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Computation of p-Adic Heights and Log Convergence
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Barry Mazur William Stein John Tate

Abstract.

This paper is about computational questions regarding p-adic height
pairings on elliptic curves over a global field K. The main stumbling
block to computing them efficiently is in calculating, for each of the
completions Kv at the places v of K dividing p, a single quantity: the
value of the p-adic modular form E2 associated to the elliptic curve.
Thanks to the work of Kedlaya et al., we offer an efficient algorithm for
computing these quantities, i.e., for computing the value of E2 of an
elliptic curve. We also discuss the p-adic convergence rate of canonical
expansions of the p-adic modular form E2 on the Hasse domain.

1 Introduction

Let p be an odd prime number, and E an elliptic curve over a global field K
that has good ordinary reduction at p. Let L be any (infinite degree) Galois
extension with a continuous injective homomorphism ρ of its Galois group to
Qp. To the data (E,K, ρ), one associates1 a canonical (bilinear, symmetric)
(p-adic) height pairing

( , )ρ : E(K) × E(K) −→ Qp.

Such pairings are of great interest for the arithmetic of E over K, and they arise
specifically in p-adic analogues of the Birch and Swinnerton-Dyer conjecture.2

The goal of this paper is to discuss some computational questions regarding
p-adic height pairings. The main stumbling block to computing them efficiently

1See [MT83], [Sch82] [Sch85], [Zar90], [Col91], [Nek93], [Pla94], [IW03], and [Bes04].
2See [Sch82], [Sch85] [MT83], [MT87], [PR03a]. See also the important recent work of

Jan Nekovář [Nek03].
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is in calculating, for each of the completions Kv at the places v of K dividing p,
the value of the p-adic modular form E2 associated to the elliptic curve with a
chosen Weierstrass form of good reduction over Kv.

We shall offer an algorithm for computing these quantities, i.e., for comput-
ing the value of E2 of an elliptic curve (thanks to the work of Harrison, Katz,
Kedlaya, Monsky, and Washnitzer) and we also discuss the p-adic convergence
rate of canonical expansions of the p-adic modular form E2 on the Hasse do-
main, where for p ≥ 5 we view E2 as an infinite sum of classical modular forms
divided by powers of the (classical) modular form Ep−1, while for p ≤ 5 we
view it as a sum of classical modular forms divided by powers of E4.

The reason why this constant E2 enters the calculation is because it is
needed for the computation of the p-adic sigma function [MT91], which in turn
is the critical element in the formulas for height pairings.

For example, let us consider the cyclotomic p-adic height pairing in the
special case where K = Q and p ≥ 5.

If GQ is the Galois group of an algebraic closure of Q over Q, we have the
natural surjective continuous homomorphism χ : GQ → Z∗

p pinned down by the

standard formula g(ζ) = ζχ(g) where g ∈ GQ and ζ is any p-power root of unity.
The p-adic logarithm logp : Q∗

p → (Qp,+) is the unique group homomorphism
with logp(p) = 0 that extends the homomorphism logp : 1 + pZp → Qp defined
by the usual power series of log(x) about 1. Explicitly, if x ∈ Q∗

p, then

logp(x) =
1

p − 1
· logp(u

p−1),

where u = p− ordp(x) · x is the unit part of x, and the usual series for log
converges at up−1.

Composing χ with 1
p · logp we get the cyclotomic linear functional GQ → Qp

which, in the body of our text, will be dealt with (thanks to class field theory)

as the idele class functional that we denote ρcycl
Q .

Let E denote the Néron model of E over Z. Let P ∈ E(Q) be a non-torsion
point that reduces to 0 ∈ E(Fp) and to the connected component of EFℓ

at all
primes ℓ of bad reduction for E. Because Z is a unique factorization domain,
any nonzero point P = (x(P ), y(P )) ∈ E(Q) can be written uniquely in the
form (a/d2, b/d3), where a, b, d ∈ Z, gcd(a, d) = gcd(b, d) = 1, and d > 0. The
function d(P ) assigns to P this square root d of the denominator of x(P ).

Here is the formula for the cyclotomic p-adic height of P , i.e., the value of

hp(P ) := −
1

2
(P, P )p ∈ Qp

where ( , )p is the height pairing attached to GQ → Qp, the cyclotomic linear
functional described above:

hp(P ) =
1

p
· logp

(

σ(P )

d(P )

)

∈ Qp. (1.1)
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Here σ = σp is the p-adic sigma function [MT91]. The height function hp

extends uniquely to a function on the full Mordell-Weil group E(Q) that sat-
isfies hp(nQ) = n2hp(Q) for all integers n and Q ∈ E(Q). For P,Q ∈ E(Q),
setting

(P,Q)p = hp(P ) + hp(Q) − hp(P + Q),

we obtain a pairing on E(Q). The p-adic regulator of E is the discriminant
of the induced pairing on E(Q)/ tor (well defined up to sign), and we have the
following standard conjecture about this height pairing.

Conjecture 1.1. The cyclotomic height pairing ( , )p is nondegenerate; equiv-
alently, the p-adic regulator is nonzero.

Remark 1.2. Height pairings attached to other p-adic linear functionals need
not be nondegenerate; in fact, given an elliptic curve defined over Q with
good ordinary reduction at p, and K a quadratic imaginary field over which
the Mordell-Weil group E(K) is of odd rank, the p-adic anticyclotomic height
pairing for E over K is not nondegenerate.

The p-adic σ function is the most mysterious quantity in (1.1). There are
many ways to define σ, e.g., [MT91] contains 11 different characterizations
of σ! We now describe a characterization that leads directly to an algorithm
(see Algorithm 3.3) to compute σ(t). Let

x(t) =
1

t2
+ · · · ∈ Zp((t)) (1.2)

be the formal power series that expresses x in terms of the local parameter
t = −x/y at infinity. The following theorem, which is proved in [MT91],
uniquely determines σ and c.

Theorem 1.3. There is exactly one odd function σ(t) = t + · · · ∈ tZp[[t]] and
constant c ∈ Zp that together satisfy the differential equation

x(t) + c = −
d

ω

(

1

σ

dσ

ω

)

, (1.3)

where ω is the invariant differential dx/(2y + a1x + a3) associated with our
chosen Weierstrass equation for E.

Remark 1.4. The condition that σ is odd and that the coefficient of t is 1 are
essential.

In (1.1), by σ(P ) we mean σ(−x/y), where P = (x, y). We have thus given
a complete definition of hp(Q) for any point Q ∈ E(Q) and a prime p ≥ 5 of
good ordinary reduction for E.



4 Mazur, Stein, Tate

1.1 The p-adic σ-function

The differential equation (1.3) leads to a slow algorithm to compute σ(t) to
any desired precision. This is Algorithm 3.3 below, which we now summarize.
If we expand (1.3), we can view c as a formal variable and solve for σ(t) as
a power series with coefficients that are polynomials in c. Each coefficient of
σ(t) must be in Zp, so we obtain conditions on c modulo powers of p. Taking
these together for many coefficients must eventually yield enough information
to compute c (mod pn), for a given n, hence σ(t) (mod pn). This integrality
algorithm is hopelessly slow in general.

Another approach to computing σ is to observe that, up to a constant, c is
closely related to the value of a certain p-adic modular form. More precisely,
suppose that E is given by a (not necessarily minimal) Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (1.4)

and let ω = dx/(2y + a1x + a3). Let x(t) be as in (1.2). Then the series

℘(t) = x(t) +
a2
1 + 4a2

12
∈ Q((t)) (1.5)

satisfies (℘′)2 = 4℘3 − g2℘ − g3. In [MT91] we find3 that

x(t) + c = ℘(t) −
1

12
· E2(E,ω), (1.6)

where E2(E,ω) is the value of the Katz p-adic weight 2 Eisenstein series at
(E,ω), and the equality is of elements of Qp((t)). Using the definition of ℘(t)
and solving for c, we find that

c =
a2
1 + 4a2

12
−

1

12
E2(E,ω). (1.7)

Thus computing c is equivalent to computing the p-adic number E2(E,ω).
Having computed c to some precision, we then solve for σ in (1.3) using Algo-
rithm 3.1 below.

1.2 p-adic analogues of the Birch and Swinnerton-Dyer conjec-
ture

One motivation for this paper is to provide tools for doing computations in
support of p-adic analogues of the BSD conjectures (see [MTT86]), especially
when E/Q has rank at least 2. For example, in [PR03b], Perrin-Riou uses her
results about the p-adic BSD conjecture in the supersingular case to prove that
X(E/Q)[p] = 0 for certain p and elliptic curves E of rank > 1, for which the
work of Kolyvagin and Kato does not apply.

3There is a sign error in [MT91].
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Another motivation for this work comes from the study of the fine structure
of Selmer modules. Let K be a number field and Λ the p-adic integral group
ring of the Galois group of the maximal Zp-power extension of K. Making
use of fundamental results of Nekovář [Nek03] and of Greenberg [Gre03] one
can construct (see [RM05]) for certain elliptic curves defined over K, a skew-
Hermitian matrix with coefficients in Λ from which one can read off a free
Λ-resolution of the canonical Selmer Λ-module of the elliptic curve in question
over K. To compute the entries of this matrix modulo the square of the aug-
mentation ideal in Λ one must know all the p-adic height pairings of the elliptic
curve over K. Fast algorithms for doing this provide us with an important first
stage in the computation of free Λ-resolutions of Selmer Λ-modules.

The paper [GJP+05] is about computational verification of the full Birch
and Swinnerton-Dyer conjecture for specific elliptic curves E. There are many
cases in which the rank of E is 1 and the upper bound on #X(E/Q) coming
from Kolyvagin’s Euler system is divisible by a prime p ≥ 5 that also divides a
Tamagawa number. In such cases, theorems of Kolyvagin and Kato combined
with explicit computation do not give a sufficiently sharp upper bound on
#X(E/Q). However, it should be possible in these cases to compute p-adic
heights and p-adic L-functions, and use results of Kato, Schneider, and others to
obtain better bounds on #X(E/Q). Wuthrich and the second author (Stein)
are writing a paper on this.

1.3 Sample computations

In Section 4 we illustrate our algorithms with curves of ranks 1, 2, 3, 4 and 5,
and two twists of X0(11) of rank 2.

Acknowledgement: It is a pleasure to thank Nick Katz for feedback that
led to Section 3, and Jean-Pierre Serre for discussions related to Section 6. We
would also like to thank Mike Harrison for discussions about his implementation
of Kedlaya’s algorithm in Magma, Kiran Kedlaya for conversations about his
algorithm, Christian Wuthrich for feedback about computing p-adic heights,
Alan Lauder for discussions about computing E2 in families, and Fernando
Gouvea for remarks about non-overconvergence of E2. We would also like to
thank all of the above people for reading drafts of the paper.

Part I
Heights, σ-functions, and E2

2 The Formulas

In this section we give formulas for the p-adic height pairing in terms of the σ
function. We have already done this over Q in Section 1. Let p be an (odd)
prime number, K a number field, and E an elliptic curve over K with good
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ordinary reduction at all places of K above p. For any non-archimedean place w
of K, let kw denote the residue class field at w.

2.1 General global height pairings

By the idele class Qp-vector space of K let us mean

I(K) = Qp ⊗Z







A∗
K/



K∗ ·
∏

v ∤ p

O∗
v · C











,

where A∗
K is the group of ideles of K, and C denotes its connected com-

ponent containing the identity. Class field theory gives us an identification
I(K) = Γ(K) ⊗Zp

Qp, where Γ(K) is the Galois group of the maximal Zp-
power extension of K. For every (nonarchimedean) place v of K, there is a
natural homomorphism ιv : K∗

v → I(K).
For K-rational points α, β ∈ E(K) we want to give explicit formulas for an

element that we might call the “universal” p-adic height pairing of α and β;
denote it (α, β) ∈ I(K). If ρ : I(K) → Qp is any linear functional, then the
ρ-height pairing is a symmetric bilinear pairing

( , )ρ : E(K) × E(K) → Qp,

defined as the composition of the universal pairing with the linear functional ρ:

(α, β)ρ = ρ(α, β) ∈ Qp.

We define the ρ-height of a point α ∈ E(K) by:

hρ(α) = −
1

2
(α, α)ρ ∈ Qp.

Of course, any such (nontrivial) linear functional ρ uniquely determines
a Zp-extension, and we sometimes refer to the ρ-height pairing in terms of
this Zp-extension. E.g., if ρ cuts out the cyclotomic Zp-extension, then the
ρ-height pairing is a normalization of the cyclotomic height pairing that has,
for the rational field, already been discussed in the introduction.

If K is quadratic imaginary, and ρ is the anti-cyclotomic linear functional,
meaning that it is the unique linear functional (up to normalization) that has
the property that ρ(x̄) = −ρ(x) where x̄ is the complex conjugate of x, then
we will be presently obtaining explicit formulas for this anti-cyclotomic height
pairing.

We will obtain a formula for (α, β) ∈ I(K) by defining, for every nonar-
chimedean place, v, of K a “local height pairing,” (α, β)v ∈ K∗

v . These local
pairings will be very sensitive to some auxiliary choices we make along the way,
but for a fixed α and β the local height pairings (α, β)v will vanish for all but
finitely many places v; the global height is the sum of the local ones and will
be independent of all the choices we have made.



p-Adic Heights and Log Convergence 7

2.2 Good representations

Let α, β ∈ E(K). By a good representation of the pair α, β we mean that we
are given a four-tuple of points (P,Q,R, S) in E(K) (or, perhaps, in E(K ′)
where K ′/K is a number field extension of K) such that

• α is the divisor class of the divisor [P ] − [Q] of E, and β is the divisor
class of the divisor [R] − [S],

• P,Q,R, S are four distinct points,

• for each v | p all four points P,Q,R, S specialize to the same point on
the fiber at v of the Néron model of E.

• at all places v of K the points P,Q,R, S specialize to the same component
of the fiber at v of the Néron model of E.

We will show how to erase these special assumptions later, but for now, let
us assume all this, fix a choice of a good representation, P,Q,R, S, of (α, β) as
above, and give the formulas in this case.

2.3 Local height pairings when v | p

Let σv be the canonical p-adic σ-function attached to the elliptic curve E
over Kv given in Weierstrass form. We may view σv as a mapping from E1(Kv)
to K∗

v , where E1(Kv) is the kernel of the reduction map E(Kv) → E(kv), and
E(kv) denotes the group of points on the reduction of E modulo v. Define
(α, β)v ∈ K∗

v by the formula,

(α, β)v =
σv(P − R)σv(Q − S)

σv(P − S)σv(Q − R)
∈ K∗

v .

Note, of course, that this depends upon the choice of P,Q,R, S, but does not
depend on the choice of Weierstrass equation for E.

2.4 Local height pairings when v ∤ p

First let x denote the “x-coordinate” in some minimal Weierstrass model for A
at v. Define for a point T in E(Kv) the rational number λv(T ) to be zero if
x(T ) ∈ Ov, and to be − 1

2v(x(T )) if x(T ) 6∈ Ov.
Next, choose a uniformizer πv of Kv and define:

σ̃v(T ) = πλv(T )
v ,

the square of which is in K∗
v . We think of σ̃v as a rough replacement for σv in

the following sense. The v-adic valuation of σ̃v is the same as v-adic valuation
of the v-adic sigma function (if such a function is definable at v) and therefore,
even if σv cannot be defined, σ̃v is a perfectly serviceable substitute at places v
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at which our p-adic idele class functionals ρ are necessarily unramified, and
therefore sensitive only to the v-adic valuation.

For v ∤ p, put:

(α, β)v =
σ̃v(P − R)σ̃v(Q − S)

σ̃v(P − S)σ̃v(Q − R)

and again, the square of this is ∈ K∗
v .

Our local height (α, β)v, depends upon the choice of P,Q,R, S and of the
uniformizer πv.

2.5 How the local heights change, when we change our choice
of points

Let β ∈ E(K) be represented by both [R] − [S] and [R′] − [S′]. Let α ∈ E(K)
be represented by [P ] − [Q]. Moreover let both four-tuples P,Q,R, S and
P,Q,R′, S′ satisfy the good representation hypothesis described at the begin-
ning of Section 2.2. Since, by hypothesis, [R] − [S] − [R′] + [S′] is linearly
equivalent to zero, there is a rational function f whose divisor of zeroes and
poles is

(f) = [R] − [S] − [R′] + [S′].

If v is a nonarchimedean place of K define (α, β)v to be as defined in the
previous sections using the choice of four-tuple of points P,Q,R, S, (and of
uniformizer πv when v ∤ p). Similarly, define (α, β)′v to be as defined in the
previous sections using the choice of four-tuple of points P,Q,R′, S′, (and of
uniformizer πv when v ∤ p).

Proposition 2.1. 1. If v | p then

(α, β)v =
f(P )

f(Q)
· (α, β)′v ∈ K∗

v .

2. If v ∤ p then there is a unit u in the ring of integers of Kv such that

(α, β)2v = u ·

(

f(P )

f(Q)
· (α, β)′v

)2

∈ K∗
v .

2.6 The global height pairing more generally

We can then form the sum of local terms to define the global height

(α, β) =
1

2

∑

v

ιv((α, β)2v) ∈ I(K).

This definition is independent of any of the (good representation) choices
P,Q,R, S and the πv’s made. It is independent of the choice of πv’s because the
units in the ring of integers of Kv is in the kernel of ιv if v ∤ p. It is independent
of the choice of P,Q,R, S because by the previous proposition, a change (an
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allowable one, given our hypotheses) of P,Q,R, S changes the value of (α, β)
by a factor that is a principal idele, which is sent to zero in I(K).

What if, though, our choice of P,Q,R, S does not have the property that α
and β reduce to the same point in the Néron fiber at v for all v | p, or land
in the same connected component on each fiber of the Néron model? In this
case the pair α, β do not have a good representation. But replacing α, β by
m · α, n · β for sufficiently large positive integers m,n we can guarantee that
the pair m ·α, n ·β does possess a good representation, and obtain formulas for
(α, β) by:

(α, β) =
1

mn
(m · α, n · β).

Note in passing that to compute the global height pairing (α, α) for a non-
torsion point α ∈ E(K) that specializes to 0 in the Néron fiber at v for all
v | p, and that lives in the connected component containing the identity in all
Néron fibers, we have quite a few natural choices of good representations. For
example, for positive integers m 6= n, take

P = (m + 1) · α; Q = m · α; R = (n + 1) · α; S = n · α.

Then for any p-adic idele class functional ρ the global ρ-height pairing (α, α)ρ

is given by

∑

v | p

ρv

{

σv((m − n)α)2

σv((m − n + 1)α) · σv((m − n − 1)α)

}

+
∑

v ∤ p

ρv

{

σ̃v((m − n)α)2

σ̃v((m − n + 1)α) · σ̃v((m − n − 1)α)

}

,

which simplifies to

(2(m − n)2 − (m − n + 1)2 − (m − n − 1)2) ·







∑

v | p

ρvσv(α) +
∑

v ∤ p

ρvσ̃(α)







.

Since (2(m− n)2 − (m− n + 1)2 − (m−n− 1)2) = −2 we have the formula

hρ(α) = −
1

2
(α, α)ρ

quoted earlier.

2.7 Formulas for ρ-height

For each v, let σv be the canonical p-adic σ-function of E over Kv given in
Weierstrass form. Suppose P ∈ E(K) is a (non-torsion) point that reduces
to 0 in E(kv) for each v | p, and to the connected component of all special
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fibers of the Néron model of E. Locally at each place w of K, we have a
denominator dw(P ), well defined up to units.

We have

hρ(P ) =
∑

v | p

ρv(σv(P )) −
∑

w ∤ p

ρw(dw(P )).

Note that hρ is quadratic because of property IV of σ in [MT91], and the
hρ-pairing is then visibly bilinear; see also property III of σ (loc. cit.).

2.8 Cyclotomic p-adic heights

The idele class Qp-vector space I(Q) attached to Q is canonically isomorphic
to Qp ⊗ Z∗

p. composition of this canonical isomorphism with the mapping

1 × 1
p logp induces an isomorphism

ρQ

cycl : I(Q) = Qp ⊗ Z∗
p

∼=
−−−→ Qp.

For K any number field, consider the homomorphism on idele class Qp-
vector spaces induced by the norm NK/Q : I(K) → I(Q), and define

ρK
cycl : I(K) → Qp

as the composition

ρK
cycl = ρQ

cycl ◦ NK/Q.

By the cyclotomic height pairing for an elliptic curve E over K (of good
ordinary reduction at all places v of K above p) we mean the ρK

cycl-height pairing
E(K) × E(K) → Qp. We put

hp(P ) = hρK
cycl

(P )

for short. Here is an explicit formula for it.

hp(P ) =
1

p
·





∑

v|p

logp(NKv/Qp
(σv(P ))) −

∑

w∤p

ordw(dw(P )) · logp(#kw)



 .

If we assume that P lies in a sufficiently small (finite index) subgroup of E(K)
(see [Wut04, Prop. 2]), then there will be a global choice of denominator d(P ),
and the formula simplifies to

hp(P ) =
1

p
· logp





∏

v|p

NKv/Qp

(

σv(P )

d(P )

)



 .
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2.9 Example: Anti-cyclotomic p-adic heights

Let K be a quadratic imaginary field in which p splits as (p) = π · π̄. Suppose
ρ : A∗

K/K∗ → Zp is a nontrivial anti-cyclotomic idele class character, meaning
that if c : A∗

K/K∗ → A∗
K/K∗ denotes the involution of the idele class group

induced by complex conjugation x 7→ x̄ in K, then ρ · c = −ρ. Then we have
the following formula for the ρ-height of P :

hρ(P ) = ρπ(σπ(P )) − ρπ(σπ(P̄ )) −
∑

w ∤ p

ρw(dw(P )).

3 The Algorithms

Fix an elliptic curve E over Q and a good ordinary prime p ≥ 5. In this section
we discuss algorithms for computing the cyclotomic p-adic height of elements
of E(Q).

3.1 Computing the p-adic σ-function

First we explicitly solve the differential equation (1.3). Let z(t) be the formal
logarithm on E, which is given by z(t) =

∫

ω
dt = t + · · · (here the symbol

∫

means formal integration with 0 constant term). There is a unique function
F (z) ∈ Q((z)) such that t = F (z(t)). Set x(z) = x(F (z)). Rewrite (1.3) as

x(z) + c = −
d

ω

(

d log(σ)

ω

)

. (3.1)

A crucial observation is that

x(z) + c =
1

z2
−

a2
1 + 4a2

12
+ c + · · · ;

in particular, the coefficient of 1/z in the expansion of g(z) = x(z) + c is 0.
Since z =

∫

(ω/dt) we have dz = (ω/dt)dt = ω, hence dz/ω = 1, so

−
d

ω

(

d log(σ)

ω

)

= −
dz

ω

d

dz

(

d log(σ)

ω

)

= −
d

dz

(

d log(σ)

dz

)

. (3.2)

Write σ(z) = zσ0(z) where σ0(z) has nonzero constant term. Then

−
d

dz

(

d log(σ)

dz

)

=
1

z2
−

d

dz

(

d log(σ0)

dz

)

.

Thus combining (3.1) with (3.2) and changing sign gives

1

z2
− x(z) − c =

d

dz

(

d log(σ0)

dz

)

.
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This is particularly nice, since g(z) = 1
z2 −x(z)− c ∈ Q[[z]]. We can thus solve

for σ0(z) by formally integrating twice and exponentiating:

σ0(z) = exp

(∫ ∫

g(z)dzdz

)

,

where we choose the constants in the double integral to be 0, so
∫ ∫

g = 0 +
0z + · · · . Using (1.5) and (1.6), we can rewrite g(z) in terms of e2 = E2(E,ω)
and ℘(z) as

g(z) =
1

z2
− (x(z) + c) =

1

z2
− ℘(z) +

e2

12
.

Combining everything and using that σ(z) = zσ0(z) yields

σ(z) = z · exp

(∫ ∫ (

1

z2
− ℘(z) +

e2

12

)

dzdz

)

,

Finally, to compute σ(t) we compute σ(z) and obtain σ(t) as σ(z(t)).
We formalize the resulting algorithm below.

Algorithm 3.1 (The Canonical p-adic Sigma Function). Given an ellip-
tic curve E over Q, a good ordinary prime p for E, and an approximation e2 for
E2(E,ω), this algorithm computes an approximation to σ(t) ∈ Zp[[t]].

1. [Compute Formal Log] Compute the formal logarithm z(t) = t+· · · ∈ Q((t))
using that

z(t) =

∫

dx/dt

2y(t) + a1x(t) + a3
, (0 constant term) (3.3)

where x(t) = t/w(t) and y(t) = −1/w(t) are the local expansions of x and y
in terms of t = −x/y, and w(t) =

∑

n≥0 sntn is given by the following
explicit inductive formula (see, e.g., [Blu, pg. 18]):

s0 = s1 = s2 = 0, s3 = 1, and for n ≥ 4,

sn = a1sn−1+a2sn−2+a3

∑

i+j=n

sisj +a4

∑

i+j=n−1

sisj +a6

∑

i+j+k=n

sisjsk.

2. [Reversion] Using a power series “reversion” (functional inverse) algorithm,
find the unique power series F (z) ∈ Q[[z]] such that t = F (z). Here F is
the reversion of z, which exists because z(t) = t + · · · .

3. [Compute ℘] Set ℘(t) = x(t) + (a2
1 + 4a2)/12 ∈ Q[[t]], where the ai are as

in (1.4). Then compute the series ℘(F (z)) ∈ Q((z)).

4. [Compute σ(z)] Set g(z) =
1

z2
− ℘(F (z)) +

e2

12
∈ Qp((z)), and compute

σ(z) = z · exp

(∫ ∫

g(z)dzdz

)

∈ Qp[[z]].

5. [Compute σ(t)] Set σ(t) = σ(z(t)) ∈ t · Zp[[t]], where z(t) is the formal
logarithm computed in Step 1. Output σ(t) and terminate.
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3.2 Computing E2(E,ω) using cohomology

This section is about a fast method of computation of E2(E,ω) for individual
ordinary elliptic curves, “one at a time”. The key input is [Kat73, App. 2] (see
also [Kat76]), which gives an interpretation of E2(E,ω) as the “direction” of
the unit root eigenspace of Frobenius acting on a cohomology group.

Concretely, consider an elliptic curve E over Zp with good ordinary re-
duction. Assume that p ≥ 5. Fix a Weierstrass equation for E of the form
y2 = 4x3−g2x−g3, The differentials ω = dx/y and η = xdx/y form a Zp-basis
for the first p-adic de Rham cohomology group H1 of E, and we wish to com-
pute the matrix F of absolute Frobenius with respect to this basis. Frobenius
is Zp-linear, since we are working over Zp; if we were working over the Witt
vectors of Fq, then Frobenius would only be semi-linear.

We explicitly calculate F using Kedlaya’s algorithm, which makes use of
Monsky-Washnitzer cohomology of the affine curve E − O. Kedlaya designed
his algorithm for computation of zeta functions of hyperelliptic curves over
finite fields. An intermediate step in Kedlaya’s algorithm is computation of
the matrix of absolute Frobenius on p-adic de Rham cohomology, via Monsky-
Washnitzer cohomology. For more details see [Ked01] and [Ked03].

Now that we have computed F , we deduce E2(E,ω) as follows. The unit
root subspace is a direct factor, call it U , of H1, and we know that a compli-
mentary direct factor is the Zp span of ω. We also know that F (ω) lies in pH1,
and this tells us that, mod pn, the subspace U is the span of Fn(η). Thus if
for each n, we write Fn(η) = anω + bnη, then bn is a unit (congruent (mod p)
to the nth power of the Hasse invariant) and E2(E,ω) ≡ −12an/bn (mod pn).
Note that an and bn are the entries of the second column of the matrix Fn.

Algorithm 3.2 (Evaluation of E2(E,ω)). Given an elliptic curve over Q

and a good ordinary prime p ≥ 5, this algorithm approximates E2(E,ω) ∈ Qp.

1. [Invariants] Let c4 and c6 be the c-invariants of a minimal model of E. Set

a4 = −
c4

24 · 3
and a6 = −

c6

25 · 33
.

2. [Kedlaya] Apply Kedlaya’s algorithm to the hyperelliptic curve y2 = x3 +
a4x + a6 (which is isomorphic to E) to obtain the matrix F of the action of
absolute Frobenius on the basis

ω =
dx

y
, η =

xdx

y
.

We view F as acting from the left.

3. [Iterate Frobenius] Compute the second column

(

a
b

)

of Fn, so Frobn(η) =

aω + bη.

4. [Finished] Output −12a/b.
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3.3 Computing E2(E,ω) using integrality

The algorithm in this section is more elementary than the one in Section 3.2,
and is directly motivated by Theorem 1.3. In practice it is very slow, except
if p is small (e.g., p = 5) and we only require E2(E,ω) to very low precision.

Let c be an indeterminate and in view of (1.7), write e2 = −12c+a2
1 +4a2 ∈

Q[c]. If we run Algorithm 3.1 with this (formal) value of e2, we obtain a series
σ(t, c) ∈ Q[c][[t]]. For each prime p ≥ 5, Theorem 1.3 implies that there is a
unique choice of cp ∈ Zp such that σ(t, cp) = t + · · · ∈ tZp[[t]] is odd. Upon
fixing a prime p, we compute the coefficients of σ(t, c), which are polynomials in
c; integrality of σ(t, cp) then imposes conditions that together must determine
cp up to some precision, which depends on the number of coefficients that
we consider. Having computed cp to some precision, we recover E2(E,ω) as
−12cp + a2

1 + 4a2. We formalize the above as an algorithm.

Algorithm 3.3 (Integrality). Given an elliptic curve over Q and a good
ordinary prime p ≥ 5, this algorithm approximates the associated p-adic σ-function.

1. [Formal Series] Use Algorithm 3.1 with e2 = −12c + a2
1 + 4a2 to compute

σ(t) ∈ Q[c][[t]] to some precision.

2. [Approximate cp] Obtain constraints on c using that the coefficients of σ
must be in Zp. These determine c to some precision. (For more details see
the example in Section 4.1).

3.4 Computing cyclotomic p-adic heights

Finally we give an algorithm for computing the cyclotomic p-adic height hp(P )
that combines Algorithm 3.2 with the discussion elsewhere in this paper. We
have computed σ and hp in numerous cases using the algorithm described
below, and implementations of the “integrality” algorithm described above,
and the results match.

Algorithm 3.4 (The p-adic Height). Given an elliptic curve E over Q, a
good ordinary prime p, and a non-torsion element P ∈ E(Q), this algorithm
approximates the p-adic height hp(P ) ∈ Qp.

1. [Prepare Point] Compute a positive integer m such that mP reduces to
O ∈ E(Fp) and to the connected component of EFℓ

at all bad primes ℓ. For
example, m could be the least common multiple of the Tamagawa numbers
of E and #E(Fp). Set Q = mP and write Q = (x, y).

2. [Denominator] Let d be the positive integer square root of the denominator
of x.

3. [Compute σ] Approximate σ(t) using Algorithm 3.1 together with either
Algorithm 3.2 or Algorithm 3.3, and set s = σ(−x/y) ∈ Qp.

4. [Height] Compute hp(Q) =
1

p
logp

( s

d

)

, then hp(P ) =
1

m2
·hp(Q). Output

hp(P ) and terminate.
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4 Sample Computations

We did the calculations in this section using SAGE [SJ05] and Magma [BCP97].

4.1 The rank one curve of conductor 37

Let E be the rank 1 curve y2 + y = x3 − x of conductor 37. The point
P = (0, 0) is a generator for E(Q). We illustrate the above algorithms in detail
by computing the p-adic height of P for the good ordinary prime p = 5. The
steps of Algorithm 3.4 are as follows:

1. [Prepare Point] The component group of EF37
is trivial. The group E(F5)

has order 8 and the reduction of P to E(F5) also has order 8, so let

Q = 8P =

(

21

25
, −

69

125

)

.

2. [Denominator] We have d = 5.

3. [Compute σ] We illustrate computation of σ(t) using both Algorithm 3.2
and Algorithm 3.3.

(a) [Compute σ(t, c)] We use Algorithm 3.1 with e2 = 12c − a2
1 − 4a2

to compute σ as a series in t with coefficients polynomials in c, as
follows:

i. [Compute Formal Log] Using the recurrence, we find that

w(t) = t3 + t6 − t7 + 2t9 − 4t10 + 2t11 + 5t12 − 5t13 + 5t14 + · · ·

Thus

x(t) = t−2 − t + t2 − t4 + 2t5 − t6 − 2t7 + 6t8 − 6t9 − 3t10 + · · ·

y(t) = −t−3 + 1 − t + t3 − 2t4 + t5 + 2t6 − 6t7 + 6t8 + 3t9 + · · ·

so integrating (3.3) we see that the formal logarithm is

z(t) = t+
1

2
t4−

2

5
t5 +

6

7
t7−

3

2
t8 +

2

3
t9 +2t10−

60

11
t11 +5t12 + · · ·

ii. [Reversion] Using reversion, we find F with F (z(t)) = t:

F (z) = z−
1

2
z4+

2

5
z5+

1

7
z7−

3

10
z8+

2

15
z9−

1

28
z10+

54

385
z11+· · ·

iii. [Compute ℘] We have a1 = a2 = 0, so

℘(t) = x(t) + (a2
1 + 4a2)/12 = x(t),

so

℘(F (z)) = x(F (z)) = z−2 +
1

5
z2 −

1

28
z4 +

1

75
z6 −

3

1540
z8 + · · ·

Note that the coefficient of z−1 is 0 and all exponents are even.
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iv. [Compute σ(t, c)] Noting again that a1 = a2 = 0, we have

g(z, c) =
1

z2
− ℘(z) +

12c − a2
1 − 4a2

12

= c −
1

5
z2 +

1

28
z4 −

1

75
z6 +

3

1540
z8 −

1943

3822000
z10 + · · ·

Formally integrating twice and exponentiating, we obtain

σ(z, c) = z · exp

(∫ ∫

g(z, c)dzdz

)

= z · exp
( c

2
· z2 −

1

60
z4 +

1

840
z6 −

1

4200
z8 +

1

46200
z10

−
1943

504504000
z12 + · · ·

)

= z +
1

2
cz3 +

(

1

8
c2 −

1

60

)

z5 +

(

1

48
c3 −

1

120
c +

1

840

)

z7+

(

1

384
c4 −

1

480
c2 +

1

1680
c −

1

10080

)

z9 + · · ·

Finally,

σ(t) = σ(z(t)) = t +
1

2
ct3 +

1

2
t4 +

(

1

8
c2 −

5

12

)

t5 +
3

4
ct6+

(

1

48
c3 −

73

120
c +

103

120

)

t7 + · · ·

(b) [Approximate] The first coefficient of σ(t) that gives integrality in-
formation is the coefficient of t7. Since

1

48
c3 −

73

120
c +

103

120
∈ Z5,

multiplying by 5 we see that

5

48
c3 −

73

24
c +

103

24
≡ 0 (mod 5).

Thus

c ≡
103

24
·
24

73
≡ 1 (mod 5).

The next useful coefficient is the coefficient of t11, which is

1

3840
c5 −

169

2880
c3 +

5701

6720
c2 +

127339

100800
c −

40111

7200

Multiplying by 25, reducing coefficients, and using integrality yields
the congruence

10c5 + 5c3 + 20c2 + 2c + 3 ≡ 0 (mod 25).
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Writing c = 1 + 5d and substituting gives the equation 10d + 15 ≡ 0
(mod 25), so 2d + 3 ≡ 0 (mod 5). Thus d ≡ 1 (mod 5), hence
c = 1+5+O(52). Repeating the procedure above with more terms,
we next get new information from the coefficient of t31, where we
deduce that c = 1 + 5 + 4 · 52 + O(53).

Using Algorithm 3.2: Using Kedlaya’s algorithm (as implemented in
[BCP97]) we find almost instantly that

E2(E,ω) = 2+4 · 5+2 · 53 +54 +3 · 55 +2 · 56 +58 +3 · 59 +4 · 510 + · · · .

Thus

c =
1

12
E2(E,ω) = 1+5+4·52+53+54+56+4·57+3·58+2·59+4·510+· · · ,

which is consistent with what we found above using integrality.

4. [Height] For Q = (x, y) = 8(0, 0) as above, we have

s = σ

(

−
x

y

)

= σ

(

35

23

)

= 4 · 5 + 52 + 53 + 54 + · · · ,

so

h5(Q) =
1

5
· log5

(s

5

)

=
1

5
· log5(4 + 5 + 52 + 53 + 2 · 55 + · · · )

= 3 + 5 + 2 · 53 + 3 · 54 + · · · .

Finally,

h5(P ) =
1

82
· h5(Q) = 2 + 4 · 5 + 52 + 2 · 53 + 2 · 54 + · · · .

Remark 4.1. A very good check to see whether or not any implementation of
the algorithms in this paper is really correct, is just to make control experiments
every once in a while, by computing h(P ) and then comparing it with h(2P )/4,
h(3P )/9, etc. In particular, compute h(P )−h(nP )/n2 for several n and check
that the result is p-adically small. We have done this in many cases for the
implementation used to compute the tables in this section.

4.2 Curves of ranks 1, 2, 3, 4, and 5

4.2.1 Rank 1

The first (ordered by conductor) curve of rank 1 is the curve with Cremona
label 37A, which we considered in Section 4.1 above.
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p p-adic regulator of 37A
5 1 + 5 + 52 + 3 · 55 + 4 · 56 + O(57)
7 1 + 7 + 3 · 72 + 73 + 6 · 74 + 2 · 75 + 4 · 76 + O(77)
11 7 + 9 · 11 + 7 · 112 + 8 · 113 + 9 · 114 + 2 · 115 + 7 · 116 + O(117)
13 12 · 13 + 5 · 132 + 9 · 133 + 10 · 134 + 4 · 135 + 2 · 136 + O(137)
23 20 + 10 · 23 + 18 · 232 + 16 · 233 + 13 · 234 + 4 · 235 + 15 · 236 + O(237)
29 19 + 4 · 29 + 26 · 292 + 2 · 293 + 26 · 294 + 26 · 295 + 17 · 296 + O(297)
31 15 + 10 · 31 + 13 · 312 + 2 · 313 + 24 · 314 + 9 · 315 + 8 · 316 + O(317)
41 30 + 2 · 41 + 23 · 412 + 15 · 413 + 27 · 414 + 8 · 415 + 17 · 416 + O(417)
43 30 + 30 · 43 + 22 · 432 + 38 · 433 + 11 · 434 + 29 · 435 + O(436)
47 11 + 37 · 47 + 27 · 472 + 23 · 473 + 22 · 474 + 34 · 475 + 3 · 476 + O(477)
53 26 · 53−2 + 30 · 53−1 + 20 + 47 · 53 + 10 · 532 + 32 · 533 + O(534)

Note that when p = 53 we have #E(Fp) = p, i.e., p is anomalous.

4.3 Rank 2

The first curve of rank 2 is the curve 389A of conductor 389. The p-adic
regulators of this curve are as follows:

p p-adic regulator of 389A
5 1 + 2 · 5 + 2 · 52 + 4 · 53 + 3 · 54 + 4 · 55 + 3 · 56 + O(57)
7 6 + 3 · 72 + 2 · 73 + 6 · 74 + 75 + 2 · 76 + O(77)
11 4 + 7 · 11 + 6 · 112 + 113 + 9 · 114 + 10 · 115 + 3 · 116 + O(117)
13 9 + 12 · 13 + 10 · 132 + 5 · 133 + 5 · 134 + 135 + 9 · 136 + O(137)
17 4 + 8 · 17 + 15 · 172 + 11 · 173 + 13 · 174 + 16 · 175 + 6 · 176 + O(177)
19 3 + 5 · 19 + 8 · 192 + 16 · 193 + 13 · 194 + 14 · 195 + 11 · 196 + O(197)
23 17 + 23 + 22 · 232 + 16 · 233 + 3 · 234 + 15 · 235 + O(237)
29 9 + 14 · 29 + 22 · 292 + 293 + 22 · 294 + 295 + 20 · 296 + O(297)
31 1 + 17 · 31 + 4 · 312 + 16 · 313 + 18 · 314 + 21 · 315 + 8 · 316 + O(317)
37 28 + 37 + 11 · 372 + 7 · 373 + 3 · 374 + 24 · 375 + 17 · 376 + O(377)
41 20 + 26 · 41 + 412 + 29 · 413 + 38 · 414 + 31 · 415 + 23 · 416 + O(417)
43 40 + 25 · 43 + 15 · 432 + 18 · 433 + 36 · 434 + 35 · 435 + O(436)
47 25 + 24 · 47 + 7 · 472 + 11 · 473 + 35 · 474 + 3 · 475 + 9 · 476 + O(477)

4.4 Rank 3

The first curve of rank 3 is the curve 5077A of conductor 5077. The p-adic
regulators of this curve are as follows:
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p p-adic regulator of 5077A
5 5−2 + 5−1 + 4 + 2 · 5 + 2 · 52 + 2 · 53 + 4 · 54 + 2 · 55 + 56 + O(57)
7 1 + 3 · 7 + 3 · 72 + 4 · 73 + 4 · 75 + O(77)
11 6 + 11 + 5 · 112 + 113 + 114 + 8 · 115 + 3 · 116 + O(117)
13 2 + 6 · 13 + 133 + 6 · 134 + 135 + 4 · 136 + O(137)
17 11 + 15 · 17 + 8 · 172 + 16 · 173 + 9 · 174 + 5 · 175 + 11 · 176 + O(177)
19 17 + 9 · 19 + 10 · 192 + 15 · 193 + 6 · 194 + 13 · 195 + 17 · 196 + O(197)
23 7 + 17 · 23 + 19 · 233 + 21 · 234 + 19 · 235 + 22 · 236 + O(237)
29 8 + 16 · 29 + 11 · 292 + 20 · 293 + 9 · 294 + 8 · 295 + 24 · 296 + O(297)
31 17 + 11 · 31 + 28 · 312 + 3 · 313 + 17 · 315 + 29 · 316 + O(317)
43 9 + 13 · 43 + 15 · 432 + 32 · 433 + 28 · 434 + 18 · 435 + 3 · 436 + O(437)
47 29 + 3 · 47 + 46 · 472 + 4 · 473 + 23 · 474 + 25 · 475 + 37 · 476 + O(477)

For p = 5 and E the curve 5077A, we have #E(F5) = 10, so ap ≡ 1 (mod 5),
hence p is anamolous.

4.5 Rank 4

Next we consider the curve of rank 4 with smallest known conductor (234446 =
2 · 117223):

y2 + xy = x3 − x2 − 79x + 289.

Note that computation of the p-adic heights is just as fast for this curve as
the above curves, i.e., our algorithm for computing heights is insensitive to
the conductor, only the prime p (of course, computing the Mordell-Weil group
could take much longer if the conductor is large).

p p-adic regulator of rank 4 curve
5 2 · 5−2 + 2 · 5−1 + 3 · 5 + 52 + 4 · 53 + 4 · 54 + 3 · 55 + 3 · 56 + O(57)
7 6 · 7 + 4 · 72 + 5 · 73 + 5 · 75 + 3 · 76 + O(77)
11 5 + 10 · 11 + 5 · 112 + 113 + 3 · 115 + 116 + O(117)
13 12 + 2 · 13 + 4 · 132 + 10 · 133 + 3 · 134 + 5 · 135 + 7 · 136 + O(137)
17 15 + 8 · 17 + 13 · 172 + 5 · 173 + 13 · 174 + 7 · 175 + 14 · 176 + O(177)
19 14 + 16 · 19 + 15 · 192 + 6 · 193 + 10 · 194 + 7 · 195 + 13 · 196 + O(197)
23 3 + 15 · 23 + 15 · 232 + 12 · 234 + 20 · 235 + 7 · 236 + O(237)
29 25 + 4 · 29 + 18 · 292 + 5 · 293 + 27 · 294 + 23 · 295 + 27 · 296 + O(297)
31 21 + 26 · 31 + 22 · 312 + 25 · 313 + 314 + 3 · 315 + 14 · 316 + O(317)
37 34 + 14 · 37 + 32 · 372 + 25 · 373 + 28 · 374 + 36 · 375 + O(376)
41 33 + 38 · 41 + 9 · 412 + 35 · 413 + 25 · 414 + 15 · 415 + 30 · 416 + O(417)
43 14 + 34 · 43 + 12 · 432 + 26 · 433 + 32 · 434 + 26 · 435 + O(436)
47 43 + 47 + 17 · 472 + 28 · 473 + 40 · 474 + 6 · 475 + 7 · 476 + O(477)
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4.6 Rank 5

Next we consider the curve of rank 5 with smallest known conductor, which is
the prime 19047851. The curve is

y2 + y = x3 − 79x + 342

p p-adic regulator of rank 5 curve
5 2 · 5 + 52 + 53 + 2 · 54 + 55 + 56 + O(57)
7 2 + 6 · 7 + 4 · 72 + 3 · 73 + 6 · 74 + 2 · 75 + 4 · 76 + O(77)
11 10 + 11 + 6 · 112 + 2 · 113 + 6 · 114 + 7 · 115 + 5 · 116 + O(117)
13 11 + 8 · 13 + 3 · 132 + 4 · 133 + 10 · 134 + 5 · 135 + 6 · 136 + O(137)
17 4 + 11 · 17 + 4 · 172 + 5 · 173 + 13 · 174 + 5 · 175 + 2 · 176 + O(177)
19 11 + 7 · 19 + 11 · 192 + 7 · 193 + 9 · 194 + 6 · 195 + 10 · 196 + O(197)
23 14 + 14 · 23 + 20 · 232 + 6 · 233 + 19 · 234 + 9 · 235 + 15 · 236 + O(237)
29 3 + 5 · 29 + 20 · 293 + 21 · 294 + 18 · 295 + 11 · 296 + O(297)
31 4 + 26 · 31 + 11 · 312 + 12 · 313 + 3 · 314 + 15 · 315 + 22 · 316 + O(317)
37 3 + 20 · 37 + 11 · 372 + 17 · 373 + 33 · 374 + 5 · 375 + O(377)
41 3 + 41 + 35 · 412 + 29 · 413 + 22 · 414 + 27 · 415 + 25 · 416 + O(417)
43 35 + 41 · 43 + 432 + 11 · 433 + 32 · 434 + 11 · 435 + 18 · 436 + O(437)
47 25 + 39 · 47 + 45 · 472 + 25 · 473 + 42 · 474 + 13 · 475 + O(476)

Note that the regulator for p = 5 is not a unit, and #E(F5) = 9. This is the
only example of a regulator in our tables with positive valuation.

Part II
Computing expansions for E2 in terms of classical modular forms

We next study convergence of E2 in the general context of p-adic and overcon-
vergent modular forms. Coleman, Gouvea, and Jochnowitz prove in [CGJ95]
that E2 is transcendental over the ring of overconvergent modular forms, so E2

is certainly non-overconvergent. However, E2 is log convergent in a sense that
we make precise in this part of the paper.

5 Questions about rates of convergence

Fix p a prime number, which, in this section, we will assume is ≥ 5. We only
consider modular forms of positive even integral weight, on Γ0(M) for some M ,
and with Fourier coefficients in Cp. By a classical modular form we will mean
one with these properties, and by a Katz modular form we mean a p-adic
modular form in the sense of Katz ([Kat73]), again with these properties, i.e.,
of integral weight k ≥ 0, of tame level N for a positive integer N prime to p,
and with Fourier coefficients in Cp. A p-integral modular form is a modular
form with Fourier coefficients in Zp. Note that throughout Sections 5 and 6,
all our modular forms can be taken to be with coefficients in Qp.
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If f is a classical, or Katz, modular form, we will often simply identify the
form f with its Fourier expansion, f =

∑

n≥0 cf (n)qn. By ordp(f) we mean the
greatest lower bound of the non-negative integers ordp(cf (n)) for n ≥ 0. The
valuation ordp on Cp here is given its natural normalization, i.e., ordp(p) = 1.

We say two p-integral modular forms are congruent modulo pn, denoted

f ≡ g (mod pn),

if their corresponding Fourier coefficients are congruent modulo pn. Equiva-
lently, f ≡ g (mod pn) if ordp(f − g) ≥ n.

Recall the traditional notation,

σk−1(n) =
∑

0 < d | n

dk−1,

and put σ(n) = σ1(n).
Let Ek = −bk/2k+

∑∞
n=0 σk−1(n)qn be the Eisenstein series of even weight

k ≥ 2, and denote by Ek the “other natural normalization” of the Eisenstein
series,

Ek = 1 −
2k

bk
·

∞
∑

n=0

σk−1(n)qn,

for k ≥ 2. We have
Ep−1 ≡ 1 (mod p).

(Note that Ek is the q-expansion of the Katz modular form that we denote by
Ek elsewhere in this paper.)

For k > 2 these are classical modular forms of level 1, while the Fourier series
E2 = −1/24 +

∑∞
n=0 σ(n)qn, and the corresponding E2, are not; nevertheless,

they may all be viewed as Katz modular forms of tame level 1.
Put

σ(p)(n) =
∑

0 < d | n; (p,d)=1

d,

so that we have:

σ(n) = σ(p)(n) + pσ(p)(n/p) + p2σ(p)(n/p2) + · · · (5.1)

where the convention is that σ(p)(r) = 0 if r is not an integer.
Let V = Vp be the operator on power series given by the rule:

V





∑

n≥0

cnqn



 =
∑

n≥0

cnqpn.

If F =
∑

n≥0 cnqn is a classical modular form of weight k on Γ0(M), then V (F )
is (the Fourier expansion of) a classical modular form of weight k on Γ0(Mp)
(cf. [Lan95, Ch. VIII]).
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The Fourier series

E
(p)
2 = (1 − pV )E2 =

p − 1

24
+

∑

σ
(p)
1 (n)qn

is, in contrast to E2, a classical modular form (of weight 2 on Γ0(p)) and we
can invert the formula of its definition to give the following equality of Fourier
series:

E2 =
∑

ν≥0

pνV νE
(p)
2 , (5.2)

this equality being, for the corresponding Fourier coefficients other than the
constant terms, another way of phrasing (5.1).

Definition 5.1 (Convergence Rate). We call a function α(ν) taking val-
ues that are either positive integers or +∞ on integers ν = 0,±1,±2, . . . a
convergence rate if α(ν) is a non-decreasing function such that α(ν) = 0 for
ν ≤ 0, α(ν + µ) ≤ α(ν) + α(µ), and α(ν) tends to +∞ as ν does.

A simple nontrivial example of a convergence rate is

α(ν) =

{

0 for ν ≤ 0,

ν for ν ≥ 0.

If α(ν) is a convergence rate, put Tα(ν) = α(ν − 1); note that Tα(ν) is also a
convergence rate (T translates the graph of α one to the right). Given a collec-
tion {αj}j∈J of convergence rates, the “max” function α(ν) = maxj∈J αj(ν)
is again a convergence rate.

Definition 5.2 (α-Convergent). Let α be a convergence rate. A Katz
modular form f is α-convergent if there is a function a : Z≥0 → Z≥0 such that

f =

∞
∑

ν=0

pa(ν)fνE
−ν
p−1 (5.3)

with fν a classical p-integral modular form (of weight k + ν(p − 1) and level
N) and a(ν) ≥ α(ν) for all ν ≥ 0.

If α′ ≤ α are convergence rates and a modular form f is α-convergent
then it is also α′-convergent. As formulated, an expansion of the shape of
(5.3) for a given f is not unique but [Kat73] and [Gou88] make a certain
sequence of choices that enable them to get canonical expansions of the type
(5.3), dependent on those initial choices. Specifically, let Mclassical(N, k,Zp)
denote the Zp-module of classical modular forms on Γ0(N) of weight k and
with Fourier coefficients in Zp. Multiplication by Ep−1 allows one to identify
Mclassical(N, k,Zp) with a saturated Zp-lattice in Mclassical(N, k + p − 1,Zp).
(The lattice is saturated because multiplication by Ep−1(mod p) is injective,
since it is the identity map on q-expansions.) Fix, for each k, a Zp-module,

C(N, k + p − 1,Zp) ⊂ Mclassical(N, k + p − 1,Zp)
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that is complementary to Ep−1 ·Mclassical(N, k,Zp) ⊂ Mclassical(N, k+p−1,Zp).
Requiring the classical modular forms fν of the expansion (5.3) to lie in these
complementary submodules, i.e., fν ∈ C(N, k + ν(p − 1),Zp) for all ν, pins
down the expansion uniquely. Let us call an expansion of the form

f =

∞
∑

ν=0

pa(ν)fνE
−ν
p−1

pinned down by a choice of complementary submodules as described above a
Katz expansion of f .

A classical p-integral modular form is, of course, α-convergent for every α.
For any given convergence rate α, the α-convergent Katz modular forms of
tame level N are closed under multiplication, and the collection of them forms
an algebra over the ring of classical modular forms of level N (with Fourier
coefficients in Zp). Any Katz p-integral modular form is α-convergent, for
some convergence rate α (see [Gou88]).

Proposition 5.3. A Katz p-integral modular form f of weight k and tame
level N as above is α-convergent if and only if the Fourier series of fEν

p−1 is
congruent to the Fourier series of a classical p-integral modular form (of weight
k + ν(p − 1) and level N) modulo pα(ν+1) for every integer ν ≥ 0.

Proof. We use the q-expansion principle. Specifically, if Gν is a classical modu-
lar form such that fEν

p−1 ≡ Gν (mod pα(ν+1)) then gν = p−α(ν+1)(fEν
p−1−Gν)

is again a Katz modular form, and we can produce the requisite α-convergent
Katz expansion by inductive consideration of these gν ’s. (Note that the other
implication is trivial. Also note our running hypothesis that p ≥ 5.)

In view of this, we may define, for any f as in Proposition 5.3, the function
af (ν) (for ν ≥ 0) as follows: af (0) = 0, and for ν ≥ 1, af (ν) is the largest
integer a such that fEν−1

p−1 is congruent to a classical p-integral modular form
(of weight k + (ν − 1)(p − 1) and level N) modulo pa.

Corollary 5.4. The Katz p-integral modular form f is α-convergent for any
convergence rate α that is majorized by the function af . (I.e., for which α(ν) ≤
af (ν) for all ν ≥ 0.)

Definition 5.5 (Overconvergent of Radius r). Let r ∈ Q be a positive
rational number. A Katz p-integral modular form f of tame level N is over-
convergent of radius r if and only if it is α-convergent for some function α such
that α(ν) ≥ r · ν for all ν, and α(ν) − r · ν tends to infinity with ν.

Remarks 5.6. It is convenient to say, for two function α(ν) and α′(ν), that

α(ν) ≫ α′(ν)

if α(ν) ≥ α′(ν) and α(ν)−α′(ν) tends to infinity with ν. So, we may rephrase
the above definition as saying that f is overconvergent with radius r if it is
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α-convergent with α(ν) ≫ r · ν. The above definition is equivalent to the
definition of [Kat73, Gou88] except for the fact that the word radius in these
references does not denote the rational number r above, but rather a choice of
p-adic number whose ordp is r. We may think of our manner of phrasing the
definition as being a definition by Katz expansion convergence rate as opposed to
what one might call the definition by rigid analytic geometric behavior, meaning
the equivalent, and standard, formulation (cf. [Kat73]) given by considering f
as a rigid analytic function on an appropriate extension of the Hasse domain
in the (rigid analytic space associated to) X0(N).

Definition 5.7 ((Precisely) Log Convergent). A Katz p-integral modu-
lar form f is log-convergent if c · log(ν) ≤ af (ν) for some positive constant c and
all but finitely many ν (equivalently: if it is α-convergent for α(ν) = c · log(ν)
for some positive constant c). We will say that f is precisely log-convergent if
there are positive constants c, C such that c · log(ν) ≤ af (ν) ≤ C · log(ν) for all
but finitely many ν.

Remark 5.8. As in Definition 5.1 above, we may think of this manner of
phrasing the definition as being a definition by Katz expansion convergence
rate. This seems to us to be of some specific interest in connection with the
algorithms that we present in this article for the computation of E2. For
more theoretical concerns, however, we think it would be interesting to give, if
possible, an equivalent definition by rigid analytic geometric behavior: is there
some explicit behavior at the “rim” of the Hasse domain that characterizes
log-convergence?

Proposition 5.9. Let p ≥ 5. Let f be a Katz p-integral modular form of
weight k and tame level N that admits an expansion of the type

f =

∞
∑

ν=0

pνFνE
−ν
p−1

where, for all ν ≥ 0, Fν is a classical p-integral modular form (of weight k +
ν(p − 1)) on Γ0(p

ν+1). Then f is log-convergent and

lim inf
n→∞

af (n)

log(n)
≥

1

log(p)
.

Proof. The classical modular form Fν on Γ0(p
ν+1) is an overconvergent Katz

modular form of radius r for any r such that r < 1
pν−1(p+1) (cf. [Kat73], [Gou88,

Cor. II.2.8]). Let

Fν =

∞
∑

µ=0

f (ν)
µ E−µ

p−1

be its Katz expansion. So,

ordp(f
(ν)
µ ) ≫

(

1

pν−1(p + 1)
− ǫµ,ν

)

· µ
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for any choice of positive ǫµ,ν . We have

f =

∞
∑

ν=0

pν
∞
∑

µ=0

f (ν)
µ E

−(µ+ν)
p−1 ,

or (substituting γ = µ + ν)

f =

∞
∑

γ=0

{

γ
∑

ν=0

pν f
(ν)
γ−ν

}

E−γ
p−1.

Putting Gγ =
∑γ

ν=0 pν f
(ν)
γ−ν we may write the above expansion as

f =

∞
∑

γ=0

GγE
−γ
p−1,

and we must show that
ordp(Gγ) ≥ c · log(γ)

for some positive constant c.
For any ν ≤ γ we have

ordp

(

pν f
(ν)
γ−ν

)

≫ ν +

(

1

pν−1(p + 1)
− ǫγ−ν,ν

)

(γ − ν).

We need to find a lower bound for the minimum value achieved by the right-
hand side of this equation. To prepare for this, first note that at the extreme

value ν = 0 we compute ordp( f
(0)
γ ) ≥

(

p
(p+1) − ǫγ,0

)

· γ, and to study the

remaining cases, ν = 1, . . . , γ, we look at the function

R(t) = t +

(

1

pt−1(p + 1)

)

(γ − t)

in the range 1 ≤ t ≤ γ. This, by calculus, has a unique minimum at t = tγ ∈
(1, γ) given by the equation

p + 1

p
· ptγ = log(p) · (γ − tγ) + 1. (5.4)

Define eγ = tγ − logp(γ) and substituting, we get:

peγ =
p log(p)

p + 1
−

p log(p)

p + 1

eγ

γ
+ Aγ (5.5)

where Aγ goes to zero, as γ goes to ∞.
If eγ is positive we get that

peγ ≤
p log(p)

p + 1
+ Aγ
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and so eγ is bounded from above, independent of γ, while if eγ = −dγ with dγ

positive, we have

1

pdγ
=

p log(p)

p + 1
+

p log(p)

p + 1

dγ

γ
+ Aγ .

Recall that since tγ > 0 we also have dγ < logp(γ), so that the right hand

side of the displayed equation tends to p log(p)
p+1 as γ goes to ∞, so the equation

forces dγ to be bounded from above, as γ tends to ∞.
This discussion gives:

Lemma 5.10. The quantity |tγ − logp(γ)| is bounded independent of γ.

Substituting tγ = logp(γ) + eγ in the defining equation for R(t) and noting
the boundedness of |eγ |, we get that |R(tγ) − logp(γ)| is bounded as γ goes
to ∞, thereby establishing our proposition.

Corollary 5.11. For all p ≥ 5, the Katz modular form f = E2 is log-
convergent and

lim inf
n→∞

af (n)

log(n)
≥

1

log(p)
.

Proof. The modular forms V νE
(p)
2 are classical modular forms on Γ0(p

ν+1) and
therefore formula (5.1) exhibits E2 as having a Katz expansion of the shape of
(5.3). Proposition 5.9 then implies the corollary.

Remark 5.12. Is E2 precisely log-convergent? The minimal c (cf. Def-
inition 5.7) that can be taken in the log-convergence rate for f = E2 is
lim supn→∞(af (n)/ log(n)). Is this minimal c equal to 1/ log(p)? It is for
p = 5, as we will show in Section 6. The previous discussion tells us that, as a
kind of generalization of the well-known congruence

E2Ep−1 ≡ Ep+1 (mod p),

we have that for any ǫ > 0, and all but finitely many ν, there are classical
modular forms Gν of level 1 and weight 2 + ν(p − 1) such that

E2E
ν
p−1 ≡ Gν (mod p⌊(1−ǫ)logp(ν)⌋).

Let θ = qd/dq denote the standard shift operator; so that if f =
∑

n≥0 cnqn,
then θ(f) =

∑

n≥0 ncnqn. We have ordp(θ(f)) ≥ ordp(f). The operator θ
preserves Katz modular forms, and almost preserves classical modular forms
in the sense that if f is a classical modular form of weight k ≥ 2 then so is
F = θ(f) − kfE2/12 (cf. [Kat73]). Note, also, that ordp(F ) ≥ ordp(f).

Corollary 5.13. The operator θ preserves log-convergent Katz modular
forms.
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Proof. Let f be a log-convergent Katz p-integral modular form of weight k, of
tame conductor N with a Katz expansion,

f =

∞
∑

ν=0

pa(ν)fνE
−ν
p−1 (5.6)

where a(ν) ≥ c · log(ν) for some positive c, and the fν ’s are classical p-integral
modular forms on Γ0(N). Let Fν = θ(fν) − (k + ν(p − 1))fνE2/12 (which is a
classical modular form of weight k + 2 + ν(p − 1) on Γ0(N)). Put

G = θ(Ep−1) −
p − 1

12
Ep−1E2.

Apply the derivation θ to (5.6) to get

θ(f) =

∞
∑

ν=0

pa(ν)
{

(Fν + (k + ν(p − 1))fνE2/12)E−ν
p−1−

νfνE
−ν−1
p−1

(

G +
p − 1

12
Ep−1E2

)

}

.

or:
θ(f) = A + BE2 − C − DE2,

where

A =

∞
∑

ν=0

pa(ν)FνE
−ν
p−1,

B =

∞
∑

ν=0

pa(ν)(k + ν(p − 1))fν/12)E−ν
p−1,

C =

∞
∑

ν=0

pa(ν)νfνGE−ν−1
p−1 ,

D =

∞
∑

ν=0

pa(ν) p − 1

12
νfνEp−1.

Now A,B,C,D are all log-convergent, as is E2 by Corollary 5.11. Therefore so
is θ(f).

6 Precise log convergence of E2 for p = 2, 3, 5

In this section we assume p = 2, 3 or 5 and let P,Q,R denote the Eisenstein
series of level 1 of weights 2, 4, 6, respectively, normalized so that the constant
term in its Fourier expansion is 1. Let f be a Katz form of tame level 1 and
weight k. Write k = 4d + 6e, with d an integer ≥ −1 and e = 0 or 1. Then
fQ−dR−e is a Katz form of weight 0, that is, a Katz function. Since 0 is the



28 Mazur, Stein, Tate

only supersingular value of j for p = 2, 3, 5, a Katz function has an expansion
in powers of j−1 convergent everywhere on the disc |j−1| ≤ 1. Hence, putting
z = j−1, we can write

f = QdRe
∞
∑

n=0

cf (n)zn =
∞
∑

n=0

Re∆nQ−3n+d.

with cf (n) ∈ Qp and cf (n) → 0 as n → ∞. Let

Cf,p(N) = min
n>N

(ordp(cf (n))).

Theorem 6.1. For p = 5, we have Cf,5(N) = af (3N + 1− d), for all large N .

Proof. Notice that for p = 5, Ep−1 = Q. Let ν = 3N + 1− d for large N . Then

Qν−1f =

N
∑

n=0

c(n)Re∆nQ3(N−n) + ReQd
∑

n>N

c(n)zn = F + G,

say. We have ord5(G) = minn>N (ord5(c(n)) = Cf,5(N). 4

Since F is a classical modular form of weight 12N + 6e it follows from
the definition of af that af (ν) ≥ Cf,5(N). On the other hand, since
{Re∆nQ3(N−n) : 0 ≤ n ≤ N} is a basis for the space of classical modular
forms of weight 12N + 6e, it is clear that for any such classical form F ′, the
difference Qν−1f − F ′ is a 5-adic Katz form which can be written as ReQ3Ng
with g a Katz function whose z-expansion coefficients are c(n) for n > N . Thus
ord5(Q

ν−1f − F ′) ≤ Cf,5(N).

We have defined f to be log convergent if

lim inf
n→∞

af (n)

log(n)
> 0,

and to be precisely log convergent if in addition

lim sup
n→∞

af (n)

log(n)
< ∞.

Lemma 6.2. Suppose h(n) and H(n) are nondecreasing funcions defined for all
sufficiently large positive integers n. If for some integers r > 0 and s we have
H(N) = h(rN + s) for all sufficiently large integers N, then

lim inf
n→∞

h(n)

log(n)
= lim inf

N→∞

H(N)

log(N)
,

4To justify this claim we extend our definition of ordp from the ring of Katz forms
with Fourier coefficients in Z to the ring Zp[[q]] of all formal power series with coefficients
in Z. Moreover, since z ∈ q + q2

Zp[[q]], we have Zp[[q]] = Zp[[z]], and for a formal series
g =

P

anqn =
P

bnzn, we have ordp(g) = min(ordp(an)) = min(ordp(bn)). Also (Gauss
Lemma) the rule ord(g1g2) = ord(g1) + ord(g2) holds. Since ord5(R) = ord5(Q) = 0, it
follows that ord5(G) = Cf,5(N) as claimed.
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and

lim sup
n→∞

h(n)

log(n)
= lim sup

N→∞

H(N)

log(N)
.

Proof. We use the fact that log(rx+s)
log(x) → 1 as x → ∞. For n and N related by

rN + s ≤ n ≤ r(N + 1) + s

we have

h(n)

log(n)
≤

h(r(N + 1) + s

log(rN + s)
=

H(N + 1)

log(N + 1)
·

log(N + 1)

log(rN + s)
.

Similarly,

h(n)

log(n)
≥

h(rN + s

log(r(N + 1) + s)
=

H(N)

log(N)
·

log(N)

log(r(N + 1) + s)
.

This proves the lemma, because the second factor of the right hand term in
each line approaches 1 as N goes to infinity.

Theorem 6.1 and Lemma 6.2 show that for p = 5 we can replace af by Cf

in the definition of log convergent and precisely log convergent. Therefore we
define log convergent and precisely log convergent for p = 2 and p = 3 by using
Cf,p as a replacement for af .

Theorem 6.3. For p = 2, 3 or 5, the weight 2 Eisenstein series P = E2 is
precisely log convergent. In fact,

lim
n→∞

CP,p(n)

log(n)
=

1

log(p)
.

During the proof of this theorem we write c(n) = cP (n) and Cp(n) = CP,p.
The cases p = 2, 3 follow immediately from results of Koblitz (cf. [Kob77]).

Koblitz writes P =
∑

anj−n qdj
jdq . Since dj/j = −dz/z, and as we will see later

in this proof, qdz/zdq = R/Q, Koblitz’s an is the negative of our c(n), hence
ordp(c(n)) = ordp(an). Koblitz shows that if we let lp(n) = 1+⌊log(n)/ log(p)⌋,
the number of digits in the expression of n in base p, and let sp(n) denote
the sum of those digits, then ord2(c(n)) = l2(n) + 3s2(n) and ord3(c(n)) =
l3(n) + s3(n). From this it is an easy exercise to show

C2(n) = ⌊log(n + 1)/ log(2)⌋ + 4 and C3(n) = ⌊(log(n + 1)/ log(3)⌋ + 2,

formulas from which cases p = 2 and p = 3 of the theorem are evident.
Investigating the case p = 5 we found experimentally with a PARI program

that the following conjecture holds for n < 1029.

Conjecture 6.4. We have ord5(c(n)) ≥ l5(2n), with equality if n written in
base 5 contains only the digits 0,1 or 2, but no 3 or 4.
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It is easy to see that Conjecture 6.4 implies that

lim sup
n→∞

C5(n)

log(n)
=

1

log(5)
.

We already know from Corollary 5.11 that

lim inf
n→∞

aP (n)

log(n)
≥

1

log(5)
.

By Lemma 6.2, this is equivalent to

lim inf
n→∞

CP,5(n)

log(n)
≥

1

log(5)
.

Hence to finish the proof of Theorem 6.3, we need only prove

lim sup
n→∞

CP,5(n)

log(n)
≤

1

log(5)
. (6.1)

To prove (6.1) it is enough to prove that Conjecture 6.4 holds for n = 5m, that
is, ord5(c(n)) = m + 1. Indeed that equality implies that C5(n) ≤ m + 1 for
n < 5m and, choosing m such that 5m−1 ≤ n < 5m, shows that for every n we
have C5(n) ≤ m + 1 ≤ log(n)/ log(5) + 2.

To prove ord5(c(n)) = m + 1 we use two lemmas.

Lemma 6.5. We have PQ
R − 1 = 3 zdQ

Qdz .

Proof. Let θ denote the classical operator qd/dq. From the formula ∆ =
q
∏

n≥1(1 − qn)24 we get by logarithmic differentiation the classical formula

θ∆

∆
= P.

From z = 1/j = ∆/Q3 we get by logarithmic differentiation that

θz

z
=

θ∆

∆
− 3

θQ

Q
= P − 3

θQ

Q
.

By a formula of Ramanujan (cf. [Ser73, Thm. 4]) we have

3
θQ

Q
= P −

R

Q
.

Substituting gives
θz

z
=

R

Q
,

and dividing the next to last equation by the last proves the lemma.

Lemma 6.6. Let F =
∑

n≥1 σ3(n)qn, so that Q = 1 + 240F . Then F ≡
∑

m≥0(z
5m

+ z2·5m

) (mod 5).
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Proof. Guessing this result by computer experiment, we asked Serre for a proof.
He immediately supplied two, one of which is the following. During the rest
of this proof all congruences are understood to be modulo 5. Since F = z +
3z2 + · · · , the statement to be proved is equivalent to F −F 5 ≡ z +3z2. Using
the trivial congruence Q ≡ 1 and the congruence P ≡ R (the case p = 5 of a
congruence of Swinnerton-Dyer, (cf. [Ser73, Thm. 5]), we note that

z = ∆/Q3 ≡ ∆ = (Q3 − R2)/1728 ≡ 2 − 2R2.

The case p = 5, k = 4 of formula (**) in section 2.2 of [Ser73] reads F − F 5 ≡
θ3R. By Ramanujan’s formula

θR = (PR − Q2)/2 ≡ 3R2 − 3,

one finds that indeed

θ3R ≡ 2R4 − R2 − 1 ≡ z + 3z2,

which proves Lemma 6.6.

Let F =
∑

n≥1 b(n)zn. By Lemma 6.6, b(5m) and b(2 · 5m) are not divisible
by 5. Therefore the 5mth and 2 · 5mth coefficients of zdF/dz =

∑

n≥1 nb(n)zn

are divisible exactly by 5m. By Lemma 6.5 we have

∑

n≥1

c(n)zn =
PQ

R
− 1 = 3

zdQ

Qdz
= 3

240zdF

(1 + 240F )dz
.

This shows that ord5(c(5
m)) = ord5(c(2 · 5

m)) = m+1 thereby completing the
proof of Theorem 6.3.

Remark 6.7. For p = 2 or 3 a simple analogue of Lemma 6.6 holds, namely
F ≡

∑

m≥0 zpm

(mod p). This can be used to obtain Koblitz’s result for the
very special case n = pm.

7 Discussion

7.1 Log convergence

The running hypothesis in Section 5 is that p ≥ 5, but in Section 6 we con-
sidered only p = 2, 3, 5. In dealing with the different primes, our discussion
changes strikingly, depending on the three slightly different cases:

(1) p = 2, 3

(2) p = 5

(3) p ≥ 5
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For (7.1), in Section 6 we used expansions in powers of z = 1/j to give a
careful analysis of convergence rates, and in contrast, the general discussion
of Section 5 must keep away from those cases p = 2, 3, in order to maintain
the formulation that it currently has. The prime p = 5 is in a very fortunate
position because it can be covered by the general discussion a la (7.1); but we
have also given a precise “power series in 1/j” treatment of p = 5. These issues
suggest four questions:

1. Is there any relationship between the convergence rate analysis we give,
and computation-time estimates for the actual algorithms?

2. We have produced an algebra of log-convergent modular forms, and it
has at least one new element that the overconvergent forms do not have,
namely E2. Moreover, it is closed under the action of θ, i.e., “Tate
twist”. Are there other interesting Hecke eigenforms in this algebra that
we should know about? Going the other way, are there any Hecke eigen-
forms that are not log-convergent? Is there something corresponding to
the “eigencurve” (it would have to be, at the very least, a surface) that
p-adically interpolates log-convergent eigenforms? Is a limit (in the sense
of ordp’s of Fourier coefficients) of log-convergent eigenforms again log-
convergent? For this last question to make sense, we probably need to
know the following:

3. Is there a rigid-analytic growth type of definition (growth at the rim of
the Hasse domain) that characterizes log-convergence, just as there is
such a definition characterizing overconvergence?

4. Almost certainly one could treat the case p = 7 by expansions in powers
of 1/(j − 1728) = ∆/R2 in the same way that we did p = 5 with powers
of 1/j = ∆/Q3. The case p = 13 might be more interesting.

7.2 Uniformity in the algorithms

We are most thankful to Kiran Kedlaya and Alan Lauder for some e-mail
communications regarding an early draft of our article. The topic they address
is the extent to which the algorithms for the computation of E2 of an elliptic
curve are “uniform” in the elliptic curve, and, in particular, whether one can
get fast algorithms for computing E2 of specific families of elliptic curves. In
this section we give a brief synopsis of their comments.

A “reason” why E2 should turn out not to be overconvergent is that Katz’s
formula relates it to the direction of the unit-root subspace in one-dimensional
de Rham cohomology, and that seems only to make (at least naive) sense in the
ordinary case (and not for points in a supersingular disc, not even ones close
to the boundary).

Nevertheless, part of the algorithm has good uniformity properties.
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1. Calculating the matrix of Frobenius: One can calculate the matrix of
Frobenius for, say, all elliptic curves in the Legendre family (or any one-
parameter family) and the result is overconvergent everywhere, so this
should be relatively efficient. This can be done either by the algorithm
developed by Kedlaya, or also using the Gauss-Manin connection, as in
Lauder’s work, which is probably faster. An approach to computing the
“full” Frobenius matrix “all at once” for elliptic curves in the Legendre
family has been written up and implemented in Magma by Ralf Gerk-
mann: See [Ger05] for the paper and program. Lauder’s paper [Lau03]
also discusses Kedlaya’s algorithm “all at once” for a one-parameter fam-
ily of hyperelliptic curves using the Gauss-Manin connection.

2. Extracting the unit root subspace in de Rham cohomology: To compute E2

for an individual elliptic curve, one can specialize the Frobenius matrix
and extract the unit root. But extracting only the unit root part over
the entire family at once would involve non-overconvergent series, and
consequently might be slow. The unit root zeta function, which encodes
the unit root of Frobenius over a family of ordinary elliptic curves, has
been very well studied by Dwork and Wan (cf. [Wan99]).

7.3 Other future projects

1. Explicitly compute anticyclotomic p-adic heights, and apply this to the
study of universal norm questions that arise in [RM05].

2. Further investigate Kedlaya’s algorithm with a parameter in connection
with log convergence and computation of heights.

3. Determine if the equality limn→∞ aP (n)/ log(n) = 1/ log(p) holds for all
primes p, as it does for p = 5 by Theorem 6.3

References

[Bes04] Amnon Besser, The p-adic height pairings of Coleman-Gross and
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