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In my lecture I asked a question of a Chebotarev-sort about knots in S3, but I set up the question
incorrectly; it needs correction. . . or, at least, clarification.

So, this gives me a reason to return to the subject of knots in Chebotarev arrangements and

• to review some of the relevant literature about what one might call Chebotarev Questions in
various contexts, and

• to remind people of ways of ‘reverse engineering’ number-theoretic results, such as the Cheb-
otarev Theorem to get analogous questions about knots in S3.

For a beautiful overview of this subject, see Morishita’s [3].

1 Ordered sequences of disjoint knots as ’Chebotarev arrange-
ments’

In [1] I described a “thought-experiment” that was not so much a problem to be resolved but rather
“ a somewhat casual way of appreciating visually how vastly entangled the collection of all primes
are.”

Imagine choosing one knot in every commensurable equivalence class of hyperbolic knots, fixing an
orientation on each of these knots, and then arranging these (oriented) knots (up to equivalence)
in S3 so that they form a mutually disjoint ensemble:

C := tiKi ⊂ S3

where we have ordered them compatibly with their hyperbolic volume.

By an admissible Galois cover of S3 (relative to C) let us mean a finite connected cover
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Galois and ramified over at worst a finite subcollection of knots Σ = K(1) tK(2) t . . . tK(n) of C
in the natural sense1. So f restricted to Y := M3− f−1Σ the pullback of S3−Σ is a locally trivial
covering space of X := S3 − Σ with free action of a finite group G on M3 (the “Galois group ”of
the cover) such that Y/G = X. The knots in C that are ramified in M3 → S3 are contained in the
finite set of knots Σ ⊂ C.

One has a surjection
π1(X) � G

well-defined up to conjugacy, and for any (oriented) unramified knot K ∈ C \Σ we have homomor-
phisms,

Z ' π1(K) � π1(X)→ G, (1)

also well-defined up to conjugacy. Define, then, {FrobK(M3/S3)} ⊂ G, the Frobenius conjugacy
class associated to K in G = Gal(M3/S3) to be the conjugacy class containing the image of
1 ∈ Z under the composition of the homomorphisms of Equation 1 above.

Thus, for all knots not in Σ—hence for all but finitely many knots in C—we have a well-defined
conjugacy class

{FrobK(M3/S3)} ⊂ G.

Let us say that the collection C is a Chebotarev Arrangement if for all finite subsets Σ ⊂ C and
for all finite Galois covers M3 → S3 unramified outside Σ and every conjugacy class

{c} ⊂ G = Gal(M3/S3)

the following statistical rule holds:

lim
k→∞

1

k
#{Ki i ≤ k , Ki /∈ Σ , {FrobKi(M

3/S3)} = {c}} =
|{c}|
|G|

,

where the limit here is compiled by ordering the knots compatibly with their hyperbolic volume.

In effect, one is asking that—with these conventions—the Frobenius conjugacy classes are uniformly
distributed in fundamental groups.

How many ‘natural’ (and interesting) Chebotarev arrangements are there? Given such, the rate of
growth of the volumes of the Ki’s—being analogous to the rate of growth of primes numbers—might
be interesting to study.

1We call a knot in C ramified in this cover if it is branched in f : M3 → S3; and if it isn’t we say it is unramified
in the cover.
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2 Geodesics, closed orbits, and primes

In Peter Sarnak’s PhD Thesis [6]Prime Geodesic Theorems (1980) he considers (among other things)
(finite) Galois unramified coverings of Riemann surfaces of genus > 1, and says:

By abuse of language, we will call an oriented primitive closed geodesic on any of the
surfaces (relative to the Poincaré metric) a prime.

Sarnak then goes on to prove analogues of all the basic theorems regarding splitting of primes, and
the Chebotarev theorem.

See also Sunada’s Chebotarev-type theorem (Proposition II-2-12) in [8] which is framed in the
context of Galois coverings of compact Riemannian manifolds of negative curvature.

Slightly later, William Parry and Mark Policott proved a Chebotarev-type theorem for closed orbits
in the context of ( Galois coverings of) Axiom A flows in Riemann surfaces (Axiom A as in Smale’s
[7]). See [4], [5]—and the bibliography there.

In three slightly different formats, McMullen’s paper Knots which behave like the prime numbers
[2] establish theorems of a Chebotarev type.

1. The knots Ki ⊂ S3 arising from the periodic cycles of monodromy around the figure-eight
knot, ordered by their lengths in a generic metric, obey the Chebotarev law. McMullen notes
that “The same construction works for any fibered hyperbolic knot in S3”.

More generally:

2. The closed orbits {Ki} (ordered by length) of any topologically mixing pseudo-Anosov flow
on any closed 3-manifold M obey an analogous Chebotarev law.

3. And for X is a closed surface of constant negative curvature, if {Ki} (ordered by length) are
the closed orbits of the geodesic flow in its tangent bundle, then these {Ki} obey an analogous
Chebotarev law.

Proof: Corollary 1.3, and Theorems 1.1 and 1.2 (respectively) of [2].

I want to thank Curt McMullen for the conversations we have had—helping me think about these
questions.
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Dynamics. Astérisque, (1990) 187-188

[6] P. Sarnak, Prime Geodesic Theorems, PhD. Stanford University (1980)

[7] S. Smale, Differentiable Dynamical Systems, Bull. Amer. Math. Soc. (1967) 73 747-817

[8] T. Sunada, Geodesic Flows and Geodesic Random Walks, Advanced Studies in Pure Math-
ematics, Geometry of Geodesics and Related Topics (1984) 3 47-85

4


