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1. The basic question

The type of question we will examine has it roots in a famous result
of Heath-Brown on the statistics of 2-Selmer ranks of a specific family
of CM elliptic curves over Q related to the congruent number problem1.
This is the family

ED : Dy2 = x3 − x
for positive square-free integers D. The arithmetic of this family an-
swers the question of whether or not D can be the common difference
of an arithmetic progressions of squares of rational numbers.

This talk will present some on-going work joint with Karl Rubin
and Zev Klagsbrun. The three of us are interested in rank statistics
for twists of E an elliptic curve over a number field K2. We consider
arbitrary elliptic curves and arbitrary number fields. I will try to focus
on the contrast between statistics in this general context and statistics
over Q.

Before we begin in earnest, let me give a sense of what is meant by
“disparity” in the title of this lecture. By “twists” we are referring to
the quadratic twist family

{Eχ}χ
1D.R. Heath-Brown, The size of Selmer groups for the congruent number prob-

lem, Inv. Math. 111 (1993), 171-195; see also The size of Selmer groups for the
congruent number problem, II.

2We are working on this, even for twists by characters of order p where p is
a general prime number despite the fact that this fascinating general question has
quite a different flavor, and less immediate application, than the restricted question
when p = 2. This hour I’ll talk only of p = 2.

1
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where χ ranges through all quadratic characters of K. Let |χ| denote
the absolute value of the norm (to Q) of the conductor of χ.

We shall be dealing with Selmer ranks, which—for the moment—can
just be thought of as useful numbers. More specifically, It is convenient
to define something that might be called the reduced Selmer rank.

Definition 1.1. If E is an elliptic curve over K, by r(E;K), the re-
duced 2-Selmer rank of E over K, we mean:

r(E;K) := {the 2− Selmer rank of E over K} − dimF2 E(K)[2].

Among the many uses of this number r(E,K) is that it is computable,
it is an upper bound for the Mordell-Weil rank of E over K, and con-
jecturally it has the same parity as that Mordell-Weil rank.

Theorem 1.2. The ratio

|{|χ| < X; r(Eχ;K) is odd}|
|{|χ| < X}|

is constant for large enough X.

Note: Here is the format of how this is proved: Let Σ be the set of
all places of K dividing 2 · ∞ or the conductor of E. Let C(K) be
the group of quadratic characters of K, and consider the set-theoretic
mapping:

C(K) −→ {even, odd}
which says whether the reduced 2-Selmer rank of Eχ over K is even
or odd. This mapping is constant on cosets of the kernel of the homo-
morphism

h : C(K) −→ Γ :=
∏
v∈Σ

C(Kv)

that sends χ to the product of its local restrictions χv for v ∈ Σ.
More specifically, given E over K, one can define a function

C(Kv)
fv−→{±1}

(for v ∈ Σ) which is a slightly modified “arithmetic ratio of epsilon-
factors” whose definition I omit to give here, but which has the effect
that for every quadratic character χ of K, the ranks of the 2-Selmer
groups of Eχ and E have the same parity if and only if∏

v∈Σ

fv(χv) = 1 ∈ {±1}.
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Define
f : Γ→ {±1}

to be the product:

f(γ) :=
∏
v∈Σ

fv(γv)

where γ = (. . . , γv, . . . ).

Let C(K,X) ⊂ C(K) be the (finite) subgroup consisting of charac-
ters such that the absolute values of the norms of primes dividing their
conductors are < X. So

C(K) = ∪XC(K,X).

Since the target group Γ is finite, once X is large enough, h(C(K,X)) =
h(C(K)). The limit stabilizes to the ratio

|{γ ∈ Γ; f(γ) = ±1|
|{|Γ|

for such values of X (where the sign ±1 depends—in the evident way—
on whether or not the rank of E over K is even or odd).

Define, then,

δ(E,K, odd) :=
1

2
− lim

X→∞

|{|χ| < X; r(Eχ;K) is odd}|
|{|χ| < X}|

.

and its colleague:

δ(E,K, odd) :=
1

2
− lim

X→∞

|{|χ| < X; r(Eχ;K) is even}|
|{|χ| < X}|

.

these being called the odd and even disparities of E over K. Of course:

δ(E,K, odd) + δ(E,K, even) = 0;

by the disparity,

0 ≤ δ(E,K) := |δ(E,K, odd)| = |δ(E,K, even)| ≤ 1

2
,

we mean the absolute value of either of the above. Whatever the dispar-
ity is—i.e., the relative frequency of odd to even ranks of the 2-Selmer
groups of twists—if the Shafarevich-Tate Conjecture holds we would
be getting exactly the same disparity relating odd to even ranks of the
Mordell-Weil groups of twists.
If δ(E,K) = 0 we “have parity” in the sense that there are statistically
as many odd ranks as even; and if δ(E,K) = 1

2
all ranks are odd, or all
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ranks are even. Either of these endpoints occur; for example, we show
that if K has at least one real place, we “have parity.” And it is not
hard to find more interesting disparities3.

Here is a random example of what Zev, Karl, and I show, regard-
ing disparity, in the course of studying full rank statistics of 2-Selmer
groups.

Let L be a finite number field extension of Q of degree d, in which
2 splits completely and 5 is unramified. Form the infinite sequence of
number fields Kn := L(µ2n) for n = 3, 4, 5, . . . , and view the elliptic
curve E

(50A1) y2 = x3 − 675x− 79650

over each Kn.

Theorem 1.3.

δ(E,Kn) =

(
1− 2−(2n−1+1)

)d
2

.

In particular, just dealing with these examples yields a set of achieved
disparities that is dense in the full range of possibilities, [0, 1

2
].

2. Density

Again, by way of introduction, let me formulate a general conjecture
regarding the relative averages of Selmer ranks of twists of a general
elliptic curve E over a general number field K.

Consider the function

D(Z) :=
∑
n≥0

DnZn =
∞∏
i=0

1 + 2−iZ

1 + 2−i

which has come up in the work of Heath-Brown, and later in that of
Swinnerton-Dyer specifically as the stationary distribution for a certain
Markov process, and has reappeared most recently as the basis of a
heuristic regarding guesses for rank density averages over the range of
all elliptic curves over a given number field, as formulated by Poonen
and Rains. It also shows up in our work.

The coefficients Dn are all positive numbers and, setting Z = 1 we
get that ∑

n

Dn = 1

3For example we show that if K has no real place, and E is semistable over K
then we never “have parity.”
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so D is a probability density ( a positive measure with mass equal to 1)
on the set of natural numbers. Setting Z = −1 we get

∑
n(−1)nDn = 0

which gives us an equal balance of odd and even densities:∑
n odd

Dn =
∑
n even

Dn =
1

2
.

While we are on this topic, looking ahead, if you evaluate at Z = 2
and Z = −2 you get:

∑
n

2nDn =
∞∏
i=0

1 + 2−i2

1 + 2−i
=
∞∏
i=0

1 + 21−i

1 + 2−i
= 3

and ∑
n

(−2)nDn =
∞∏
i=0

1 + 2−i2

1 + 2−i
=
∞∏
i=0

1 + 21−i

1 + 2−i
= 0,

respectively. This gives us that∑
n odd

2nDn =
∑
n even

2nDn =
3

2

which eventually will be linked to “average sizes of 2-Selmer groups of
odd and of even rank.” The derivative ofD(Z) evaluated at Z = ±1 will
eventually be linked to the ”average 2-Selmer (even and odd) rank.”

Here is a conjectural statement that generalizes the work of Heath-
Brown to arbitrary elliptic curves and number fields.

Conjecture 2.1. (1) Let n ≥ 0, and let

ε = “even, ” or“odd”

according to the parity of n. Then the limit described the for-
mula below exists and the formula holds:

(1

2
− δ(E,K; ε)

)
· Dn = lim

X→∞

|{|χ| < X; r(Eχ, K) = n}|
|{|χ| < X}|

.

As corollaries of this conjecture (following the discussion above) one
would have
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Corollary 2.2. Let E be an elliptic curve over K. With the same
ordering of χ’s as in the statement of Conjecture 2.1 it follows—if that
conjecture holds—that the average size of the reduced 2-Selmer groups
of quadratic twists of E is 3 (independent of the disparity). Moreover,
there is a finite upper bound to the average 2-Selmer rank, and Mordell-
Weil rank, of quadratic twists of E.

The project we are currently working on is to write out a proof of
a version of this general conjecture however

(1) we work only under the hypothesis that the image of the Galois
group of K acting on 2-torsion in E is “full,” i.e., the image is
all of GL2(F2), and, more significantly,

(2) we cannot yet manage to prove these limits arranging the qua-
dratic twists χ in order of increasing absolute value of norm of
conductor as described above, but rather—at the moment—in
a less satisfactory way: in terms of certain increasing boxes, to
be described below.

Here are some further qualitative comments about our general methods,
before becoming specific.

(1) We use only standard methods: class field theory, global duality,
an effective Cebotarev theorem (in either of the standard two
strengths: the unconditionally proved theorem, but also if we
want to improve some bounds, we formulate results using the
conditional estimate based on GRH) and basic arithmetic of
elliptic curves.

(2) More specifically, the actual densities we obtain all derive from
an understanding of the relative densities of certain “Cebotarev
classes” of places in various finite extension fields of K.

(3) For example, of use to us, in the context in which we work, are
three distinct Cebotarev classes of “good” places of K related
to the S3-extension that is the splitting field of 2-torsion in E;
we call these classes types 0, 1, and 2 below according as Frobv
is of order 3, 2, or 1.

(4) Now, averaging over many type 0 places has the effect of smooth-
ing things out a lot, and this is a major piece of our machinery,
thanks to which we avoided a certain interesting side-question4.

But since I also like the feel of this—no longer necessary—
question, let me record what might be the simplest example of
it here:

4Zev suggested this successful way of skirting such (side-)questions.
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(5) Let L/Q be, say, the cyclic (cubic) extension given by the (max-
imal) real subfield in Q(e2πi/7). Fix a generator σ ∈ Gal(L/K)
and a congruence condition m ⊂ Z (not divisible by 7) such
that every finite prime P of L of degree one with norm con-
gruent to 1 mod m has a generator π = πP ≡ 1 mod m such
that π is uniquely determined modulo squares in O∗L by that
congruence condition5. Now let p be the primes in Q ranging
through the arithmetic progression for which there is a P of
the above sort lying above it and form the “Legendre symbol”(
σ(π)
π

)
; this is dependent only on p and not on π. Taking those

primes in the arithmetic progression such that distinguishing
between primes such that

(
σ(π)
π

)
= 1, or = −1 breaks up this

arithmetic progression into two classes. We’d like to know the
density distribution: we think that it is 50/50. We also think
that these classes are not Cebotarev classes (so there would not
be a direct way of showing such a fact) but have not even been
able to prove this. If anyone has any ideas about such ques-
tions, we’re interested. We thank Heath-Brown for mentioning
to us that this question is similar to the question—successfully
treated by John Friedlander and Henryk Iwaniec6–of how often
a prime p (congruent to 1 mod 4) expressible as a2+b2 with
a, b > 0 and b even has the property that the Legendre symbol(
a
b

)
is 1 or −1. Friedlander and Iwaniec prove that the density

distribution is 50/50, but even better, they show that

∑
p<X

(
a

b

)
<< X1−ε

for some small, but positive ε. This suggests, of course, that
we may be dealing here with non-Cebotarev classes of primes,
since such a fine upper bound for a Cebotarev class of primes
is something we don’t seem to have the technology to prove at
present(it would follow, though, if one could show that a sub-
strip of the appropriate critical strip for the relevant L-functions
were free of zeroes).

5I haven’t checked but think that m = 4 might be enough here.
6Friedlander, John; Iwaniec, Henryk (1997), “Using a parity-sensitive sieve to

count prime values of a polynomial”, PNAS 94 (4): 1054-1058
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3. Our initial data

The essential issue has to do with quite finite data. Namely we give
ourselves a (fixed) number field K with a continuous homomorphism
of GK to H, the quaternionic group of order 8.

We will show how this connects to elliptic curves endowed with, in
effect, something *very close to* a level-4 structure7 over K.

If

(∗) 0→ µ2 → H→ T → 0

is the exact sequence with µ2 the center of H, we will be viewing the
quotient T := H/C as a vector space of dimension two over F2 with
the inherited GK action,

π : GK → Aut(T ) ' GL2(F2) ' S3.

A fortiori, this representation to GL2(F2) is self-dual.

4. Quadratic spaces

We will be interested in H1(K,T ) and also H1(Kv, T ) for the finite,
or real places v of K, noting that there is a symmetric self-pairing

H1(K,T )×H1(K,T )→ H2(K,µ2)

induced from cup-product and the canonical map T ⊗ T → ∧2T = µ2.
Denote this pairing by angular brackets: (a, b) 7→ 〈a, b〉, and note that it
is compatible with the (corresponding) symmetric nondegenerate local
pairings

H1(Kv, T )×H1(Kv, T )→ H2(Kv, µ2) = F2

for all (noncomplex) places v of K. There are a few more key ingredi-
ents here. Namely:

(1) Define H1
unr(Kv, T ) ⊂ H1(Kv, T ) by the exact sequence

0→ H1
unr(Kv, T )→ H1(Kv, T )→ H1(L, T )

where L/Kv is the unqiue unramified quadratic extension. Call
H1

unr(Kv, T ) the unramified subspace of H1(Kv, T ); it is its
own complement under the bilinear pairing 〈 , 〉v;

7Specifically, it determines a particular form over K of the elliptic modular curve
attached to the congruence subgroup Γ̃(4) := ker{SL2(Z) → PSL2(Z/4Z)}, this
being a curve of genus 0.
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(2) We have the connecting map q : H1(K,T )→ H2(K,µ2) coming
from the (nonabelian) cohomology long exact sequence derived
from the exact sequence (*) above. For each v we have the
corresponding local maps qv : H1(Kv, T ) → H2(Kv, µ2) = F2.
The relation between q and 〈 , 〉 is given by the formula:

〈a, b〉 = q(a+ b)− q(a)− q(b);
i.e., q is the quadratic function that gives rise to the symmetric
bilinear form 〈 , 〉. And similarly for the qv’s.

(3) Such an object—a vector space with a quadratic function that
gives rise to a quadratic form on it—is called a quadratic space.

The product of any finite number of quadratic spaces is again
a quadratic space in a natural way. In particular, for any finite
set X of places of K, the product

∏
v∈X H

1(Kv, T ) with qua-
dratic function qX defined as

qX (. . . , hv, . . . ) =
∑
v∈X

qv(hv)

is again a quadratic space.

(4) We say that q is unramified at v if qv maps the unramified
subspace H1

unr(Kv, T ) ⊂ H1(Kv, T ) to the identity element in
H1(Kv, µ2). Then q is unramified at all but finitely many v and
(since a global cohomology class is also unramified at all but
finitely many v) if c ∈ H1(K,T ), the formula∑

v

qv(c) = 0

makes sense (since the left hand sum involves only finitely many
nonzero elements) and moreover, the equation holds.

Definition 4.1. A subspace V ⊂ H1(Kv, T ) is a Lagrangian subspace—
relative to the quadratic form qv— if V is equal to its own orthogonal
complement under 〈 , 〉v and if qv(V ) is the identity element in µ2.

Note that almost all v have the property , then, that the unramified
subspace H1

unr(Kv, T ) ⊂ H1(Kv, T ) is Lagrangian. By convention (and,
in fact, as literally following from the definition) if H1(Kv, T ) = 0 then
we count 0 as a “Lagrangian subspace.”

The basic starting data is the pair (T, q) where the GK action on T
cuts out an S3-extension K(T )/K. If you wish, this is a study of S3
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extensions of number fields, together with a small bit of extra structure
embodied in the quadratic map q : H1(K,T )→ F2 and its localizations
qv : H1(Kv, T )→ F2.

5. The full Selmer range for (T, q)

Let Σ be a finite set of places of K containing all places dividing
2 · ∞ or ramified under the Galois action on H.

Definition 5.1. By Σ-state we mean a choice, for each v ∈ Σ of a
v-Lagrangian subspace in the corresponding H1(Kv, T ).

Definition 5.2. A Selmer structure S on (T, q) is given by

• a choice of a finite set of places ΣS (containing all places dividing
2 · ∞ or ramified under the Galois action on H), and

• for every place v of K a choice of a v-Lagrangian subspace

H1
Sv

(Kv, T ) ⊂ H1(Kv, T )

such that
– if v /∈ ΣS the v-Lagrangian subspaceH1

Sv
(Kv, T ) ⊂ H1(Kv, T )

is the unramified one, but
– if v ∈ ΣS there is no restriction on which v-Lagrangian

subspace it is.
We’ll call the choice at v the v-Lagrangian (or synonymously:
the local condition at v) for the Selmer structure S. There-
fore the set of Selmer structures S with ΣS = Σ is in one:one
correspondence with the set of Σ-states.

Definition 5.3. The Selmer subgroup

H1
S(K,T ) ⊂ H1(K,T )

attached to a Selmer structure S on (T, q) is the subgroup consisting
of those cohomology classes c ∈ H1(K,T ) that, under specialization to
GKv -cohomology, project to an element in the v-Lagrangian subgroup
H1

Sv
(Kv, T ) ⊂ H1(Kv, T ) for every place v of K.
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Theorem 5.4. The associated Selmer group, H1
S(K,T ), of any Selmer

structure S on (T, q) is a finite dimensional F2- vector space.

One might want to understand 2-Selmer rank statistics, i.e., the be-
havior of the function:

S 7→ r(S) := dimH1
S(K,T )

where S ranges through S(T, q) := the set of all Selmer structures
attached to (T, q).

But our actual interest is, for any specific elliptic curve E over K in
the moduli problem attached to (T, q), to consider the 2-Selmer rank
statistics for the subset

S(E) ⊂ S(T, q)

consisting of Selmer structures associated to the quadratic twists, Eχ

of E, where χ ranges though all quadratic characters of K (see the
discussion in Sections 7, 8 and 9 below).

6. How many choices are there for local conditions of a
Selmer structure at v?

Suppose, for example, that v is a place of K not dividing 2 and is a
place of good reduction for the elliptic curve E. The number of choices
one has for v-Lagrangians depends directly on the dimension of TGv .
For unramified v, dim TGv , in turn, simply depends on the order of the
image of Frobenius at v in GL2(F2). See Table 1 below as a summary
of what we are about to discuss. Say that v (not dividing 2) is of “type”
0, 1 or 2 depending upon whether dim TGv is 0, 1 or 2. Each “type”
of place forms a Cebotarev class among the allowed places of K, and
under our assumption that the image of Galois is full in GL2(F2) there
are infinitely many places of each type. (That there are infinitely many
“type 0” places is crucial for our methods.)

• For the places of “type 0” the local cohomology groupH1(Kv, T )
vanishes and therefore qualifies as its own Lagrangian subspace;
hence the quotation-marks around the “1” in Table 1.

• For the places of type 1 there are only two Lagrangian, the
unramified Lagrangian, and one other; hence the 1 + 1 listed in
the table.
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• For places of type 2 (even though we are dealing with sets of
very few elements) the structure deserves some discussion: In
this case the dimension of H1(Kv, T ) is 4. So the projectiviza-
tion of this four-dimensional F2- vector space is P3 (over F2) in
which the nondegenerate quadratic form qv cuts out a smooth
quadric surface V . Now, any such quadric surface is bi-ruled–
i.e., there are two families (a priori, possibly conjugate over
F2) of lines in V . Each line defined over F2 in the quadric
V comprises a Lagrangian subspace. But, by hypothesis, the
unramified maximal isotropic subspace is Lagrangian which im-
plies that each of the families is defined over F2; consequently,
there are six Lagrangian subspaces in all, three for each family.
The unramified local condition consists of the unique unrami-
fied Lagrangian. Twisting, however, by a quadratic character
only moves the local condition within the ruling containing the
unramified Lagrangian as one of its members; more specifically,
then, a v-ramified twist will move the local condition to one
of the two “ramified Lagrangians” within the ruling containing
the unramified Lagrangian.

To sum up:

• for primes v (of the above sort) of type 0—which we shall also
be calling the set of negligible places—we have only one choice
of local condition at v;

• for primes of type 1 once we stipulate whether the Lagrangian
we wish to choose is unramified or ramified, the local condition
is determined;

• for primes of type 2 there are two possible choices of ramified
local conditions.

7. The Selmer structure attached to an elliptic curve

Let E be an elliptic curve over K; let HE be the associated Heisen-
berg group8 with GK-action,; let

T := HE/Center = E[2];

and let q be the quadratic function associated to the GK-“module”HE.
Fix a finite set Σ of places containing all places of bad reduction for
E, together with all places dividing 2 · ∞ or ramified under the Galois
action on H.

8This should be given in an appendix . . . actually: a pretty long appendix.
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The Selmer structure SE,Σ ∈ S(T, q) attached to E and Σ is given
by the following prescription for its local conditions:

(1) We put ΣS = Σ, and
(2) for all v we choose our Lagrangian subspace H1

Sv
(Kv, T ) to be

H1
Sv

(Kv, E[2]) = E(Kv)/2E(Kv) ⊂ H1(Kv, E[2]) = H1(Kv, T ),

where the inclusion in the middle comes from the standard
Kummer sequence.

8. Twisting

We now want to discuss twisting our Selmer structures by global
quadratic characters χ of K—that is, given a Selmer structure S and a
quadratic character χ, we will be interested in producing a new Selmer
structure S(χ) that mimics the change in Selmer structures when we
pass from that of some elliptic curve E to its twist Eχ.

The story here is different for each of the four classes of places: the
finite collection in ΣS, and the places outside ΣS of each ‘type” as
discussed in the previous paragraph.

(1) For v /∈ ΣS of type 0, there’s absolutely nothing that can
change:–the local condition, H1

S(χ)v
(Kv, T ), as well as the full

H1(Kv, T ) is 0.

It turns out to be quite an advantage for us that there is a
set of places (of positive density among all places of K) of this
sort: among other things we will be “averaging” over twists by
characters that are ramified at those places,—noting that we
haven’t changed things there— to give us control of averages
over the more difficult places.

(2) For v /∈ ΣS of type 1, there are only two possible v-Lagrangians,
the unramified Lagrangian, and a unique ramified one. Since v
is not in ΣS, H1

Sv
(Kv, T ) is the unramified v-Lagrangian. The

recipe giving H1
S(χ)v

(Kv, T ) is as follows: if the character χ is

unramified at v, then H1
S(χ)v

(Kv, T ) = H1
Sv

(Kv, T ) is the unram-

ified v-Lagrangian, and if χ is ramified at v, then H1
S(χ)v

(Kv, T )
is the unique ramified v-Lagrangian.

(3) For v /∈ ΣS of type 2 and if χ is unramified at v, then, again,
H1
S(χ)v

(Kv, T ) = H1
Sv

(Kv, T ) is the unramified v-Lagrangian.

(4) For v /∈ ΣS of type 2 and χ ramified at v then it will also be the
case that H1

S(χ)v
(Kv, T ) is ramified. Since there are only two
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ramified v-Lagrangians, to complete the recipe here we need
only say which it is . . .

(5) The final case, for the finitely many places v ∈ ΣS it is even
a trickier business to say explicitly what H1

S(χ)v
(Kv, T ) is, but,

again, given what we are averaging over, we need know nothing
more than what we have discussed to obtain the statistics we’re
looking for.

9. “Arranging” the elliptic curves that are quadratic
twists of a given elliptic curve

Recall that to do statistics on these mathematical objects we have
to stipulate two things:

• the collection of objects to be counted, and
• the way in which they are ordered.

The collection, for example, of elliptic curves given by families of
quadratic twists of a given elliptic curve has some fascinating features,
and deserves to be studied separately. Fixing a, b ∈ OK and varying
c ∈ OK − {0} consider the family

cy2 = x3 + ax+ b,

or—tucking the c into the left-hand side of the equation, on gets the
same elliptic curve from

y2 = x3 + ac2x+ bc3.

The elliptic curves in this family are all isomorphic over C; they are
quadratic twists of one another (in various senses, but most directly:) in
the sense that any two of them become isomorphic over some quadratic
extension of the base field K.

Note also that modifying c by multiplying by a square in OK does
change the isomorphism type of the elliptic curve so what is really at
issue is a class of elliptic curves indexed by elements in OK −{0} mod
squares.

Let us define a quadratic twist family of elliptic curves over
K to be given by an elliptic curve E over K together with all its twists
χ 7→ Eχ indexed by quadratic Dirichlet characters χ over K.

Here we have various possible useful naturally arising choices of or-
dering this same collection of objects, and although sometimes one
(e.g., Dan Kane) can prove a kind of robustness; i.e., that the averages
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that are computed via various different orderings are the same,9 things
are a bit delicate.

Fix an elliptic curve E over a number field K, and Σ a finite subset
of the set of places PK of K (in practice it will be required to contain
the archimedean places, and the places dividing p or the conductor of
E).

By the natural ordering Let us mean that we arrange the members
Eχ of our family by increasing absolute value of the norm (down to
Q) of the conductor of χ. There are a number of equivalent way of
describing this, e.g., in terms of increasing absolute value of the norm
of the discriminant, or the conductor, of Eχ.

In contrast, however, to the natural ordering, our results require a
slightly different type of ordering, and we give some hints about this
in the next, and last section.

10. Skew-box ordering

By a skew-box ordering of our family we mean the following.

(1) First, for integers 1, 2, 3, . . . ν, . . . we give positive-real-valued
monotonically increasing functions αν(X) of a positive real vari-
able X; we assume further that for each ν αν(X) tends to in-
finity with X.

(2) If χ ∈ C(K) let d(χ) be its conductor, and write it as follows:

d(χ) = dΣ(χ)d0(χ)d1(χ)d2(χ),

where we have factored d(χ) into the part involving places in Σ
and the places (outside Σ) of types 0, 1 and 2.

Definition 10.1. For positive integers j, k define the skew-
box Bj,k(K,X) with sides {αν}ν and cuttoff X to be the
finite subset of the group C(K) of quadratic characters where

(a) d1(χ) = q1q2 . . . qj′ is a product of j′ places, where j′ ≤ j
and the absolute value of the norm of qi is < αi(X), for
i = 1, 2, . . . j′, and where

9Of course, naturally arising is a key phrase here: one can perversely order
infinite collections of objects to mess up things.
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(b) d2(χ) = qj′+1qj′+2 . . . qj′+k′ is a product of k′ places, where
k′ ≤ k and the absolute value of the norm of qi is < αi(X),
for

i = j′ + 1, j′ + 2, . . . j′ + k′,

(c) (in contrast to the requirement that we bound the norms
of each of the places of types 1 and 2, and take account of
how many places of those types there are) we require that
the absolute value of the norm of d0(χ) is < αj′+k′+1(X).

Note that C(K) is the union of the finite “skew-boxes” Bj,k(K,X) as
X, j, and k tend to infinity.

Here is our theorem:

Theorem 10.2. Let E be an elliptic curve over K with full Galois
action on 2-torsion; that is, the natural homomorphism

Gal(K̄/K) −→ Aut
(
E(K̄)[2]

)
is surjective. For integers

1, 2, 3, . . . ν, . . .

there are explicit positive-real-valued monotonically increasing func-
tions10 αν(X) of a positive real variable X, each tending to infinity
with X, such that defining skew-boxes Bj,k(K,X) with sides given by
those {αν}ν , we have:

(1) Let n ≥ 0, and let

ε = “even, ” or“odd”

according to the parity of n. Then the limit described the for-
mula below exists and the formula holds:

10These functions depend on E and K. I won’t give the formulas here, but just
mention that these are defined “recursively” and come from successively applying
the effective Cebotarev Theorem; we have unconditional bounds, and also better
bounds conditional on GRH.
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(1

2
−δ(E,K; ε)

)
·Dn = lim

j+k→∞
lim
X→∞

|{χ ∈ Bj,k(K,X); r(Eχ, K) = n}|
|Bj,k(K,X)|

where X, j, and k all go to infinity.

As discussed in the context of Conjecture 2.1 a series of corollaries
follow:

Corollary 10.3. Let E be an elliptic curve over K with full Galois
action on 2-torsion. With the same skew-box ordering of χ’s as in the
statement of Theorem 10.2 the average size of the reduced 2-Selmer
groups of quadratic twists of E is 3 (independent of the disparity).
Moreover, there is a finite upper bound to the average 2-Selmer rank,
and Mordell-Weil rank, of quadratic twists of E.
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Table 1. Basic Count

Type order of Frobv in Aut(T ) dim TGv dim H1(Kv, T ) # of Lagrangians in H1(Kv, T )
0 3 0 0 “1”
1 2 1 2 1+1
2 1 2 4 1+2


