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Diophantine stability for curves

Theorem

Let X be an irreducible nonsingular projective curve over a
number field K of genus > 0. Then there is a finite extension
K ′/K such that for any positive integer n,

I there are infinitely many primes ` where, for each of them,

I there are infinitely many cyclic extension fields L/K ′ of
degree `n such that X (K ′) = X (L).
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Diophantine stability for absolutely irreducible

abelian varieties

Theorem

Let A be an absolutely irreducible abelian variety over a
number field K . Then there is a finite extension K ′/K such
that for any positive integer n,

I there are infinitely many primes ` where, for each of them,

I there are infinitely many cyclic extension fields L/K ′ of
degree `n such that A(K ′) = A(L).

If the Endomorphism ring of A over C is Z, then one can take
K ′ = K . (E.g., elliptic curves with no CM)
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Selmer groups and Descent for elliptic curves

The standard method—perhaps the only fully proved
method—of finding upper bounds for

r(E ,K ) := rank E (K )

for specific elliptic curves E over specific number fields K (or
for the corresponding problem for abelian varieties) is

the method of descent

already present in some arguments due to Fermat and has
been elaborated and refined ever since.



Selmer groups

These days “descent” is done via computation of what are
called

Selmer groups
.

These computations are ‘elementary’ in the sense that its
ingredients are hardly anything more than group cohomology
and basic algebraic number theory.



The “shape” of the descent method as it has

evolved in present times

(Class Field Theory reduces determination of the Selmer
groups we will deal with to) clearcut finite computations.

I’ll explain it first for elliptic curves when the base field K is
the rational field Q, and then discuss the differences that one
encounters looking for diophantine stability in general
field-extensions and for general abelian varieties.



Selmer groups for elliptic curves over Q

To illustrate the method, fix an elliptic curve E over Q and a
prime `.

The basic exact sequence of Gal(Q̄/Q)-modules we deal with
given by multiplication by `,

0→ E [`]→ E (Q̄)
×`−→ E (Q̄)→ 0



Mordell-Weil connected to cohomology

Passing to the cohomology of

0→ E [`]→ E (Q̄)
×`−→ E (Q̄)→ 0

gives us an injection

E (Q)/`E (Q) ↪→ H1(Gal(Q̄/Q),E [`]).



Bounding Mordell-Weil rank via cohomology by

trying to close in on the subspace E (Q)/`E (Q)

E (Q)/`E (Q) ↪→ H1(Gal(Q̄/Q),E [`])
what we want to bound infinite dimensional

The F`-vector space

H1(Gal(Q̄/Q),E [`])

is infinite dimensional, and we want to encapsule that
subspace E (Q)/`E (Q) thereby bounding the Mordell-Weil
rank of E over Q.



Locally at a prime p
Locally, over Qp for any prime p we have the same
cohomological story,

E (Qp)/`E (Qp) ↪→ H1(Gal(Q̄p/Qp),E [`]).

and the global and local pictures fit neatly together:

E (Q)/`E (Q) �
� // {inverse image}p �

� //

��

H1(Gal(Q̄/Q),E [`])

��
E (Qp)/`E (Qp) // H1(Gal(Q̄p/Qp),E [`])



Local conditions at primes p

In particular, for each prime p we have a natural ‘local
condition’:

the vector subspace

E (Q)/`E (Q) ⊂ H1(Gal(Q̄/Q),E [`])

is contained in “{inverse image}p,” the inverse image in
H1(Gal(Q̄/Q),E [`]) of the vector subspace

E (Qp)/`E (Qp) ⊂ H1(Gal(Q̄p/Qp),E [`]).



Using this local information at all primes p

It is natural, then to try to at least approximately ‘cut out’ the
subspace E (Q)/`E (Q) by using all this local information
together. That is the purpose of the Selmer group, S`(E ).

Definition: S`(E ) ⊂ H1(Gal(Q̄/Q),E [`]) is the intersection
over all primes p of the inverse images

{inverse image}p ⊂ H1(Gal(Q̄/Q),E [`])

of the subspaces E (Qp)/`E (Qp) ⊂ H1(Gal(Q̄p/Qp),E [`]).

S`(E ) = ∩p{inverse image}p ⊂ H1(Gal(Q̄/Q),E [`]).
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Local conditions at primes p

What we have done, then, is to impose a local condition for
each prime p: that the cohomology classes giving elements of
the Selmer group reduce to specific subgroups in local
cohomology.

The subgroups themselves will be called “local conditions.”

The Selmer group is the subgroup consisting of all cohomology
classes in this infinite dimensional vector space
H1(Gal(Q̄/Q),E [`]) that satisfies all these local conditions.



These are ‘natural’ local conditions at primes p

attached to the elliptic curve E

Let us call these local conditions our base local conditions.

BUT nothing stops us from defining ‘Selmer groups’ by the
same process, but starting with any local conditions we
want—tweaked Selmer groups so to speak.

We will eventually do this, modifying—at finitely many
primes—our original base local conditions.



Key Conjectures

The base Selmer group S`(E ) is a computable finite
dimensional F` vector space

E (Q)/`E (Q) ↪→ S`(E )

about which we have these conjectures:

I Conjecture:
dimF`

E (Q)/`E (Q) ≡ dimF`
S`(E ) mod 2.

I Conjecture: If `� 0 then:

E (Q)/`E (Q) = S`(E ).
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Diophantine stability of Mordell-Weil groups of

elliptic curves over cyclic extensions of prime

degree `� 0

Fix an elliptic curve E over Q. Then for any finite Galois
extension L/K with Galois group G , E (L) (the Mordell-Weil
group of E over L) has a natural G -action and

E (Q) = {x ∈ E (L) | gx = x for all g ∈ G} = E (L)G .

(1) To have Diophantine stability one needs that the action of
G be trivial.
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Equality of ranks of Mordell-Weil groups of elliptic

curves over cyclic extensions of prime degree `� 0

(2) To have equality of MW-ranks,

rank E (L)
?
= rank E (Q),

one needs that gx − x be a torsion point of E (for all g ∈ G
and x ∈ E (L)).

Observation: If G is a cyclic group of prime order ` >> 0,

(1) ⇐⇒ (2).
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So, for `� 0,

E (L) = E (Q) ⇐⇒ E (L)⊗Q = E (Q)⊗Q.

In particular the χ-component of the representation E (L)⊗ C
must vanish for every nontrivial irreducible character χ of G .

But if the χ-component vanishes for one nontrivial χ it
vanishes for all nontrivial characters of G (since the
representation is defined over Q and all nontrivial characters
are Galois conjugate over Q).



χ-twisting the `-Selmer group

Exactly as the vanishing of the `-Selmer group of E over Q
guarantees that the MW-rank of E over Q is trivial,

there is a procedure starting with a nontrivial character,

χ : Gal(L/K)→ F∗`

—using the local characters χp attached to χ—

for “changing (a finite number of) the base local conditions”
that produced S`(E ) so as to produce a subgroup. . .



. . . so as to produce a subgroup of the same

H1(Gal(Q̄/Q),E [`])

that we denote:

S`(E , χ) ↪→ H1(Gal(Q̄/Q),E [`])

with the key property:

S`(E , χ) = 0 =⇒ rank E (L) = rank E (Q).

Comment on “the same H1(Gal(Q̄/Q),E [`]).”



The twisting method

Recall our objective: Given E over Q to find a cyclic Galois
L/Q of degree `� 0 with no change in MW-rank.

Start:

by taking absolutely any cyclic L0/Q of degree ` and let χ0 be
any character that cuts it out.

You may be done:

If S`(E , χ
0) = 0, then rank E (L0) = rank E (Q).



The twisting method

If S`(E , χ
0) > 0 find an appropriate prime p (we’ll call it a

critical prime) which allows you to redefine the local
condition at p by twisting by some local character εp at p so
that the correspondingly modified Selmer group with local
conditions given by the local characters

S{new} : {. . . χ0
pi
, . . . εp, . . . χ

0
pj
, . . . }

has lower dimension.



The game here is to jockey between Selmer

groups defined by these local conditions:

S{relaxed at p} : {. . . χ0
pi
, . . . no local condition at p, . . . χ0

pj
, . . . }

S{old} : {. . . χ0
pi
, . . . χp, . . . χ

0
pj
, . . . }

S{new} : {. . . χ0
pi
, . . . εp, . . . χ

0
pj
, . . . }

S{strict} : {. . . χ0
pi
, . . . the strict local condition at p, . . . χ0

pj
, . . . }.



Lowering dimension

. . . to get dim S{new} = S{old} − 1.

Keep going: until you get a vanishing modified twisted
Selmer group.

Two obstacles stand in the way of this plan!



(1) Enough *critical* primes p?

Requirements:

1. that p is of good reduction for E and ` divides p − 1 (so
far, no problem finding primes of this sort) and that

2. the action of φp, the Frobenius element at p on the
F`-vector space E [`] have a one-dimensional subspace of
fixed vectors; colloquially a ‘unique’ fixed eigenvector.



Why are such primes p critical?

Here—given some other hypotheses that will obtain when
`� 0—we make use of Global Duality to guarantee that
between the strictest local condition at p and the most relaxed
local condition at p, the corresponding Selmer groups differ in
size by one dimension.



Moreover, we engineered our choice of prime p so that

1.
S`(E , χ) = S`(E , χ away from p; relaxed at p)

and

2. these global cohomology groups map onto the
one-dimensional Selmer local condition at p.



In this set-up, any change of local condition subgroup at p will

impose a stronger condition on the global classes at p

and therefore changing only the local condition at such a
prime p, but keeping to the old local conditions at all the
other primes gives a “tweaked global Selmer group” of
dimension one less than dim S`(E , χ).



(2) Enough silent primes p?

In the account we gave, we modified local conditions for the
construction of our Selmer group, a single place at a time, to
keep lowering dimension. Why, at the end of our process, is
there a global Dirichlet character whose corresponding local
characters give us the local Selmer conditions we end up with?
The answer is: there needn’t be such: we’ll call such
non-globalizable systems of local characters “semi-local.”



Here is where “silent primes” enter

For `� 0, there are primes p ≡ 1 mod ` (p 6= 2 and of
good reduction for E ) such that φp has no nonzero fixed
vectors in its action on E [`].

For these primes, the local cohomology group vanishes. We’ll
call them silent primes, for the twisting the local condition at
such primes p by any local character at p doesn’t change the
local condition p at all, and hence doesn’t change the Selmer
group.

But judicious twisting by silent primes will turn semi-local
characters to global ones.



Conclusion for elliptic curves

Theorem
Let E be an elliptic curve with no CM over a number field K .
Then for any positive integer n,

1. there are infinitely many primes ` where, for each of them,

2. there are infinitely many cyclic extension fields L/K of
degree `n such that E (K ) = E (L).



Now onto absolutely irreducible abelian varieties A

over a number field K

The issue of critical primes and silent primes becomes more
delicate in the context of abelian varieties, and we thank
Michael Larsen for writing an appendix to our paper that
provides what is needed. To make things simple, we’ll discuss
this in the case when End(A) = Z.



Critical and Silent elements of the Galois group

Theorem: (M. Larsen) If A is an abelian variety over a
number field K with EndK̄A = Z, then:
there exists a positive density set of primes ` for which:

1. “Silent elements” there exist elements
g0 ∈ Gal(K̄/K ab) possessing no nontrivial fixed vectors in
their action on A[`]; i.e. such that the action of g0 on
A[`] has no nontrivial fixed vectors, and

2. “Critical elements” there exist elements
g1 ∈ Gal(K̄/K ab) such that the action of g1 on A[`] has
a one-dimensional space of fixed vectors.

.



Cebotarev Density

We apply this theorem, using the Cebotarev density theorem,
to find our silent primes and critical primes; i.e., primes such
that their corresponding Frobenius elements are silent, or
critical elements.



Comments on the proof

Mention Faltings’ Theorem. The proof is slightly more involved
if EndK̄A is larger than Z, but in the case of EndK̄A = Z . . .



There are two major steps in the proof:

1. A general proposition (due to M. Larsen) about
irreducible representations of simply connected, split
semisimple algebraic groups over F` (for a set of primes `
of positive density) establishing the existence of critical
elements, given the existence of silent elements.

2. Results (due to R. Pink, M. Larsen) on the action of
Galois on `-torsion in abelian varieties (for `� 0) and a
computation using tables of R. Pink that classify
representations of weak Mumford-Tate type that provide
the existence of silent elements in the action of Galois on
`-torsion in abelian varieties, for infinitely many primes `.



Existence of critical elements, given the existence

of silent elements

Proposition (M. Larsen)
For every positive integer n, there exists a positive integer N
such that if ` is a prime congruent to 1 (mod N), G is a
simply connected, split semisimple algebraic group over F`,
and ρ : G (F`)→ GLn(F`) is an almost faithful absolutely
irreducible representation such that (Fn

` )ρ(g0) = (0) for some
g0 ∈ G (F`), then there exists g1 ∈ G (F`) such that

dim(Fn
` )ρ(g1) = 1.

(Often one finds the appropriate element g1 in the image of a
principal homomorphism of SL2 into G .)



Step 2: Conclusion

Use the rather detailed classification theorems of
representations related to Mumford-Tate pairs; results of
Faltings, Nori, Serre, Ribet, Larsen and Pink to get the
existence of silent elements, and then Larsen’s Proposition to
conclude.
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