen, T. Pheidas, and K. Zahidi,
B. Poonen,
A. Shlapentokh,
J. Koenigsmann,
K. Eisentrager,
J. Park



A conditional solution

Karl Rubin and I did some work on Hilbert’s problem for a
general finitely generated (infinite) commutative ring. We
didn’t answer that question unconditionally, but rather we
proved a theorem—that we like to think of as a

Diophantine Stability Result

having to do with the arithmetic of elliptic curves that, when
coupled with a standard conjecture in the arithmetic of elliptic
curves, gave what was needed to offer a negative answer to
Hilbert’s problem for any infinite, but finitely generated,
commutative ring A.

Dependent, of course, on that prior work.



Diophantine Stability Issues

Call the stability property that enters in this discussion
‘diophantine-stability:

Let L/K be a field extension, and

P(X1,X2, . . . ,Xn)

a polynomial with coefficients in K (or more generally a
system of such polynomials).

Say that the polynomial P is diophantine-stable for the
extension L/K if P acquires no new zeroes over L.
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Diophantine Stability and Hilbert’s Tenth Problem

To transport undecidability from the ring of integers of one
field to the ring of integers of a larger ring one uses the
existence of elliptic curves containing rational points of infinite
order over a given number field K having sufficient
diophantine stability.

the Bootstrap Method



The classical work of Matiyasevich

There is no algorithm for the ring A = Z.

To say that there is no such algorithm is by no means a
completely negative statement, given the format of
Matiyasevich’s proof.



The classical work of Matiyasevich

I For Matiyasevich uses the known fact that there are
subsets S of the integers that are undecidable in the
simple sense that although:

I there may be an algorithm to list the elements of S ,
I there is no algorithm to list the elements of the

complement of S in Z, so we don’t have a way of
computing whether or not a given integer is in S ;

and

I he is able to define any such S by a diophantine method.



The classical work of Matiyasevich

That is, diophantine formulations capture all listable sets
(including the “undecidable ones”). Diophantine vocabulary is
very rich!

E.g., do you want a polynomial over Z whose set of positive
values is the set of exactly all prime numbers for integral
substitution of all its 26 variables?

Here is one:

(this is due to J. Jones, D. Sato, H. Wada and D. Wiens)



Prime Numbers

(k + 2){1− [wz + h + jq]2− [(gk + 2g + k +
1)(h + j) + hz ]2− [2n + p + q + ze]2[16(k +
1)3(k+2)(n+1)2+1f 2]2−[e3(e+2)(a+1)2+
1o2]2 − [(a21)y 2 + 1− x2]2x − [16r 2y 4(a2 −
1) + 1− u2]2 − [((a + u2(u2 − a))2 − 1)(n +
4dy)2 +1−(x +cu)2]2− [n+ l +vy ]2− [(a2−
1)l2 + 1−m2]2− [ai + k + 1− l − i ]2− [p +
l(a−n−1)+b(2an+2a−n2−2n−2)−m]2−
[q+y(a−p−1)+s(2ap+2a−p2−2p−2)−
x ]2− [z +pl(a−p) + t(2ap−p2−1)−pm]2}



Listable versus Diophantine

One standard way of refining Hilbert’s question is to “reset” it
as a problem related to listable sets and Diophantine sets, as
hinted at in the example of primes.

Listable sets of integers

(synonyms: recursively enumerable, computably enumerable)



Listable

A subset L ⊂ Z is called listable if there exists a finite
computer program whose output gives a sequence
α1, α2, α3, . . . of integers such that the set L is precisely this
collection of numbers; i.e.,

L = {α1, α2, α3 . . . }.

A computer algorithm that does job this will be called a
computer algorithm that “lists L.”



Easily versus not so easily listable

Note, though, that–even if the computer spits out a “new”
integer every second— the ordering in which the integers in L
come via the computer’s list may be helter-skelter in terms of
absolute values.

If you suspect that a given number, say 2, is not in L and
need to have a definite guarantee of the truth of your
suspicion, well . . .

running the helter-skelter computer algorithm for any finite
length of time may be of no help to you.



Easily listable

A more useful finite computer program might be, for example,
a program that for each integer N will, after some guaranteed
time

(e.g., no greater than NN...N

hours)

actually produces a complete list of all integers of absolute
value ≤ N that are in L.

(Call such a program a deluxe program.)



Moderately easily listable
Somewhat intermediary to the above two types of computer
programs (helter-skelter, and deluxe) would be a pair of
computer programs,

one of which spits out the elements of L and

the other spits of the elements of the complement of L.

Supplied with such a pair of programs you might, at the very
least:

I run the first program by day,

I and the second by night,

for then you are guaranteed to know—in some (perhaps
unspecified, but) finite time whether or not 2 is in your set L.



Recursive

A set L that has the property that it and its complement are
both listable is called recursive.

If you have such a recursive set, then, as mentioned—listing
the set L by day and its complement N−L by night—you are
guaranteed that for every N ∈ N you will know at some finite
time whether or not N is in your set.



Alan Turing

There exist listable sets that are not recursive. (The computer
algorithms that list such sets are necessarily quite
helter-skelter!)

This is a consequence of the famous 1936 theorem of Alan
Turing that was phrased in terms of

The halting problem for algorithms.

Turing showed that there exists no universal algorithm to tell
you whether or not any finite computer algorithm will
terminate finitely, when run.



The Halting Set

H := {The set of couples (P , x)

where P is a program and

x is a possible input to program P and

such that Program P will eventually halt

if run with input x}

is recursively enumerable—once you code, in a computable
way, the (P , x)’s as a subset of natural numbers—BUT the
complement of this set is not recursively enumerable.



Variants of Hilbert’s Problem

Hilbert’s Problem for the field Q?

More generally for subfields in Q̄?

For ‘big’ subfields of Q̄?
Real algebraic numbers, p-adic algebraic numbers,. . .

For polynomials of degree three in many variables over Z?

First-order undecidability?



First-order undecidability?

A Diophantine question asks simply whether a quantity (or
quantities) ∃ satisfying a diophantine relation.

A First-order question may ask—for example— whether or
not a quantity exists satisfying a specific relation to any
quantity that satisfies some diophantine relation. ∀∃? And so
on, like:

∀W∃X∀Y ∃Z such that f (W ,X ,Y ,Z ) = 0?



Gödel (1931)

Incompleteness Theorem =⇒ There is no algorithm to
decide first-order questions about Z.

Julia Robinson: None to decide first-order questions about Q
or number fields, or rings of integers in number fields.

Bootstrap to Z:

If you can find a first-order formula that defines the ring Z in a
larger ring A, Matiyasevich’s Theorem then also shows there is
no algorithm to decide first-order questions about A.



The fun of “first-order definitions” of Z in Q

Classical work of Julia Robinson,

Recent work of Joechen Koenigsmann, Bjorn Poonen, Jennifer
Park, G. Cornelissen, K. Zahidi

Bjorn Poonen’s first order definition of Z in Q:

A rational number t is an integer if for all pairs of rational
numbers a, b there are seven rational numbers

x1, x2, . . . , x7

such that



(a +
4∑

i=1

x2i ) · (b +
4∑

i=1

x2i ) · (x21 − ax22 − bx23 + abx24 − 1)2 =

= −
2309∏
n=0

((n − t − 2x1)2 − 4ax25 − 4bx26 − 4abx27 − 4)2.



Undecidablity versus Decidability for big rings

I First-order problems undecidable over number fields or
over their rings of integers.

I R. Rumely (1986): Hilbert’s Tenth Problem is decidable
over the ring of all algebraic integers.

I Van de Dries: First-order Theory is decidable over the
ring of all algebraic integers.

I A. Prestel, J.Schmid, J.(1991): First-order problems are
decidable for the ring of real algebraic integers, and—for
any p—for the ring of algebraic integers in the p-adics.

(Comment on real versus totally real! The work of Fried,
Haran, Völklein: first-order decidability of the field of
totally real algebraic numbers, in contrast with the work
of J. Robinson giving first-order undecidability of the ring
of integers in that field.)

The “boundary problem:” when does undecidability switch
to decidability?



First-order undecidability in large fields of

algebraic numbers
Using results of Alexandra Shlapentokh (and prior work cited)
Karl Rubin and I prove (via some Diophantine-stability results):

Theorem: Let p be any prime number (or ∞).

There are uncountably many subfields K of the field of
algebraic numbers in Qp in which:

there is a *first order definition* of Z in K .

(The first-order theory for any such field K—and for its ring of
algebraic numbers—is undecidable.)



Diophantine stability in a more general context

Fix a variety V over, say, a number field K . Is there
a nontrivial field extension L/K for which it is
diophantine-stable?



Rational curves defined over K

If V = P1 over the field K (or any nonempty open piece of
P1) the answer is no.

P1 has new points in every nontrivial extension L/K .

More generally:

If there is a curve in V that is isomorphic to an open subvariety
of the projective line over K the answer is clearly no.

Is this the only obstruction to a positive answer to the above
question?



A characterization of P1?

Question:

If V is a projective variety over a number field K such that for
every nontrivial number field extension L/K there are new
points, i.e.,

if for all L/K the set V (L), of points of V rational over the
field L is strictly larger than V (K ),

does V necessarily contain the image (under a nonconstant
mapping defined over K ) of the projective line over K?



When V is a curve

Karl Rubin and I (with help from Michael Larson) have recently
proved that if V is a curve the answer to this question is yes.

To formulate this more precisely:



Field extensions ‘belonging to” a variety

Let K be a number field and V an irreducible algebraic variety
over K .
If V is a variety over K say that

L/K belongs to V over K

if L is generated over K by (the coordinates of) a single point
of V .

For example: any elliptic curve y 2 = x3 + ax + b over Q has
infinitely many quadratic fields belonging to it.



The collection of fields belonging to a variety

Denote by L(V ;K ) the set of field extensions of K belonging
to V . That is:

L(V ;K ) := {K (x)/K ; for x ∈ V (Q̄)}.



Working both sides

Fix a variety V and study extensions L/K belonging to it.

Fix an extension L/K and study varieties to which it belongs.



Two Diophantine Stability results for elliptic

curves (and abelian varieties)
Karl Rubin and I showed:

Theorem

Let K be a number field.

(1) Let E be an elliptic curve over K with no CM, and n be a
positive integer. There are infinitely many primes ` where, for
each of them, there are infinitely many cyclic extension fields
L/K of degree `n such that

E (K ) = E (L).



Theorem

(2) Let L/K be a cyclic extension of prime degree. Then
conditional on the 2-Shafarevich-Tate Conjecture there exists
an elliptic curve over K such that E (K ) is an infinite cyclic
group and E (K ) = E (L).



Diophantine stability for curves of positive genus
(Using a result of Michael Larsen) we show that for any curve
of positive genus there are many extension fields do not belong
to it:

Theorem
Beamer

(3) Let X be an irreducible nonsingular projective curve over a
number field K not of genus 0. Then there is a finite
extension K ′/K such that for any positive integer n,

I there are infinitely many primes ` where, for each of them,

I there are infinitely many cyclic extension fields L/K ′ of
degree `n such that X (K ′) = X (L).

We show this by relating curves to (absolutely simple) abelian
varieties, via their jacobians.



a statistical question

Fixing a curve X of positive genus over a number field K , is it
the case that for any prime number

`�X ,K 0

100% of the cyclic degree ` extensions L/K have the property
that X (K ) = X (L)?



Minimalist View

. . . that—all in all–rational points are rare and

when they come in profusion they do so for some

eventually graspable reason, and not because they

happen.

I’ll be discussing this phenomenon in these

lectures, reviewing aspects of the logical

vocabulary we used, the basics of elliptic curves,

and the various tools for examining aspects of the

problem; specifically Selmer groups over arbitrary

number fields.



Statistics for elliptic curves over Q

Chantal David, Jack Fearnley and Hershy Kisilevsky
conjecture:

For a fixed elliptic curve over Q and ` ≥ 7, there are only
finitely many non-diophantine-stable cyclic extensions of Q of
degree `. (??)

For ` = 3 and 5, following random matrix heuristics, they
make (essentially) these statistical conjectures:



Statistics for elliptic curves over Q

For E and elliptic curve over Q, let

NE ,`(X )

be the number of cyclic extensions L/K of degree ` belonging
the E over Q that are cut out by a Dirichlet character (of
order ` and) of conductor ≤ X .

They conjecture that:

logNE ,3(X ) ∼ 1

2
log(X ),

logNE ,5(X ) <<ε X ε.



A related topic: Statistics for modular symbols of

elliptic curves

(with Karl Rubin and William Stein)

Let E be an elliptic curve over Q with L-function

L(e, s) =
∞∑
n=1

an
ns

and with
[
a

N
]E

the “real” modular symbol attached to E .



Modular symbols don’t look random

Fixing N = p a large prime, form the function for 0 ≤ τ ≤ 1/2,

GE ,p(τ) =
∑

0≤ a
p
≤τ

[
a

p
]E .

(The integral of the step-function determined by the modular
symbols.)



Approximating GE ,p(τ )

It is natural to try to compare GE ,p(τ) with the (convergent)
function:

gE (τ) =
∞∑
n=1

an
n2

sin(2πinτ)/2π

Specifically, we conjecture:

lim
p→∞

GE ,p(τ)
??
= gE (τ).



Some data

E = 11a; p = 100, 003

GE ,p gE

0.1 0.2 0.3 0.4 0.5

5000

10000

15000

0.1 0.2 0.3 0.4 0.5

0.05

0.1

0.15

0.2



Some data
E = 37a; p = 100, 019

GE ,p



Some data
E = 37a; p = 100, 019

gE

0.1 0.2 0.3 0.4 0.5

-0.05

0.05

0.1

0.15

0.2



Some data
E = 37b; p = 100, 043

GE ,p

0.1 0.2 0.3 0.4 0.5

2000

4000

6000

8000

10000

12000

14000



Some data
E = 37b; p = 100, 043

gE


