
The Menu

(1) Hilbert’s Tenth Problem and Diophantine Stability

(2) Logic related to Elliptic Curves and their rational
points

(3) Methods



Recalling the motivation of Matiyasevich (and

how elliptic curves might enter the picture)

One first gives Diophantine definitions of ‘basic subsets’ of Z
and systematically builds up.

For example, Lagrange’s Theorem says that any positive whole
number is expressible as a sum of four squares. In Diophantine
language, this means that the polynomial

f (t;X1,X2,X3,X4) := t − Σ4
i=1X

2
j

cuts out the set of positive integers; so the set of positive
numbers is Diophantine.



Building the vocabulary

Therefore it follows, by easy steps, that these sets are too:

I the set of numbers ≥ a for any given a ∈ Z,

I the set of numbers ≤ b for any given b ∈ Z,

I any finite subset of Z,

I the complement of any finite subset of Z.



Little by little

I So, if D is Diophantine, then any set obtained from D by
removing and adding finite sets is also Diophantine.

I Arithmetic progressions are Diophantine; as are the set of
all squares, all cubes, all n-th powers for any given n.

I Composite numbers.

I For any fixed (say, nonsquare, positive) integer d ,
consider the set of integers t that come in solutions of
the Pell equation

t2 − ds2 = 1

(this being a set that grows roughly exponentially).
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Factorials

There is a system of polynomials that cut out the set of
factorials 1!, 2!, 3! . . . The fact that this set is Diophantine
played a big role in the development of the subject.

To get such a polynomial one starts by finding a Diophantine
way of expressing the binomial coefficients

(
n
m

)
and then

dealing with the—to me surprisingly unpromising—formula:



Factorials

m! = lim
n→∞

nm(n
m

).
(!!!)



Comments on the History

This work ranges from 1944 when Emil Post said that
Hilbert’s tenth problem

“begs for an unsolvability proof”

to 1970 when Matijasevic clinched the theorem.

A three decade range (beautifully and informatively
documented)!



Focus on very roughly exponential functions

But I’ll begin in 1960, when Julia Robinson, sharpening work
of Martin Davis, and Hillary Putnam, showed that if there
exists a very roughly exponential function defined in a
diophantine way; i.e., a Diophantine set F of couples (a, b) in
N×N with two properties:

1. If (a, b) ∈ F then a < bb.

2. For each positive integer k there is an (a, b) ∈ D with
b > ak .

then all listable sets would be Diophantine.



Fibonacci

In 1970, Matiyasevich provides a Diophantine definition of a
set F as required by J.R.: he took his F to be the collection
of pairs (a, b) such that

b = F2a

where Fn is the nth Fibonacci number.

He managed to define this set F in a diophantine way, thereby
completing the proof that all listable sets are Diophantine and
establishing the fact that Hilbert’s tenth problem (over Z) is
unsolvable.
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I find this quotation of Matiyasevich illuminating:

“The idea was as follows. A universal computer science tool
for representing information uses words rather than numbers.
However, there are many ways to represent words by numbers.
One such method is naturally related to Diophantine
equations. Namely, it is not difficult to show that every 2× 2
matrix (

m11 m12

m21 m22

)



with the m’s being non-negative integers and the determinant

m11m22 −m12m21

equal to 1 can be represented, in a unique way, as a product of
matrices:

M0 :=

(
1 1
0 1

)
and

M1 :=

(
1 0
1 1

)
.



It is evident that any product of such matrices has
non-negative integer elements and the determinant equals 1.
This implies that we can uniquely represent a word in the
two-letter alphabet M0,M1 by the four-tuple

(m11,m12,m21,m22)

such that the numbers evidently satisfy the Diophantine
equation

m11m22 −m12m21 = 1.



Representing words in a diophantine way

Under this representation of words by matrices, the operation
of concatenation-of-words corresponds to matrix multiplication
and thus can be easily expressed as a system of Diophantine
equations,

opening up a way of transforming an arbitrary system of word
equations into “equivalent” Diophantine equations.

Many decision problems about words had been shown
undecidable, so it was quite natural to try to attack Hilbert’s
tenth problem by proving the undecidability of systems of word
equations.”



Pell’s Equation versus Elliptic curves with

infinitely many rational points

Pell’s Equation:
Y 2 − DX 2

or the Norm equation giving units in real quadratic fields was,
in effect, what Matiyasevich used rather than matrices.

—The Fibonacci numbers come as the coefficients of the
group of units

(
1 +
√

5

2
)n.



The Bootstrap Method: Find a ‘definable model’

of a subring A ↪→ B in the vocabulary of B

If you can construct a definable set-theoretic injection

A ↪→ BN

that has the property that the image of 1, and the graphs of
addition and multiplication are all definable, then one says that

The ring B ‘has’ a definable model of A

If a ring B has a definable model of A we get the following
“Bootstrap” transport of undecidability:

undecidability of A =⇒ undecidability of B.



Recall from the first lecture: Diophantine versus

First-Order undecidability
Decidability of B: There is an algorithm to determine a yes
or no answer for the truth of ’sentences in the language of B .’

I Diophantine decidability: The naive notion: we get an
answer for any sentence asserting that some diophantine
equation (or finite collection of them) has a
(simultaneous) solution.

I First-order decidability: The sentences may include

∃∀∃ . . .
Again: if B has a definable model of A:

Decidability of B =⇒ Decidability of A.



The Bootstrap Method, Elliptic curves, and

Diophantine stability

The problem with Pell’s Equation for the ‘Bootstrap method’
to pass from a ring A to a larger ring B—i.e., when you
consider equations of the form

Y 2 − DX 2 = ±1,

is that you often get more rational solutions in B and hence
the set of rational solutions over B has, in a sense, forgotten
about the subring A.



Bootstrapping a definition of Z to the ring of

integers, OK , of a number field

Theorems of
Cornelissen-Pheidas-Zahidi, Poonen, Shlapentokh

1. Find some elliptic curve E over Q that has

(a) infinitely many rational points over Q

and

(b) the diophantine-stability property: E (Q) = E (K ).

Then the set of rational integers is diophantine over OK .



Climbing number field extensions L/K

(B. Poonen, A. Shlapentokh) Let K ⊂ L be number fields. If
there exists an elliptic curve E over K having (a) infinitely
many rational points over K

and

(b) the diophantine-stability property for the extension L/K :

E (K ) = E (L),

then there exists a a diophantine definition of OK in OL.
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Elliptic curves and Logic

Aside: Mention the strong(er) Lang conjecture

Elliptic curves seem to be in close contact with a surprising
number of different fields of mathematics, and physics and
applied areas.
For example, in their essential role in cryptography, elliptic
curves have a certain predominance that warrants publications
such as this 1999 government memo:



Elliptic curves and cryptography

      

   

  

         

            

   

     

         

               

               

                

              

                

            

           

            

     

     

           

                

             

           

  



Discrete Logarithm Problem

The first page of that memorandum already gets down to the
business of discussing the discrete logarithm problem when
posed in terms of the near-cyclic group of rational points of
those preferred elliptic curves, and specifically, the difficulty of
computing such logs, which—in this game—is a virtue.



Elliptic curves as algebraic curves

Elliptic curves can be represented as smooth plane cubic curves
with one point at infinity, and therefore by adroit linear change
of variables can be given by an affine equation of the form

y 2 = g(x) := x3 + cx + d ,

for c , d constants, where the cubic polynomial g(x) has no
multiple roots.



Rational points

Such curves then are algebraic objects, and can be defined
over any field k , by taking the constants c , d ∈ k .

The “elliptic curve” E itself then is the projective model of this
affine curve, and its points rational over the field k is usually
denoted E (k) which consists of the single point at infinity
–usually called, perversely, 0 or the origin—and all affine points

(α, β)

each entry in k , satisfying the equation

β2 = α3 + c · α + d .



Chord-and Tangent

Some readers of Diophantus seem to already find in his
treatise hints of what later came to be called the
“chord-and-tangent process” for making new points on this
curve E (rational over k) from pairs of points in E (k):



Interesting similar structure for cubic

hypersurfaces of any dimension, but . . .

This “chord-and-tangent process” banks on the fact that our
curve is a cubic hypersurface and would work in any dimension.

But when E is an elliptic curve, defining an addition law of
E (k) by stipulating that any ’three’ collinear points sum to
zero, gives E (k), as it turns out, an abelian group structure:

E (k)× E (k) −→ E (k)



In the era of Mordell,

the arithmetic of elliptic curves was already in full swing, and
any number of a host of questions Mordell himself asked, such
as

What products of two consecutive integers are equal
to a product of three consecutive integers?

provide very interesting questions about elliptic curves.



0, 6, and 210

The answer to this question, known to Mordell half a century
ago, is that the only such products are 0, 6, and 210.

The equation whose integral solutions “solves” Mordell’s
Question is

E : y 2 + y = x3 − x

and this is an affine model, over Z, of an elliptic curve over Q
which we’ll call

Mordell’s Elliptic Curve



Integral solutions

Mordell’s original question is about integral solutions.

Now, for any equation that equates a quadratic expression of
the variable y to a cubic expression of x (with no multiple
roots)

there is an algorithm allowing one to finitely determine all its
integral solutions.



Algorithm for integral solutions

(A. Baker): if the maximum height of the coefficients of this
equation is H , then all solutions of the satisfy

max(|x |, |y |) < exp{(106H)10
6}.

This success is in contrast to the general problem of integral
solutions as posed by Hilbert’s Tenth Problem solved
negatively by Matyasevich. And in contrast to the problem of
rational solutions.



Rational solutions

So let’s return to Mordell’s equation and determine its rational
rather than only integral solutions. We get quite a different,
and striking, answer: there are infinitely many rational
solutions, and all of them are ‘generated’ out of the simplest
of its solutions: (x , y) = (0, 0).

02 + 0 = 03 − 0



Denominators of the x-coordinates
1
1
1
1
4
1
9
25
49
16
529
841
3481
16641
98596
4225
2337841
13608721
67387681
264517696
6941055969
12925188721
384768368209
5677664356225
61935294530404
49020596163841
16063784753682169
158432514799144041
2846153597907293521
62586636021357187216
2237394491744632911601
1870098771536627436025
1262082793174195430038441
41998153797159031581158401
1063198259901027900600665796
15402543997324146892198790401
2763291877248901877407461697249
35845578465602823663322959338401
3838799532815709794201672388387649
292736325329248127651484680640160000
18130554499963269207328264658003398849
23330922815816934561924264996456917601
112095263170952502579054676954803745129249
6717213017363033576059307226857689370745601
546893617922188211588396787764926990139280196
53046539559910784267590065399289562705929497601
11671603578179426152483616311075870788715631720041
107308058945765220809811860660656614527354467284025
157663313719502807884874799318714943425831988660626801
29418784545883822188243570198416287437001335203340988816





Notice the growth of the numerators and

denominators of these solutions!

They trace out the shadow of a parabola.

The equation of the ‘limit’ parabola is itself an important
arithmetic invariant of the elliptic curve (if you normalize for
the size of typefont)—determined by the regulator of this
elliptic curve.



Can you make use of the set of denominators of

the x-coordinates of the rational points Mordell’s

elliptic curve,

1, 9, 25, 49, 16, 529, 841, . . .

just as Matiyasevich used the Fibonacci numbers

to construct a model of the rational integers?



Work of Cornelissen, Pheidas, Zahidi and independently
Poonen showed how to do that (in a more general context).

AND if Mordell’s elliptic curve is diophantine-stable for the
extension L/Q, you can use those denominators to give a
diophantine construction of the ring of rational integers in the
ring of integers of L.

Discuss!
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Classical pillars of the arithmetic of elliptic curves

Modular curves play two somewhat disjoint roles in the
foundations of the theory of elliptic curves. As algebraic
geometric objects they enter the scene as ‘classifiers.’

Their (noncuspidal) points determined (and classify all) elliptic
curves with some extra interesting arithmetic structure, such as

Pairs (E ,P), where E is an elliptic curve and P a point
of order N ≥ 3 on it.

The completed moduli space that classifies this particular
problem is a curve usually denoted

X1(N) := H/Γ1(N) ∪ cusps,

and its K -rational (noncuspidal) points give K -rational pairs
(E ,P).



Classical pillars of the arithmetic of elliptic curves

The other role modular curves play is via the famous
modularity theorem.



Classical pillars of the arithmetic of elliptic curves

The Mordell-Weil Theorem for any elliptic curve E over any
number field K is simply fundamental for the arithmetic theory.

It asserts that:

the group E (K ), of K -rational points is a finitely generated
abelian group.

So E (K ) is characterized up to isomorphism by its two
invariants:



Rank and Torsion

I.e.,

E (K ) ' T(E,K)
⊕

Z
r(E,K)

.

This launches two (surprisingly differently) mathematical
projects:

I Study the behavior of torsion (E ,K ) 7→ T(E,K) ,

I Study the behavior of rank (E ,K ) 7→ r(E,K) .



Torsion

Torsion in elliptic curves have, as one of their many neat
realizations, periodic arrays in the classical Poncelet Billiard
game



Torsion over Q

We have a complete classification of torsion, rational over Q
for elliptic curves defined over Q. It could be stated this
“minimalist” way. . .



Torsion over Q

Theorem

The isomorphy type of a finite group T occurs as the rational
torsion group T (E ,Q) of some elliptic curves over Q only
when it is forced to occur, by algebraic geometry.

Namely, only when the modular curve classifying pairs
consisting of elliptic curves together with a specified finite
subgroup isomorphic to T is isomorphic to the projective line
over Q.

In such a case, there is an infinite rationally parametrized
family of elliptic curves over Q possess T as rational torsion
group.
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Torsion over Number Fields

Fix a positive integer d and let P(d) be:

the largest prime number p such that there exists an elliptic
curve (no CM) defined over some number field of degree ≤ d
over Q and for which there is a point of order p on that
elliptic curve, rational over that field.



Bounds for prime torsion

A result of Merel, Oesterlé, Parent :

d1/2 << P(d) << 3d .

It is tempting to conjecture:

P(d) <<ε d1/2+ε (?)



Data

Thanks to Maarten Derickx and Mark van Hoej:
Here is a log-log plot where the axes are

(x , y) = (log p, log d),

the data points recording examples of ‘lowest’ degree d for the
corresponding p occurs as prime torsion over a field of degree
d (in a non-CM elliptic curve).



Data of p-torsion in elliptic curves over Number

Fields of degree d



Rationally parametrized families of p-torsion

Let p be a prime number, and d ≥ 1. If there is a Q-rational
map

f : X1(p)→ P1

of degree d of the modular curve X1(p), you get a “rationally
parametrized family” of elliptic curves defined over fields of
degree d possessing rational p-torsion over those fields by
systematically taking the inverse image of the Q-rational
points of P1.



Sporadic Torsion

Say that a point of order p on an elliptic curve over a number
field of degree d is d-sporadic if it doesn’t occur as a member
of such a family.

There are NO d-sporadic points (of prime order) for d = 1, 2
or 4.

Interesting possibilities for some experimentation here. . .



Rank
Let K be a fixed number field and consider the collection of all
elliptic curves defined over K . The most natural ‘first
question’ that is somewhat of a statistical nature that you
might ask about Mordell-Weil rank is:

Does r(E ;K ) admit a finite upper bound (for fixed
K and all elliptic curves over K )?

Here, far from actually knowing the answer, we don’t even
seem to enjoy a uniform consensus about guesses for what the
truth is here, even for the field Q.

Recent newsbreaking heuristics of J. Park, B. Poonen,
J.Voight, and M. M. Wood



Rank, so far



rank ≥ year Author(s)
3 1938 Billing
4 1945 Wiman

6, 7 1974, 75 Penney − Pomerance
8 1977 Grunewald − Zimmert
9 1977 Brumer − Kramer

12, 14, 15 1982, 86, 92 Mestre
17 1992 Nagao
19 1992 Fermigier
20 1993 Nagao
21 1994 Nagao − Kouya
22 1997 Fermigier

23, 24 1998, 2000 Martin −McMillen
28 2006 Elkies





Elkies’ elliptic curve

To see what’s involved in the last entry (Elkies elliptic curve)
of this table:

E : Y 2 + XY + Y = X 3 − X 2−

2006776241557552658503320820

9338542750930230312178956502X

+

34481611795030556467032985690390720374855

944359319180361266008296291939448732243429



What can knowledge of Mordell-Weil ranks of

elliptic curves over large fields of algebraic numbers

get you?
Let L be a (large) subfield of Qalg, and E an elliptic curve over
L.

As Sasha Shlapentokh explained to me:

IF ∃ an elliptic curve E over L such that: E (L) is finitely
generated and of positive rank,

1. then there is a first-order model of Z in the ring of
integers of L (and in all its subrings).

So we get first-order undecidability for these.

2. If–in addition—we have a mild condition on L/Q—there
is a first-order model of Z in the field L (and in all its
subfields as well).

So we get first-order undecidability for these.



First-order definability of Z

Theorem (with Karl Rubin): Let E be an elliptic curve over
Q (for example). Let p be any prime number (or ∞).

There are uncountably many subfields K of the field of
algebraic numbers in Qp for which E (K ) is finitely generated.

For these fields, Z is first order definable over K ,

The first-order theory for any subfield of such fields K—and
for its ring of integers—is undecidable.



Friday’s lecture on diophantine stability

In the next lecture we’ll describe the methods we use to get
our diophantine-stability theorems. These theorems are very
far, though, from the following conjectures:

A Conjecture: Let E be an elliptic curve over a number field
K and

` �X ,K 0.

Then for 100% of the cyclic extensions L/K of degree ` over
K we have E (L) = E (K ).(??)

More generally:



Diophantine stability for curves

A Conjecture: Let X be an irreducible curve of positive
genus over a number field K and

` �X ,K 0.

Then for 100% of the cyclic extensions L/K of degree ` over
K we have X (L) = X (K ). (??)



A Question

Is it possible that we have the following dichotomy for any
projective variety V over a number field K and any large
enough prime number

` �V ,K 0 :

1. V contains the image of the projective line defined over
K , or

2. For 100% of the cyclic extensions L/K of degree ` over K
we have diophantine stability: V (L) = V (K ).(??)


