
ELLIPTIC CURVES AND THEIR STATISTICS

Rough notes for my Basic Notions Talk, Feb 28 2012

B. Mazur

Part I. Densities

1. Aggregates

It is curious how aggregates rather than single instances creep into
our subject even when we aren’t looking for statistical trouble.

Here is an example. In the Erdös spirit, I’ll offer a $5 prize for anyone
who can manage to provide a proof of the fact that

• every linear form aX+b with a, b ∈ Z relatively prime represents
at least one prime number; and yet
• the proof doesn’t actually show that it represents infinitely

many primes.

I think my $5 is safe, but the point I want to make is that a certain
amount of our work is—whether we want it or not—inescapably about
“aggregates.”

The statement in the first bullet above is true1, and Dirichlet proved
it in 1837 by showing, more precisely, that there is a positive density
of primes in any arithmetic progression with g.c.d.(a, b) = 1.

Specifically,

1An analogous statement is conjectured to be true for any polynomial with in-
teger coefficients that satisfies some natural requirements (as would follow from
Schinzel’s Conjecture).

1
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lim
X→∞

#{p a prime number of the form p = an+ b ≤ X}
π(X)

=
1

Φ(a)
,

where π(X) is the total number of primes ≤ X; and Φ(a) is Euler’s
Φ-function.

Φ(a) = |(Z/aZ)∗|.
There are a number of existence theorems for specific objects in

mathematics that would be interesting enough if we even knew the
existence of one of those desired objects; and yet our existence proof
works by, in fact, guaranteeing large numbers of them—usually positive
densities of them!

Dirichlet’s Theorem, quoted above, has generalized into one of the
most successful and most-often-used techniques for finding prime num-
ber with specific properties. Namely: Cebotarev’s Theorem2, which I’ll
state only for Q, but the analogous theorem is true over any number
field:

2. Cebotarev Classes

Recall that if K/Q is a finite Galois extension of number fields with
Galois group G = Gal(K/Q) and discriminant ∆, then for every prime
number p not dividing ∆ (i.e., unramified in the extension K/Q) there
is a unique conjugacy class of elements C(p) ⊂ G (called the Frobenius
conjugacy class attached to p) that is defined by reducing mod p an
appropriate polynomial equation for a primitive element generating
K to get a separable polynomial over Fp, and studying the Galois
extension of Fp that it generates3. From this conjugacy class C(p),
for example, you can read off how many primes of K lie above p, and
(equivalently) the degree of the field extension of Fp generated by that
polynomial equation.

Now let C ⊂ G be a conjugacy class of elements in G, and define

PC(X) := unramified primes p ≤ X such that C(p) = C.

Put

PC = ∪XPC(X).

2proved in his Phd thesis in 1922
3connecting it appropriately to the initial Galois extension K/Q
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By a Cebotarev class of primes defined by K/Q let us mean a
union of these PC’s, give or take a finite set. By a Cebotarev class of
primes let us mean such a set of primes defined by some finite Galois
extension.

The most famous kind of “Cebotarev classes” are arithmetic pro-
gression an + b with (a, b) relatively prime. These are defined by the
cyclotomic field extensions K/Q = Q(e2πi/a)/Q. The Galois group,
G = Gal(K/Q) is canonically isomorphic to (Z/aZ)∗, and Dirichlet’s
theorem is a special case of the general result that tells us that Ceb-
otarev classes have computable densities; specifically:

Theorem 2.1. (Cebotarev) Let C ⊂ G be a conjugacy class of elements
in G = Gal(K/Q). Then

lim
X→∞

#{PC(X)}
π(X)

=
|C|
|G|

.

So for K = Q(e2πi/a) the Galois group G is abelian and in fact of
order Φ(a), so the densities are given by 1/Φ(a) as described above.

Any “good” error term, by the way, giving the rate of this con-
vergence seems to depends on GRH; if you want ”unconditional error
terms,” they’re not all that good. More about that later.

Cebotarev classes will enter—in a big way—into the statistical study
of the arithmetic of elliptic curves, but also. . . some less familiar classes
will be part of our story as well.

3. Spin Classes

Joint work with J. Friedlander, H. Iwaniec, and K. Rubin: see our
paper “The spin of prime ideals” on ArXiv.

I’ll try to explain this notion by an example. Let

K := Q(e2πi/7 + e−2πi/7) = Q(cos 2πi/7),

i.e., K is the maximal total real subfield in the cyclotomic field obtained
by adjoining a primitive 7-th root of unity to Q. The field extension
K/Q is the unique cyclic extension of Q of degree 3 ramified only at the
prime 7. The primes p congruent to ±1 mod 7 split (into the product
of three primes in K).

The further basic facts about K/Q are these:
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• K has class number 1.

• There are units in (the ring of integers of) K with arbitrary
(i.e., all eight possible) signs for the three real embeddings of
K.

It follows from these facts that the totally positive units in K are
squares, and also that (modulo squares) there is a unique totally posi-
tive generator of any [nonzero] ideal in OK . Fix a generator σ ∈ G :=
Gal(K/Q).

Definition 3.1. By the spin of a prime ideal P in OK we mean the
“Legendre symbol”

spin(σ;P ) :=

(
π

P σ

)
.

Here π ∈ P is a choice of totally positive generator of P . The symbol
is defined to be zero if P σ = P , and is ±1 depending on whether π is
or is not a square modulo P σ.

Spin, then, is a kind of incestuous quadratic residue.
Since totally positive elements are stable under Galois action we

have:

spin(σ;P ) =

(
π

P σ

)
=

(
πγ

(P σ)γ

)
=

(
πγ

P γσ

)
= spin(σ;P γ)

so we can define the spin of any rational prime p to be:

spin(K/Q, σ; p) := spin(σ;P )

for any prime P of K lying above p. Of course, this is uninteresting
(i.e., 0) unless p splits completely in K; i.e., p ≡ ±1 mod 7.

An exercise is to see that quadratic reciprocity gives us a relation be-
tween spin(K/Q, σ; p) and spin(K/Q, σ−1; p) (the product is a product
of local Hilbert symbols at places dividing 2).

We (i.e., John Friedlander, Henryk Iwaniec, Karl Rubin and I) prove
a general theorem about cubic cyclic fields (including all those satisfy-
ing the above two bullets4) which for our example K gives us:

4We don’t need class number 1, though: the simplest modification that preserves
the statement is to restrict to primes p that split into principal prime ideals, or ideals
that are of odd order in the ideal class group of K.
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Theorem 3.2. For a ≡ ±1 mod 7 we have∑
p≤X; p≡a mod 7

spin(K/Q, σ; p) << X1−ν+ε

Here ν = 1
10,656

(independent of the cubic cyclic field K satisfying

the bullets above) and any ε > 0; the implied constants depend on K
and ε.

Note that this means that the classes

P±(a) := {primes p ≡ a mod 7 | spin(K/Q, σ; p) = ±1}
occur with equal density. Call these subsets of primes P±(a) spin
classes.

Since we have such a good convergence rate (i.e., ν is positive!) and
since our method is surely not giving zero-free strips within the critical
strip for L-functions, we are morally (but not logically) certain that
P± are not Cebotarev classes! In any event,

Conjecture 3.3. Spin classes are not Cebotarev classes.

Regarding Cebotarev classes, one has a recent result of Hershy Kisilevsky
and Mike Rubinstein guaranteeing that certain classes are not Ceb-
otarev:

Theorem 3.4. (Kisilevsky, Rubinstein) Let P be a class of primes and
r ∈ Q, with 0 ≤ r ≤ 1. Then P is not a Cebotarev class of density r
if either

• P(X)− r · π(X) <<
√
X/ logX, or

• P(X)− r · Li(X) <<
√
X/ logX.

Here, as usual,
P(X) := {p ∈ P | p ≤ X}.

Our method for the proof of Theorem 3.2 uses Burgess’s bounds
giving estimates for incomplete sums of characters. Discuss.

Conjecture 3.5. Let n ≥ 3, Q ≥ 3, N ≤ Q1/n. Then for any real
nontrivial Dirichlet character χ of modulus q ≤ Q we have

∑
M<a≤N

χ(a) << Q
1−δ
n

+ε
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with some fixed δ = δ(n) > 0 and any ε > 0, the implied constant
depending (only) on ε and n.

Burgess proves this for n = 3; and this is what we use. We have
good use for any further progress made with the above conjecture, so
we urge people to take a look at it.

We have been discussing densities of sets of prime numbers and there
is no difficult ordering prime numbers (by size, of course)5. But when
we compute statistic of other mathematical objects, there may be some
question as to what is the “natural way to order them.” So, since this
is a basic notions seminar about density, it is reasonable to devote a
digression to this issue, and ask:

4. What do we mean by density?

There are sophisticated notions of density, but for this hour when we
talk about densities, we will have fixed some specific (infinite) collection
of objects U , together with a choice of size function s : U → R≥0, where
a size function means that for every X ∈ R≥0, the number of objects in
O of size less than or equal to X is finite. We’ll say that some property
P occurs with density r in U if:

lim
X→∞

#{u ∈ U | u has property P and s(u) ≤ X}
#{u ∈ U | s(u) ≤ X}

= r.

Now if you are estimating quantities of prime numbers, there is not
much choice of the size function, but often for other arithmetic objects
one has multiple choices, with density results that change with the
choice. For example:

5. The case of Quartic Number Fields

One must be careful when choosing the coefficients of a fourth degree
polynomial, if you want a root of that polynomial to generate anything
other than a field whose Galois group is other than S4. Hilbert’s irre-
ducibility theorem provides corroboration of this with a proof that if
you rank algebraic numbers of degree 4 by the size of the coefficients
of their minimal polynomial (monic, over Q) then 100% of them have
Galois group S4. But let us count quartic fields (rather than algebraic
numbers that generate them) nested by the size (absolute value) of
their discriminant. Dick’s Basic Notions talk two weeks ago mentioned
the classical theorem of Hermite that there are only a finite number
of different algebraic number fields with absolute value of discriminant

5Although, even here, there is the alternate notion of “Dirichlet density.”
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≤ X, so it makes sense to compute densities with respect to this size
function. Counting field extensions of a given field with a fixed Galois
group (i.e., Galois group of their Galois closure) has been the subject
of a number of precise conjectures (initially: [?], and then successively
refined in [?, ?]). Barghava’s remarkable paper [?], which is further ev-
idence for these conjectures, proves that when you count quartic fields,
nested by discriminant, you do not get 100% of them having Galois
group S4.

Bhargava thinks of the problem of counting quartic fields as a prob-
lem purely in the Geometry of Numbers, and proves the following the-
orem:

Theorem 5.1 (Bhargava). When ordered by absolute discriminant,
a positive proporition (approximately 0.09356) of quartic fields have
associated Galois group D4. The remaining approximately 0.90644 of
quartic fields have Galois group S4.

All this was an introduction meant to lead to elliptic curves and to
hint that we will be paying special attention their arithmetic statistics.
And to point out that when one asks questions like:

What is the probability that a cubic plane curve with
rational coefficients has infinitely many rational points?

one should be clear about how one is ordering this infinite collection.

Part II. Elliptic curve statistics

6. Elliptic curves

An elliptic curve E over a field K is a curve of genus one with a
chosen K-rational point, called the “origin”. It is a theorem (essentially
a corollary of the Riemann-Roch theorem) that allows you to represent
any elliptic curve over K as a cubic plane curve (over K, of course)
with its origin being its only point (even over the algebraic closure K̄)
at infinity.

This already is a beautiful piece of mathematics and if you haven’t
seen it before here is a hint about how you get such a representation,
each of these statements being directly obtainable from Riemann-Roch
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together with the sole fact that the curve we are dealing with has genus
one:

• there is only one rational function on E (up to scalars) that has
at worst a single pole at one point on E, namely the constant
function 1;
• there are two independent rational functions on E having at

worst a double pole at the origin and no poles elsewhere: call a
choice of the ’new’ (i.e., nonconstant) function x;
• there are three independent rational functions on E having at

worst a double pole at the origin and no poles elsewhere: call
a choice of the ’new’ function with an actual triple pole at the
origin y;
• and there is a linear relation satisfied by the seven functions

1, x, y, x2, xy, x3, y2,

all these having at worst poles of order six at the origin and
none elsewhere.

In particular we get a mapping of our E onto a plane cubic in x and y
and this turns out to be an isomorphism).

Even more explicitly, when K is a number field (our main focus
here), letting OK denote the ring of integers of K, we can choose our
functions x and y judiciously so that any such E can be given in an
affine plane by a cubic equation

(∗) y2 = x3 + ax+ b

for constant a, b ∈ OK , with its discriminant, ∆(a, b) = −4a3 − 27b2,
different from zero (this guarantees that E is a smooth curve).

Different pairs (a, b) may give rise to isomorphic elliptic curves; for
instance, for any element u ∈ OK setting Y = u3y and X = u2x gives,
after clearing terms in the displayed equation, the new cubic equation

Y 2 = X3 + Ax+B

where (A,B) = (u4a, u6b). Here ∆(A,B) = u12∆(a, b).
It is natural then to represent an elliptic curve E by such an affine

model (*) with a and b not divisible by u4 and u6 respectively, for any
nonunit u ∈ OK ; equivalently, with minimal absolute value of the norm
of its discriminant, among all affine models (*) representing E.

For number theory it is quite a good thing that we can represent
elliptic curves over a number field K, i.e., curves of genus one over K
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having a K-rational point, in such a clean way. This is not it at all the
case if you don’t require the curve of genus one to have a K-rational
point: it may well be that the only representation of such a curve that
is rational over the field K in question is as a curve of very high degree
in a projective space (and therefore any projection of such a curve to
the plane will represent it only birationally as a curve of high degree
with a large singularity locus. This issue will be what is behind the
deep questions having to do with what I’ll be calling the companions
to elliptic curves—later in this lecture.

7. The statistical questions, for three kinds of families
of elliptic curves over a given number field K

These are the families:

(1) The full family of all elliptic curves over a fixed number field.

(2) The family of all quadratic twists of a given elliptic curve over
a given number field. That is, fixing a, b ∈ OK and varying
d ∈ OK − {0} consider the family

dy2 = x3 + ax+ b,

or—tucking the d into the left-hand side of the equation, one
gets the same elliptic curve from

y2 = x3 + ad2x+ bd3.

(3) The family of quadratic twists by all characters of prime con-
ductor of a given elliptic curve over Q. That is, fixing a, b ∈ Z
and varying prime number p consider the family

py2 = x3 + ax+ b.

Any family of type (3) is of density zero (for any natural ordering) in
the family of type (2) that contains it, and those families of type (2)
are of density zero in the all-encompassing family of type (1). So, there
is no a priori reason to expect that the statistics of these three “types”
to bear any relationship to one another.

This is what we mean by their “statistics”:
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We are, of course, interested in it arithmetic statistics in the fullest
possible sense, related each of the three families that have just been
introduced. But today we will be focusing on just these:

• The relative densities of members of each of these families with
a given Mordell-Weil rank. E.g., what is the proportion of each
family that has finitely many rational points? What is the
average rank?

• The relative densities of p-Selmer ranks (we will be discussing
this notion below; more specifically, when p = 2). E.g., what
is the proportion of each family that has trivial 2-Selmer rank?
More generally what proportion has 2-Selmer rank 0, 1, 2, 3, . . . ?

8. Current Guesses, and Theorems, about Mordell-Weil
rank density

We are mainly interested, in this talk, about the second bullet at
the end of the previous section; namely 2-Selmer rank statistics. But
here, by way of digression, is a discussion of what we expect regarding
Mordell-Weil ranks, for the family of Type (1) when ordered in the
‘natural way,’ i.e. by size of absolute value of the norm of the conductor.

We expect that 50% of the family of all elliptic curves over K (or-
dered by any of the standard size-functions) to have Mordell-Weil rank
0 and 50% to have rank 1. This was first conjectured by Goldfeld in
1979 at least for K = Q and families of “Type (2),” i.e., for families
of quadratic twists over Q. In later years this fit in with the various
heuristic viewpoints, e.g., that of Katz-Sarnak, and also, with precise
conjectural bounds on rates of convergence for quadratic twist fami-
lies (Conrey, Keating, Rubinstein, and Snaith) coming from random
matrix heuristics; and similar conjectures for all elliptic curves over Q
(Mark Watkins). This has been referred to as the minimalist conjec-
ture6. In the terminology of the previous section then, the “minimalist
conjecture” is that ρ(K, r) = 1/2 if r = 0, 1 and ρ(K, r) = 0 if r ≥ 2.
As hinted in the introduction above, this conjecture is widely believed
for the family of Type (1)-and yet it is difficult to get numerical data
that firmly support it! The reason for this is in the nature of the error
term that is also predicted (coming from random matrix heuristics).

6The reason for the term “minimalist” is that—from the point of view of densi-
ties, these are the smallest possible densities that are compatible with the expected
parity of Mordell-Weil ranks: i.e., 0 is the smallest even number and 1 the smallest
odd.
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The form that this type of error term takes (it will be slightly different
in different contexts) if X is the number of instances counted) is

aXb logc(X)

for specific numbers b < 1 (but b close to 1). It is diabolic how the
graphs of such functions are so very indistinguishable (to the eye) from
the linear function aX, but —of course—from the point of view of
densities the difference between aXb logc(X) (for any b < 1) and aX
is major! This is one of the perils of prediction of qualitative behavior
from too little data.

What can be proved?

If the minimalist conjecture is true, then the average Mordell-Weil
rank when compiled for all elliptic curves would be 1/2. This, therefore,
is the goal. In 1992 Armand Brumer showed (by analytic means, and
conditional on standard conjectures) that the average rank of elliptic
curves over Q is bounded by 2.3.

The most striking recent results are due to Manjul Bhargava to-
gether with his students and co-authors. They have been developing
extremely precise methods for counting appropriate orbits of certain
arithmetic groups acting on integral points on certain lattices. This
approach follows and significantly refines the classical Methods in the
Geometry of Numbers (as had pursued by Gauss, Minkowski, Siegel,
and others). Manjul Bhargava and Aren Shankar have established (un-
conditionally) that the “average rank”7 over Q is ≤ 0.99. The method
here is via what might be called the “geometry of arithmetic orbits
in linear representations of reductive groups.” Manjul has hopes that
these methods might work not only over Q but also over any fixed
number field K.

But for now, over Q they prove that:

ρ(K; 0) ≥ 0.075

and
ρ(K; 0) + ρ(K; 1) ≥ 0.80.

A striking further result that Bhargava obtained with Wei Ho is that
among elliptic curves possessing one point of infinite order, a subset of

7The quotation-marks here are meant to signal that the in-equalities regarding
averages that we will be discussing will always mean the lim supX→∞ (for upper
bounds) or the lim infX→∞ (for lower bounds) and if these upper and lower bounds
are not equal, no claim is being made that the limX→∞ actually exists.
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positive density has Mordell-Weil rank one (at present this result is
only for elliptic curves only over Q).

9. Back to 2-Selmer rank statistics

As a preview of what we will be discussing, here is a table giving a
hint of the differences in the statistics for our three types of families.

Table 1. Statistical differences

Family Type 1 2 3

Ordering by Conductor Skew-Box by Conductor

Heuristics Poonen-Rains Poonen-Rains modified by “Disparity” “Equal odds”

Methods Geom. of Nos. Cebotarev Cebotarev & Spin

10. Ordering the aggregate of elliptic curves:

We have a natural way of counting the curves!

Theorem 10.1. For any real number X there are only finitely many
isomorphism classes (over K) of elliptic curves (over K) with a rep-
resentation as above such that the absolute value of the norm of its
discriminant is less than X; i.e.,

|NK/Q∆(a, b)| < X.

That is, we can order the collection of these mathematical objects, in
terms of the size of the norms of the discriminants of their “smallest”
representations as above8

The proof of this finiteness already requires significant results in the
arithmetic of elliptic curves: for each (rational) integer N 6= 0 let N
denote a finite collection of integers in OK such that every integer in
OK with norm equal to N is a twelfth power (of an integer in OK) times
an element of N . We are—in effect—counting the number of integral

8There are some slightly different competing ways of ordering the array of elliptic
curves. For example by conductor, or as in Manjul Bhargava’s work by the size of
a natural “height-type” function H(E) := max{|NK/Qa|3, |NK/Qb|2}.
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solutions to the following finite collection of diophantine equations in
α and β:

−4α3 − 27β2 = ν

for ν running through the finite set N . Each of these equations are
again integral models of elliptic curves parametrized by the variables
α and β. They have only finitely many integral solutions in OK .

Moral: the integral solutions over K of these particular elliptic curves
“count” the totality of all elliptic curves over K. It’s an example of
elliptic curves “knowing” other elliptic curves.

That these affine models of elliptic curves have only finitely many
integral solutions in OK , was shown by Siegel (using methods that were
ineffective9 ; effective solutions to this were provided later by Baker;
and Faltings famous proof of Mordell-Conjecture also bears on this
problem.

The rough number of such elliptic curves is—forX sufficiently large—
squeezed between X5/6−ε and X5/6+ε (any ε > 0 but presumably start-
ing at larger and larger X).10

11. Families of “type (1)”: all elliptic curves over a given
number field

We have discussed, in section above, the work of Manjul Bhargava
and Aren Shankar and co-authors regarding Mordell-Weil statistics.
Their results are related to thestudy of the average size of the 2-Selmer
rank of elliptic curves (again over Q —and when they are ordered in any
of the standard ways). They show that the average size is three11 For
any prime number p the reduced p-Selmer rank of an elliptic curve over
a number field12 has this important property: it is finite (!), computable
(!) (at least in principle), and is an upper bound for the rank of the
Mordell-Weil group of the elliptic curve over the number field. If the
Shafarevich-Tate conjecture holds, then for all but finitely many primes
p, the reduced p-Selmer rank would be equal to that Mordell-Weil rank.

9these methods being related to the Mordell-Weil rank of these elliptic curves, a
notion which we’ll discuss later

10More fun would be to get a precise asymptotic estimate with an error term;
this is what Bhargava gets for the ordering of elliptic curves via the size of the
function E 7→ H(E).

11Of course no 2-Selmer group can have such a size: these 2-Selmer groups are
then all either above or below average.

12This is the dimension of the so-called p-Selmer group minus the rank of rational
p-torsion of the elliptic curve over the number field.
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So it is natural, as in the results of Bhargava and co-authors alluded to
above, to expect that the statistics of p-Selmer ranks (e.g., even when
restricted to p = 2) contribute to our understanding of Mordell-Weil
ranks. More recent advances concern 3-Selmer,and 5-Selmer.

12. Families of “type (2)”: Elliptic curves that are
quadratic twists of a given elliptic curve

The elliptic curves in this family are all isomorphic over C; they are
quadratic twists of one another (in various senses, but most directly:) in
the sense that any two of them become isomorphic over some quadratic
extension of the base field K.

If

E : y2 = x3 + ax+ b

is the initial elliptic curve and

E(d) : dy2 = x3 + ax+ b

is a general member of the family, note that modifying d by multiplying
by a square in OK does change the isomorphism type of the elliptic
curve so what is really at issue is a class of elliptic curves indexed by
elements in OK − {0} mod squares. It is natural, then, to denote E(d)

as Eχ where χ is the (quadratic) Dirichlet character over K that cuts

out the quadratic Galois extensions K(
√
d). There is also a natural

ordering of the members of this family. For brevity, if I is a prime ideal
in a number field, by |I|, the size of I, let us mean |I| := |NK/QI|; i.e,
the absolute value of the norm to Q of the ideal I.

Now, for a character χ, let

|χ| := max{|P |; P a prime ideal dividing the conductor of χ}.
The type of question we will examine has it roots in a famous result of

Heath-Brown on the statistics of 2-Selmer ranks of a specific family of
CM elliptic curves over Q related to the congruent number problem13.
This is the family

ED : Dy2 = x3 − x
for positive square-free integers D. The arithmetic of this family an-
swers the question of whether or not D can be the common difference
of an arithmetic progressions of squares of rational numbers.

13D.R. Heath-Brown, The size of Selmer groups for the congruent number prob-
lem, Inv. Math. 111 (1993), 171-195; see also The size of Selmer groups for the
congruent number problem, II.
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We shall be dealing with Selmer ranks, which—for the moment—can
just be thought of as useful numbers. More specifically, It is convenient
to define something that might be called the reduced Selmer rank.

Definition 12.1. If E is an elliptic curve over K, by r(E;K), the
reduced 2-Selmer rank of E over K, we mean:

r(E;K) := {the 2− Selmer rank of E over K} − dimF2 E(K)[2].

Among the many uses of this number r(E,K) is that it is computable,
it is an upper bound for the Mordell-Weil rank of E over K, and con-
jecturally it has the same parity as that Mordell-Weil rank.

13. Disparity

It is conjectured that ordering the family of all elliptic curves over a
given number field by the absolute value of the norm of the conductor,
there are “asymtotically as many elliptic curves having odd 2-Selmer
rank14 as there are having even rank.” We don’t know this yet15 This
is not the case for families of Type (2).

Here I will be discussing results due to Zev Klagsbrun, Karl Rubin
and myself coming from our article Selmer ranks of quadratic twists of
elliptic curves which is posted on ArXiv.

Theorem 13.1. The ratio

|{|χ| < X; r(Eχ;K) is odd}|
|{|χ| < X}|

is constant for large enough X.

Note: Here is the format of how this is proved: Let Σ be the set of
all places of K dividing 2 · ∞ or the conductor of E. Let C(K) be
the group of quadratic characters of K, and consider the set-theoretic
mapping:

C(K) −→ {even, odd}

14(and therefore, conjecturally having odd Mordell-Weil rank, and p-Selmer rank
for any p)

15We do know that the odd and even 2-Selmer ranks both have positive density,
though.
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which says whether the reduced 2-Selmer rank of Eχ over K is even
or odd. This mapping is constant on cosets of the kernel of the homo-
morphism

h : C(K) −→ Γ :=
∏
v∈Σ

C(Kv)

that sends χ to the product of its local restrictions χv for v ∈ Σ.
More specifically, given E over K, one can define a function

C(Kv)
fv−→{±1}

(for v ∈ Σ) which is a slightly modified “arithmetic ratio of epsilon-
factors” whose definition I omit to give here, but which has the effect
that for every quadratic character χ of K, the ranks of the 2-Selmer
groups of Eχ and E have the same parity if and only if∏

v∈Σ

fv(χv) = 1 ∈ {±1}.

Define

f : Γ→ {±1}
to be the product:

f(γ) :=
∏
v∈Σ

fv(γv)

where γ = (. . . , γv, . . . ).

Let C(K,X) ⊂ C(K) be the (finite) subgroup consisting of charac-
ters such that the absolute values of the norms of primes dividing their
conductors are < X. So

C(K) = ∪XC(K,X).

Since the target group Γ is finite, once X is large enough, h(C(K,X)) =
h(C(K)). The limit stabilizes to the ratio

|{γ ∈ Γ; f(γ) = ±1|
|{|Γ|

for such values of X (where the sign ±1 depends—in the evident way—
on whether or not the rank of E over K is even or odd).

Define, then,

δ(E,K, odd) :=
1

2
− lim

X→∞

|{|χ| < X; r(Eχ;K) is odd}|
|{|χ| < X}|

.
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and its colleague:

δ(E,K, odd) :=
1

2
− lim

X→∞

|{|χ| < X; r(Eχ;K) is even}|
|{|χ| < X}|

.

these being called the odd and even disparities of E over K. Of course:

δ(E,K, odd) + δ(E,K, even) = 0.

Definition 13.2. By the disparity,

0 ≤ δ(E,K) := |δ(E,K, odd)| = |δ(E,K, even)| ≤ 1

2
,

we mean the absolute value of either of the above.

Whatever the disparity is—i.e., the relative frequency of odd to even
ranks of the 2-Selmer groups of twists—if the Shafarevich-Tate Con-
jecture holds we would be getting exactly the same disparity relating
odd to even ranks of the Mordell-Weil groups of twists.
If δ(E,K) = 0 we “have parity” in the sense that there are statistically
as many odd ranks as even; and if δ(E,K) = 1

2
all ranks are odd, or all

ranks are even. Either of these endpoints occur; for example, we show
that if K has at least one real place, we “have parity.” And it is not
hard to find more interesting disparities16.

Here is a random example of what Zev, Karl, and I show, regard-
ing disparity, in the course of studying full rank statistics of 2-Selmer
groups.

Let L be a finite number field extension of Q of degree d, in which
2 splits completely and 5 is unramified. Form the infinite sequence of
number fields Kn := L(µ2n) for n = 3, 4, 5, . . . , and view the elliptic
curve E

(50A1) y2 = x3 − 675x− 79650

over each Kn.

Theorem 13.3.

δ(E,Kn) =

(
1− 2−(2n−1+1)

)d
2

.

In particular, just dealing with these examples yields a set of achieved
disparities that is dense in the full range of possibilities, [0, 1

2
].

16For example we show that if K has no real place, and E is semistable over K
then we never “have parity.”
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14. Modified Poonen-Rains heuristic

The Poonen-Rains heuristic offers conjectures for the relative aver-
ages of p-Selmer ranks of twists of a general elliptic curve E over a
general number field K. The idea is to view the Selmer group condi-
tions as given by the intersection of two Langrangian subspaces in a
quadratic space. The heuristic comes, then, from the densities of ranks
of the intersection of two “random Lagrangians.” This range of den-
sities can also be achieved as an equilibrium distribution of a certain
Markov system, assuming “parity.” In the case of families of Type (2),
as we’ve discussed, there can be disparity, yet, curiously the Markov
process model still provides what is, in fact, provable.

Here give description of the Markov Process. . .

The function

D(Z) :=
∑
n≥0

DnZn =
∞∏
i=0

1 + 2−iZ

1 + 2−i

had already come up in the work of Heath-Brown, and later in that of
Swinnerton-Dyer specifically as defining the stationary distribution for
Markov process we’ve just described; it also shows up in our work.

The coefficients Dn are all positive numbers and, setting Z = 1 we
get that ∑

n

Dn = 1

so D is a probability density ( a positive measure with mass equal to 1)
on the set of natural numbers. Setting Z = −1 we get

∑
n(−1)nDn = 0

which gives us an equal balance of odd and even densities:∑
n odd

Dn =
∑
n even

Dn =
1

2
.

While we are on this topic, looking ahead, if you evaluate at Z = 2
and Z = −2 you get:

∑
n

2nDn =
∞∏
i=0

1 + 2−i2

1 + 2−i
=
∞∏
i=0

1 + 21−i

1 + 2−i
= 3

and ∑
n

(−2)nDn =
∞∏
i=0

1 + 2−i2

1 + 2−i
=
∞∏
i=0

1 + 21−i

1 + 2−i
= 0,
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respectively. This gives us that∑
n odd

2nDn =
∑
n even

2nDn =
3

2

which eventually will be linked to “average sizes of 2-Selmer groups of
odd and of even rank.” The derivative ofD(Z) evaluated at Z = ±1 will
eventually be linked to the ”average 2-Selmer (even and odd) rank.”

15. Digression: p-Selmer for general primes p

There is a corresponding Markov Process17 related to p-Selmer,∑
n even

D(p)
n · pn =

∑
n odd

D(p)
n · pn = p+ 1,

suggesting the following amazing conjecture.
Conjecture: Let K be a number field. The average “size” of the

p-Selmer groups in the collection of all elliptic curves over K is p + 1,
for any prime number p. More generally the average “size” of the
N -Selmer group is σ(N) :=

∑
d | N 1.

Even more amazing is that Bhargava and Shankar prove that this
is the case for the family of all elliptic curves over K = Q and N =
2, 3, 4, 5.

16. Returning to quadratic twist families and reduced
2-Selmer ranks

Here is a conjecture, closely related to the result we actually proved.
(For the exact statement, see Theorem 19.2 of section 19 in the Ap-
pendix.

Conjecture 16.1. Let E be an elliptic curve over a number field, and
assume that E has “full Galois action on its 2-torsion.” That is, the
natural mapping of the absolute Galois group of K to Aut(E[2]) ≈
GL2(F2) = S3 is surjective.

(1) Let n ≥ 0, and let

ε = “even, ” or“odd”

according to the parity of n. Then the limit described the for-
mula below exists and the formula holds:

17See section 18 in the Appendix.
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(1

2
− δ(E,K; ε)

)
· Dn = lim

X→∞

|{|χ| < X; r(Eχ, K) = n}|
|{|χ| < X}|

.

As corollaries of this conjecture (following the discussion above) one
would have

Corollary 16.2. Let E be an elliptic curve over K. With the same
ordering of χ’s as in the statement of Conjecture 16.1 it follows—if
that conjecture holds—that the average size of the reduced 2-Selmer
groups of quadratic twists of E is 3 (independent of the disparity).
Moreover, there is a finite upper bound to the average 2-Selmer rank,
and Mordell-Weil rank, of quadratic twists of E.

We cannot yet manage to prove these limits, when we order the
quadratic twists χ by increasing absolute value of norm of conductor
as described above. We do prove the theorem above, though, in a less
satisfactory way: that is, when we use what we call skew-box ordering
described in section 19 of the appendix below.

Here are some further qualitative comments about our general meth-
ods.

(1) We use only standard methods: class field theory, global duality,
an effective Cebotarev theorem (in either of the standard two
strengths: the unconditionally proved theorem, but also if we
want to improve some bounds, we formulate results using the
conditional estimate based on GRH) and basic arithmetic of
elliptic curves.

(2) More specifically, the actual densities we obtain all derive from
an understanding of the relative densities of certain “Cebotarev
classes” of places in various finite extension fields of K.

(3) For example, of use to us, in the context in which we work, are
three distinct Cebotarev classes of “good” places of K related
to the S3-extension that is the splitting field of 2-torsion in E;
we call these classes types 0, 1, and 2 below according as Frobv
is of order 3, 2, or 1.

(4) Now, averaging over many type 0 places has the effect of smooth-
ing things out a lot, and this is a major piece of our machinery,
thanks to which we avoided a certain interesting side-question18.

18Zev suggested this successful way of skirting such (side-)questions.
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17. Families of “type (3)”: Elliptic curves that are
quadratic twists of a given elliptic curve by a

character of prime conductor

Let E for example be the elliptic curve

y2 = x3 + x2 − 16x− 29 ,

which has conductor 784 = 24 · 72. Let K be the maximal real subfield
of the field Q(µ7) of 7-th roots of unity as in section 3. Then, K is a
cyclic extension of Q of degree 3, and K = Q(E[2]), the field generated
by the coordinates of the points of order 2 on E.

Suppose p is a rational prime congruent to ±1 (mod 7), so p splits
into 3 distinct primes in K. Let P be one of the primes above p. If P
has a totally positive generator that is congruent to 1 (mod 8), then
the 2-Selmer group Sel2(E(p)/Q) of the quadratic twist of E by p has
dimension

dimF2 Sel2(E(p)/Q) =

{
3 if spin(P ) = 1,

1 if spin(P ) = −1.

The condition that p have a generator congruent to 1 modulo 8 is
equivalent to asking that p split completely in the ray class field of K
modulo 8. Hence, the set of such p has positive density. Moreover, K
has class number 1. Thus, thanks to theorems generalizing Theorem 3.2
(see our paper “The spin of prime ideals” on ArXiv) shows that, within
that set of twists, the Selmer rank is equal to 1 half of the time and 3
half of the time. As one might expect, this holds more generally.

Appendix

18. Markov Combinatorics

Fix p a prime number and define the following operator M = Mp

(d 7→ Mpd) on the convex set Ω of mass densities:

Mpd(n) := (1− p−1−n)d(n+ 1) + p1−nd(n− 1).

So, Mpd(0) := (1− p−1)d(1).

The following lemma is evident.
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Lemma 18.1. (1) The linear operator Mp preserves Ω;

(2) Mp preserves mass; e.g., If D is a probability density, so is
MpD.

(3) Mp sends even mass densities to odd ones and odd to even; e.g.,
Mp “flips” disparity, in that if d is a nontrivial mass density,
then

εeven(Mpd) = εodd(d),

and

εodd(Mpd) = εeven(d).

The operator Mp has a not-quite-unique equilibrium density in the
following sense: Consider the following mass density (it is in fact a
probability distribution having parity) predicted by the Poonen-Rains
heuristic, as discussed in Part I above:

Dp(n) :=
∞∏
j=1

(1 + pj)−1

n∏
j=1

p

pj − 1
.

NOTE: We have the following infinite-product generating function
for the Dp(n)’s:

G(Z) :=
∑
n≥0

Dp(n)Zn =
∞∏
i=0

1 + p−iZ

1 + p−i
.

Theorem 18.2. (1) 2Dp,odd and 2Dp,even are probability densities,
(2) MpDp,odd = Dp,even and MpDp,even = Dp,odd.

Proof: These are direct computation.

Theorem 18.3. For any nontrivial mass density d we have the limits:

lim
k→∞
M2k

p d = 2µ(d) ·
(
εodd(d) · Dp,odd + εeven(d) · Dp,even

)
.

NOTE: When we prove this theorem (e.g., by quoting some-
thing) we should also give error terms
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Corollary 18.4. We also have the limits:

lim
k→∞
M2k+1

p d = 2µ(d) ·
(
εodd(d) · Deven + εeven(d) · Dodd

)
.

We have the evident corollary:

Corollary 18.5. The “Poonen-Rains Heuristic” Statistics gives the
stationary distribution for the Markov process M2 applied to distribu-
tions having parity:
For any nontrivial probability density d having parity,

lim
k→∞

M2k
p d = Dp.

NOTE: We should also give the formulas for average size
and—in fact— all moments—for even and odd ranks

19. Skew-box ordering

By a skew-box ordering of our family we mean the following.

(1) First, for integers 1, 2, 3, . . . ν, . . . we give positive-real-valued
monotonically increasing functions αν(X) of a positive real vari-
able X; we assume further that for each ν αν(X) tends to in-
finity with X.

(2) If χ ∈ C(K) let d(χ) be its conductor, and write it as follows:

d(χ) = dΣ(χ)d0(χ)d1(χ)d2(χ),

where we have factored d(χ) into the part involving places in Σ
and the places (outside Σ) of types 0, 1 and 2.

Definition 19.1. For positive integers j, k define the skew-
box Bj,k(K,X) with sides {αν}ν and cut-off X to be the
finite subset of the group C(K) of quadratic characters where

(a) d1(χ) = q1q2 . . . qj′ is a product of j′ places, where j′ ≤ j
and the absolute value of the norm of qi is < αi(X), for
i = 1, 2, . . . j′, and where
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(b) d2(χ) = qj′+1qj′+2 . . . qj′+k′ is a product of k′ places, where
k′ ≤ k and the absolute value of the norm of qi is < αi(X),
for

i = j′ + 1, j′ + 2, . . . j′ + k′,

(c) (in contrast to the requirement that we bound the norms
of each of the places of types 1 and 2, and take account of
how many places of those types there are) we require that
the absolute value of the norm of d0(χ) is < αj′+k′+1(X).

Note that C(K) is the union of the finite “skew-boxes” Bj,k(K,X) as
X, j, and k tend to infinity.

Here is our theorem:

Theorem 19.2. Let E be an elliptic curve over K with full Galois
action on 2-torsion; that is, the natural homomorphism

Gal(K̄/K) −→ Aut
(
E(K̄)[2]

)
is surjective. For integers

1, 2, 3, . . . ν, . . .

there are explicit positive-real-valued monotonically increasing func-
tions19 αν(X) of a positive real variable X, each tending to infinity
with X, such that defining skew-boxes Bj,k(K,X) with sides given by
those {αν}ν , we have:

(1) Let n ≥ 0, and let

ε = “even, ” or“odd”

according to the parity of n. Then the limit described the for-
mula below exists and the formula holds:

19These functions depend on E and K. I won’t give the formulas here, but just
mention that these are defined “recursively” and come from successively applying
the effective Cebotarev Theorem; we have unconditional bounds, and also better
bounds conditional on GRH.
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(1

2
−δ(E,K; ε)

)
·Dn = lim

j+k→∞
lim
X→∞

|{χ ∈ Bj,k(K,X); r(Eχ, K) = n}|
|Bj,k(K,X)|

where X, j, and k all go to infinity.

As discussed in the context of Conjecture 16.1 a series of corollaries
follow:

Corollary 19.3. Let E be an elliptic curve over K with full Galois
action on 2-torsion. With the same skew-box ordering of χ’s as in the
statement of Theorem 19.2 the average size of the reduced 2-Selmer
groups of quadratic twists of E is 3 (independent of the disparity).
Moreover, there is a finite upper bound to the average 2-Selmer rank,
and Mordell-Weil rank, of quadratic twists of E.


