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What is it that unifies Mathematics?

Sidenote: I keep thinking about different aspects of this
question, and have given some lectures—all to general
audiences—on this theme.

(For an account of my attempts at this, see my web-page).

I want to thank Olivia Caramello for inviting me to this
conference, and suggesting that I reflect on the unifying
elements in geometry.

But before one can even discuss the question:

What is it that unifies Mathematics? (or more specifically:
Geometry?)

one has to deal with the question:



What is Mathematics? (or more specifically:

Geometry?)

A friend of mine, a physicist, tells me that she believes that
anything a physicist labels as physics. . . is physics.

For biologists, Life is the single word that points to the
unification of the essence and substance of their subject.

—from proteins. . . to the behavior of elephants. . . to medical
applications—

What is the unifying anchor for mathematics?. . . for geometry?

Is geometry unified? Does it matter? And are there useful
ways to think about these questions?



Euclid’s Elements. . . of Geometry

is a foundational unifying treatise for the subject geometry, if
ever there was one,

and it ends neatly in the construction of the regular platonic
solids.

But even in this foundation book of geometry, the tentacles of
the subject geometry reach out to formulate foundations of
other subjects. . .



E.g., Number Theory. . . as in Euclid’s Book VII:

Definitions:

11. A prime number is that which is measured by an unit
alone.

12. Numbers prime to one another are those which are
measured by an unit alone as a common measure.



But. . . with some geometric language helping it

along:

16. And, when two numbers having multiplied one another
make some number, the number so produced is called plane,
and its sides are the numbers which have multiplied one
another.

17. And, when three numbers having multiplied one another
make some number, the number so produced is solid, and its
sides are the numbers which have multiplied one another.



Euclid. . . returns. . . to Number Theory in Book
IX:

Proposition 20: “Prime numbers are more than any assigned
multitude of prime numbers.”

(I really like Heath’s English translation of Euclid in this
vintage English)



Geometry reaches out to other subjects either

providing applications to them, or taking tools

from them:

Two of countless examples—

I (1972) Charles Fefferman used the solution of the Kakeya
Needle Problem to give an elegant characterization of the
L2-norm (focusing on it among the Lp-norms for general
p).

I (2016) Maryna Viazovska solved the sphere packing
problem in dimension 8 (also in dimension 24 with
collaborators) by using a certain mock-modular form.
Such objects are the invention of Ramanujan; they also
play a role in the current study of black holes).



Topology and Physics. . .

I The vibrant current relationship between geometry and
physics was given an important nudge, a quarter of a
century ago when Michael Atiyah asked the seemingly
harmless question:

“What is the physical interpretation of the Jones polynomial?”

This was answered a few years ago by Ed Witten in his
fundamental paper:

“Quantum Field Theory and the Jones Polynomial.”



Topology and Arithmetic
Nowadays one might go in yet a different direction and ask

What is the Arithmetical-Algebraic-Geometric
interpretation of the Jones polynomial?

or of Chern-Simons’ Theory?

or of TQFT?

Much current work addresses these bridges of fields:

1. Hee-Joong Chung, Dohyeong Kim, Minhyong Kim, George
Pappas, Jeehoon Park & Hwajong Yoo; and of

2. Hikaru Hirano, Junhyeong Kim & Masanori Morishita.

They discuss questions of exactly that sort.



What ‘unifies’ Geometry’?

What enables it to connect with other fields?

I Common language, common definition, and modes of
expression, common foundations.

I parallel or surprisingly compatible structures,

I ‘moduli,’ or parametrized families of structures. . . of the
same genre,

I the powerfulness of metaphors, analogies. . .

. . .man is an analogist and studies relations in all objects.

Emerson; Nature, Ch IV on ‘Language’



Ties, analogies, links, bridges

To talk about unifying themes, let’s give this ad hoc
vocabulary different (metaphorical) cohesive strengths.

I By a tie let’s mean a concept that simply brings together
disparate fields, or points of view, or concepts.

I By an analogy let’s mean something more: that it
connects two disparate concepts by some similarity in
their structure.

I By a link we meant there might be some genuine joining,
possibly by having the different concepts be part of a
single larger framework.

I A bridge will include ideas about how to actually prove
this joining and produce the encompassing larger
framework.



E.g., Bernoulli Numbers as a “tie”

I once gave a lecture on how such a clean simple notion as
Bernoulli numbers (strangely ) ties together a constellation of
different mathematical subjects—and does it in a way that one
actually can experience the profound kinship of these
subjects— ’Bernoulli numbers’ being the keystone:



Differential Topology
Bernoulli↔ Homotopy Theory

can be illustrated by the Kervaire-Milnor formula:



Numerator and Denominator of Bernoulli Numbers



Here’s that unsettling comment of André Weil:

Nothing is more fruitful—all mathematicians know
it—than those obscure analogies, those disturbing re-
flections of one theory in another; those furtive ca-
resses, those inexplicable discords; nothing also gives
more pleasure to the researcher. The day comes when
the illusion dissolves; the yoked theories reveal their
common source before disappearing. As the Gita
teaches, one achieves knowledge and indifference at
the same time.

Indifference? There are metaphorical bridges, begun in ancient
mathematics, that connect subjects and viewpoints cajoling us
to view one field from the perspective of another—for
example: geometry as algebra.



The ‘bridge’ between Geometry and Algebra

Geometry as Algebra and Algebra as Geometry—these
metaphors have been with us since ancient times and and the
sheer wonder has never faded.

There were. . . naysayers:

It is not possible to arrive at a demonstration by us-
ing for one’s proof a different genus from that of the
subject in question; e.g.one cannot demonstrate a ge-
ometrical problem by means of arithmetic.

Aristotle: Posterior Analytics I.16



René Descartes,

commenting about his merger of algebra and Euclidean
geometry, said:

I would borrow the best of geometry and of algebra
and correct all the faults of the one by the other.

René Descartes, of course, offered a vital step to this
metaphor, turning it into a true synthesis.



And now there is Algebraic Geometry

with its remarkable evolution in the past century starting,
perhaps with the Italian school—led by Francesco Severi.

The temper of that school was non-rigor. They were very
focused on the ‘geometry’ —of ’algebraic geometry’—as their
primary source of intuition.

Among the freedoms they took for themselves was to often
assume that the objects they were dealing with could be put
“in general position”—and they would give no formal
justification for this.



. . . and then the move towards focusing on the

‘algebra’ —of ’algebraic geometry’

—while, concomitantly, coming up with a rigorous approach to
the subject was successfully done by Oscar Zariski (and others)

who yoked the powerful commutative algebra of Wolfgang
Krull and Emmy Noether (and van der Waerden and others)
to the intuition of the Italians.



And this initiated, or came in parallel with, broad

foundations, such as . . .

foundations focusing on fields of rational functions. E.g.,

I André Weil’s Foundations of Algebraic Geometry (1946)

and at approximately the same time

I Ultra-algebraic approaches to aspects of—at least—the
algebraic geometry of curves, such as Claude Chevalley’s
Introduction to the Theory of Algebraic Functions of One
Variable.

without a picture in the book, or even pictorial
language—it is all fields and extensions of fields— it’s a
curious tour de force with no hint of geometric intuition.



But. . . in contrast:

there was the Séminaire Chevalley (1957/58) where Chevalley
developed his novel ideas about the foundations of algebraic
geometry: a view of the subject that incorporated
commutative rings directly into the structure, and was a
precursor to:



Grothendieck’s Langage des Schémas

which provided a unification even more striking, allowing for
the development of:

Arithmetic Algebraic Geometry

and even better, today’s:

Arithmetic and Automorphic Algebraic Geometry



with L-functions tying this all together:



Two interlacing grand programs—

The Langlands program:

Automorphic Rep’ns
L−functions↔ Galois Rep’ns

Main Conjectures:

Galois Rep’ns
Euler Systems↔ Arithm.(Cohom.) Invariants



An Euler System forms a bridge

between a Galois Representation and fundamental Arithmetic
Invariants of the algebraic geometry behind that Galois
representation.

The constellation of algebraic cycles of an Euler System goes
beyond merely reinforcing the analogical connection between
the two sides of a “Main Conjecture” that links the two sides
but:

also allows us to actually prove the conjectured connection.



Knots analogous to Primes

For example (what I will focus on for the rest of this hour):

Knots in 3-manifolds ↔ Primes of number fields

an analogy that unites

topological structures with arithmetic structures,

and more broadly:



Geometry

&&

// ·oo // Number Theory

ww

oo

Physics

77ff

See the video lecture on the analogies tying this triumvirate
together, starting with the analogy between knots and primes:

Masanori Morishita (Kyushu Uni.)/ Knots and Primes -
Hyperbolic Geometry and Galois Deformation
https://www.youtube.com/watch?v=tnLstfIeQm4

 https://www.youtube.com/watch?v=tnLstfIeQm4 


Why do we think of S := Spec(Z) t {∞}
as the arithmetic “three-dimensional sphere.”

First, any connected finite extension of the ring of integers Z
is ramified—so:

S is simply connected.

As for the cohomology of S := Spec(Z) t {∞} one needs
some class field theory, but reformulated in the vocabulary of
étale (and some other Grothendieckian) cohomology theories.



Cohomology with coefficients in the multiplicative

group Gm:

i = 0 : H0(S,Gm) = Z∗ = {±1}

i = 1, 2 : H i(S,Gm) = 0

i = 3 : H3(S,Gm) = Q/Z

i > 3 : H i(S,Gm) = 0



“Poincaré Duality”

If F is a finite flat group scheme over S and F ∗ :=
Hom(F ,Gm) its (Cartier) dual finite flat group scheme, then
cup-product:

H i(S,F )⊗ H3−i(S,F ∗) −→ H3(S,Gm) = Q/Z.

induces a perfect pairing of cohomology groups (for the
flat—fppf—topology over S).



and a perfect pairing

H i(S,F )⊗ Ext3−i
S (F , µn) −→ H3(S, µn) =

1

n
Z/Z

for any finite flat group scheme F of exponent n.

So: S is morally 2-connected and enjoys a 3-dimensional
Poincaré duality “oriented” by the coefficient sheaf Gm.

and contains a ‘Cebotarev” family of disjoint “knots;” i.e.,
2, 3, .5, 7, 11, 13, . . .



The “Knot” p

Let p be a prime; consider reduction mod p:

Z→ Z/pZ = Fp

and put

Kp := Spec(Fp) ↪→ S = Spec(Z) t {∞}

and Kp is what we want to call



The “Knot” attached to a prime p

F̄p Spec(F̄p)

��
Fpν

OO

Spec(Fpν )

��
Fp

OO

Spec(Fp)

The fundamental group of Kp— i.e. Gal(F̄p/Fp)—is

(canonically) isomorphic to Ẑ, the profinite completion of Z.
From the étale homotopy perspective, Spec(F̄p) is
contractible, and therefore:

Kp = Spec(Fp) is homotopically a K (Ẑ, 1)-space.



Before we get into specifics, these are

correspondent objects:

The analogy (very local)

K ' S1 like //

π1

��

Kp
oo

π1
��

Z like //

OO

Ẑoo

OO



The topologist’s Tubular Neighborhood

For K ⊂ S3 a knot, we decompose the three sphere as follows:

S3 = XK ∪ NK

where NK is ‘the’ tubular neighborhood of the knot K ⊂ NK

and
∂XK = XK ∩ NK = ∂NK := TK .

Up to isotopy, the knot complement may be viewed as
compact manifold with torus boundary, TK = ∂XK ,



TK := the torus around the knot

and on that torus, given that K is assumed to be an oriented
knot—there’s a normal (’meridianal’) loop m defined up to
homotopy,

and ` a ‘radial loop,’—i.e., a shadow of the knot—only defined
(in homotopy) up to the ambiguity of adding a multiple of m.



The homotopy type of the knot complement:

X = XK := S3 − NK
∼
↪→ S3 − K ↪→ S3,

Mention: The Gordon-Luecke Theorem.

The cohomology of the knot complement:

Alexander duality establishes a Z-duality between H1(XK ;Z)
and

∂ : H2(S3,K ;Z)
'−→H1(K ;Z) = Z,

giving us a canonical isomorphism:

H1(XK ;Z) = Z

which tells us that



I all finite abelian covering spaces of S3 branched at the
knot, but unramified outside it, have cyclic groups of deck
transformations,

I that these cyclic groups have canonical compatible
generators,

I and that X ab
K → XK , the maximal abelian covering space

of XK , has group of deck transformations Γ canonically
isomorphic to Z.



The arithmetician’s “complement of the Knot”

attached to a prime p

This comes from adjoining the inverse of p: Z ⊂ Z[1/p],
giving:

Xp : = S \ Kp = Spec(Z[1/p]) ⊂ Spec(Z) t {∞} =: S



The topologist’s picture and the arithmetician’s

picture
TK

⊂

!!⊂}}
NK

⊂ // S3 XK
oo

K

⊂

OO

Spec(Qp)
⊂

((⊂vv
Spec(Zp)

⊂ // Spec(Z) t {∞} Spec(Z[1/p])oo

Spec(Fp)

⊂

OO



The analogy (local)

K ⊂ {Tubular nbd of K in S3} // Spec(Zp)oo Spec(Fp)⊃
oo

∂{Tubular nbd of K} //

OO

Spec(Qp)oo

OO



The analogy (global)

a Knot K
analogous to//

��

“a Prime p” = Spec(Fp)oo

��
{K ⊂ S3} // {Spec(Fp) ↪→ Spec(Z) t {∞}}oo

S3 \ K

OO

// Spec(Z) t {∞} \ {p} = Spec(Z[1/p]) t {∞}

OO

oo

allowing us to frame possible statistical analogies. . .



Fundamental group(s) → Homology group(s)

π1(complement of K ⊂ S3)

=

��

π1(compl. of p in Spec(Z))

=
��

π1(S3 − K )

OO

abelianization
��

Gal(Qunram\p/Q)

abelianization
��

OO

H1(S3 − K ) ' Z H1(Spec(Z)− {p}) ' (Zp)∗



Maximal abelian ‘unramified’ extensions

(S3 \ K )∞
Γ:=Z

%%

Spec(Z[ζ∞p ])

Γ:=Z∗
pww

S3 \ K Spec(Z)



This is an invitation to compare:

I The Alexander Polynomial:=the characteristic
polynomial of the action of Γ on the relevant cohomology
of (S3 \ K )∞ (the maximal abelian covering of S3

ramified only along the knot K ),

with

I The Iwasawa Polynomial:=the characteristic polynomial
of the action of Γ on the relevant cohomology of
Spec(Z[ζ∞p ]).



These polynomials are linked to. . .

Jones Polynomial ??oo

HOMFLYS Polynomial //

��

OO

??oo

Alexander Polynomial

��

OO

? // Iwasawa Polynomialoo

OO

Main Conjecture

��
?? //

OO

p − adic L− function

OO

oo

?? //

OO

classical L− function

OO

oo



E.g.: “What is the arithmetical algebraic

interpretation of the Jones polynomial?”



Brief comments on comparison and differences

I If by unknotted one means that the fundamental group
of the knot is abelian, every prime is ’knotted.’

I A serious distinction between knots and primes has to do
with what is called wild inertia a phenomenon that exists,
and is of crucial importance in number theory, but there’s
no corresponding complexity in our analogous situation in
knot theory.

I There is a duality in the structure of the Alexander
polynomial (it is invariant under inversion t 7→ t−1; hence
if θ is a root, so is θ−1). But there is nothing like that for
Iwasawa polynomials.

I Discuss links {p, q} ∼ {K , L} and . . . .



Reciprocity

QR // Skew − Symmetryoo

Triples of primes // Borromean Ringsoo

Redei invariants // Massey Triple Prods. ∼ Milnor invariantsoo



More specificity to the analogy:

Prime Numbers p
The analogy↔ Hyperbolic Knots K

Definition: A hyperbolic knot or link is a knot or link whose
complement is a hyperbolic manifold, complete and of finite
volume.



Going Further?

Questions about

I The analogue of Chebotarev’s Theorem . . . (see the note:
Chebotarev Questions)

I Generalized Iwasawa Theory for knot groups. . .

I Eigenvarieties: deformations of representations of knot
groups. . .

Thanks for offering me the opportunity to raise these
questions!


