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Part I

The Program for these lectures

1 Around Hilbert’s Tenth Problem

Some years ago, Karl Rubin and I worked on a problem in the arithmetic of elliptic curves that
was needed to answer a general question in logic: given an infinite, but finitely generated, commu-
tative ring A is there an algorithm to determine—in finite time—whether a polynomial in finitely
many variables with coefficients in A has a solution or not. We didn’t answer that question un-
conditionally, but rather assumed a standard conjecture in the arithmetic of elliptic curves, and
proved (dependent, of course, on an immense amount of prior work—classical work of Julia Robin-
son/Davis/Putnam/ Matiyasevich as well as recent work of Poonen and Eisentrager) that: no,
there is no such algorithm for any finitely generated commutative ring A (of infinite cardinality).

This type of work, of course, has its origin in Hilbert’s classical Tenth Problem:

Given a diophantine equation with any number of unknown quantities and with ratio-
nal integral numerical coefficients: To devise a process according to which it can be
determined in a finite number of operations whether the equation is solvable in rational
integers.
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We tend to interpret Hilbert’s problem broadly in terms of algorithmic processes, and there’s
some consensus about what that means. The simple answer to Hilbert’s question (for Z) is “no,”
stemming from “classical work” (Julia Robinson/Davis/Putnam/ and Matiyasevich). To say that
there is no such algorithm is in no way a completely negative statement, given the format of
Matiyasevich’s proof. For it banks on

• the known fact that there are subsets S of the integers that are undecidable in the simple
sense that although there may be an algorithm to list the elements of S (S would then be
called computably enumerable or listable) there is no algorithm to list the elements of
the complement of S in Z, so we don’t have a way of computing whether or not a given integer
is in S; and

• being able to define any such S by a diophantine method.

That is, diophantine formulations capture all listable sets.

So—conditionally on a standard conjecture in the arithmetic of elliptic curves—the theorem that
Karl Rubin and I contributed to would then say, for example, that the class of diophantine problems
over any ring that is infinite, and finitely generated, is as rich as, for example, the Halting Problem
of Alan Turing.

The pressing question is the analogue of Hilbert’s Problem for the field Q and more generally for
subfields in Q̄. For example, one can ask the question from the top, i.e., for subfields of Q̄ which
are the fixed field of a given automorphism of Q̄. The notable success here is for the subfield of real
algebraic numbers, i.e., the fixed field of complex conjugation—this field being first-order decidable,
by a theorem of Fried, Haran and Völklein.

Julia Robinson had shown that there is a “first-order definition” of Z in Q and using Matiyasevich’s
result one can conclude that there is NO algorithm to decide the truth or falsity of first-order
sentences in Q. It is still an open question whether Z can be defined by diophantine means in Q.

Bjorn proved the following relatively short first order definition of Z in Q . A rational number t
is an integer if for all pairs of rational numbers a, b there are seven rational numbers x1, x2, . . . , x7

such that

(a+
4∑
i=1

x2
i )·(b+

4∑
i=1

x2
i )·(x2

1−ax2
2−bx2

3+abx2
4−1)2 = −

2309∏
n=0

((n−t−2x1)2−4ax2
5−4bx2

6 = 4abx2
7−4)2.

2 Diophantine Stability Issues

To prove unconditionally that Hilbert’s diophantine problem has a negative answer for any finitely
generated commutative ring A (of infinite cardinality) one would like to use the existence of elliptic
curves containing rational points of infinite order over a given number field K having a certain
‘stability’ property as one passes from the field K to larger number fields.
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Karl Rubin and I showed that a standard conjecture regarding 2-Selmer groups will imply the
desired existence described above. More generally, call the stability property that enters in this
discussion “diophantine-stability:” Let L/K be a field extension, and

P (X1, X2, . . . , Xn)

a polynomial with coefficients in K (or more generally a system of such polynomials). Say that the
polynomial P is ‘diophantine-stable’ for the extension L/K if P acquires no new zeroes over L; i.e.,
if for a1, a2, . . . , an ∈ L we have P (a1, a2, . . . , an) = 0 then the elements a1, a2, . . . , an are all in K.
The property having been so important in one context, it is natural to look at it in broader terms.

Fix a variety V over, say, a number field K. Is there a nontrivial field extension L/K
for which it is diophantine-stable?

If there is a curve in V that is isomorphic to an open subvariety of the projective line over K the
answer is clearly no. Is this the only obstruction to a positive answer to the above question? I.e.,

Question: If V is a variety over a number field K such that for every nontrivial extension L/K,
there are new points, i.e., V (L)− V (K)) is not empty, does V contain a subvariety over K that is
isomorphic to an open subvariety of the projective line over K?

Karl Rubin and I (with help from Michael Larson) have recently proved that the answer to this
question is yes, if V is a curve. To formulate this more precisely,

Let K ⊂ Q̄ be a number field and V an irreducible algebraic variety over K.

Definition 1. A field extension L/K is generated by a point of V over K if (it “is”; i.e., if)
equivalently:

• L is generated over K by the coordinates of the image of some point of an affine open subva-
riety of V when embedded in some affine space AN , the embedding being defined over K.

• L/K is an extension of V such that there is a point x ∈ V (L) which is not contained in the
subset V (L′) ⊂ V (L) for any proper sub-extension L′/K.

• L = K(x) for some point x ∈ V (Q̄).

If V is a variety over K we will sometimes say that ‘L/K belongs to V ’ over K if it is generated by
a point of V over K. Denote by L(V ;K) the set of field extensions of K belonging to V . That is:

L(V ;K) := {K(x)/K ; for x ∈ V (Q̄)}.

A vertical companion to the classical Hilbert Tenth problem (and its various variants) might be
to simply fix one variety V and ask decidability questions about the collection of field extensions
L(V ;K).
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For example, if V contains a (nonempty) affine open subvariety of the projective line P1 over K,
then L(V ;K) consists of all number field extensions of K. It seems natural to us to conjecture the
converse. We prove this conjecture for irreducible varieties of dimension one. Specifically:

Theorem 1. Let V be an irreducible projective curve over the number field K. Then every field
extension L/K belongs to V if and only if V is birationally isomorphic (over K) to the projective
line.

Moreover, we show that for any curve of positive genus there are many extension fields do not
belong to it:

Theorem 2. Let X be an irreducible curve over a number field K whose normalization and com-
pletion is not of genus 0. Then there is a finite extension K ′/K such taht for any positive integer
n, there are infinitely many primes ` where, for each of them, there are infinitely many cyclic
extension fields L/K ′ of degree `n such that X(K ′) = X(L).

We show this by relating curves to abelian varieties, via their jacobians.

Here are some natural related questions:

Question 1. Let X and Y be two irreducible smooth projective curves over a number field K ⊂
Q̄. If L(X;K ′) = L(Y ;K ′) for all number field extensions K ′/K, is it true that X and Y are
isomorphic over Q̄?

If one restricts to curves X,Y with X of genus zero, if L(X;K) = L(Y ;K) then X ∼= Y over K.
(This is easy to see.)

Also, it is tempting to think that for a fixed cyclic field extensions of large prime degree diophantine
stability is not so rare. E.g., we might wonder:

Question 2. Fixing a curve X over a number field K, is it the case that for any prime degree
` >>X,K 0 there is a significantly large quantity (e.g., a positive density) of cyclic degree ` extensions
L/K for which X acquires no new rational point?

3 The rarity of rational points, and some comments about elliptic
curves over Q

An affirmative answer to the question just asked conforms to a general sense that—all in all–rational
points are rare and when they come in profusion they do so for some eventually graspable reason,
and not because they happen. It is a ‘minimalist view.’

I’ll be discussing this in these lectures, reviewing aspects of the logical vocabulary we used, the
basics of elliptic curves, and the various tools for examining aspects of the problem; specifically
Selmer groups over arbitrary number fields.
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Here are a few comments about Question 2 connected to elliptic curves over Q (but I’ll give a general
intro to elliptic curves in a later lecture). Examples of elliptic curves over Q non-diophantine-stable
for cyclic extensions of Q of order ` (even for relatively small primes `) seem to be quite rare over
Q. Chantal David, Jack Fearnley and Hershy Kisilevsky [?] conjecture that for a fixed elliptic curve
over Q and ` ≥ 7, there are only finitely many such extensions. For ` = 3 and 5, following random
matrix heuristics, they make these conjectures: if

NE,`(x) := |{χ of order ` | cond(χ) ≤ x and L(E,χ, 1) = 0}|
they conjecture that:

logNE,3(x) ∼ 1

2
log(x),

logNE,5(x) <<ε xε.

They exhibit one example with ` = 11, namely, the elliptic curve E := 5906B1 (using Cremona’s
classification)1.

The way David, Fearnley and Kisilevsky proceed is by studying the nonvanishing of values at s = 1
of L-functions L(E,χ, 1) for characters χ of order ` > 2 and of varying conduction N = Nχ. This
latter question is equivalent to the more combinatorial-seeming question of nonvanishing of:

N∑
a=1

χ(a) · [ a
N

]E ,

i.e., the weighted sums

of the “real” modular symbol2 attached to E
a

N
7→ [

a

N
]E

which sends Q/Z to rational numbers of bounded denominator.

To study the distribution of these modular symbols, Karl Rubin, William Stein and I have made
some computations that I want to describe. Let E be an elliptic curve over Q with L-function
L(e, s) =

∑∞
n=1

an
ns and with [ aN ]E the “real” modular symbol attached to E. Fixing N = p a large

prime, form the function for 0 ≤ τ ≤ 1/2,

GE,p(τ) =
∑

0≤a
p
≤τ

[
a

p
]E .

1They show that L(E,χ, 1) = 0 where χ is a character of order 11 and of conductor 23 (i.e., χ has the smallest
possible conductor for characters of its order). This implies that one has diophantine instability for the cyclic field
extension L/K of degree 11 cut out by χ.

2 The L-functions for an elliptic curve over Q and all of its twists does many things at once: it records local data,
as we’ll mention below; but also for the family of twists of E its values at s = 1 are given in terms of integrals of
a differential form, and therefore are expressible in terms of periods, of a particular sort, of the elliptic curve, and
when appropriately normalized, these are the “modular symbols,’” a combinatorial tool computable by a variant of
a continued fraction process–hence very quickly.
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Figure 1: E = 11a; p = 100, 003
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Figure 2: E = 37a; p = 100, 019

It is natural to try to compare this with the (convergent) function:

gE(τ) =
1

2πi

∞∑
n=1

an
n2

(sin(2πinτ)/2π

Specifically:

Conjecture 3.

lim
p→∞

GE,p(τ)
??
= gE(τ).
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Figure 3: E = 37b; p = 100, 043
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Part II

Logic and Number Theory

4 Listable sets of integers

Nowadays one has a large number of different processes in our experience (i.e., successes). From
algorithms to find the maxima of functions on convex polytopes (e.g.: Linear programming) to
procedures for factoring numbers into product of primes. The basic questions we tend to ask about
these have to do with running time.

We also have quite a number of guaranteed non-successes:

• There is no finite algorithm to determine, given a finite presentation of a group, whether or
not the group is trivial. Or whether two finite presentations present isomorphic groups.

• The recognition problem for manifolds in dimension four or higher is unsolvable (it being
related directly to the recognition problem for finitely presented groups).

And even when one looks for interesting Diophantine examples, they often come in formats some-
what different from the way Hilbert’s Problem is posed. For example,

• we have a (deep) decision procedure to determine whether any given elliptic curve over the
rational field Q has finitely many or infinitely many solutions. But this distinction

finitely many ↔ infinitely many

is not a distinction that Hilbert formulates.

• And, sometimes, we’re interested not in answering this question for any single elliptic curve
but, for whole families of them. For example, the congruent number problem is the problem
of determining those positive integers n that can be expressed as the area of a right triangle
with three rational number sides. This turns out to be equivalent to asking that the elliptic
curve

y2 = x3 − n2x

have infinitely many rational points.
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• And, we sometimes try to find single processes that work even allowing for variation of the
exponents involved.

As in:

1. Catalan-type Problems

For a given integer k find all perfect powers that differ by k.

Y n −Xm = k

Example: the only two consecutive perfect powers are:

8 = 23 and 9 = 32,

or as in:

2. Fermat’s Last Theorem.

So you might ask why—except for historical reasons—might one be interested in pursuing the
question as Hilbert posed it. The answer (which is already enough to spark my interest) is that
it is a problem that has led to the most magnificent developments in mathematical logic, and in
the intersection of mathematical logic and number theory. But also, thanks to relatively recent
work (of Denef, Denef-Lipschitz, Pheidas, Shalapentokh and Poonen) Hilbert’s Problem calls for
the answers to new kinds of questions in number theory, and specifically in the arithmetic of elliptic
curves.

So, back to Hilbert’s Tenth Problem!

Hilbert is particular in the type of solutions (rational integers) he seeks. Nevertheless, in consid-
ering “Hilbert’s 10th Problem” we often specifically interpret Diophantine equation, process and
sometimes generalize the type of solutions being considered. We then end up with a question
roughly of the following form:

Let A be a commutative ring. Does there exist a finite algorithm to determine whether any finite
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system of polynomial equations in finitely many variables with coefficients in A has a solution in A
or not?

INPUT: A finite collection of polynomial equations

fi(X1, X2, X3, . . . , Xn)

with integer coefficients.

OUTPUT: “Yes,” or “No,” answering the question of whether or not there is an n-tuple of integers
(a1, a2, a3, . . . , an) such that

fi(a1, a2, a3, . . . , an) = 0

for all i.

One standard way of refining the above question is to “reset” it as a problem related to listable sets
and Diophantine sets.

Listable sets of integers

(synonyms: recursively enumerable, computably enumerable)

I’ll start with some examples of sets that are easy to “list”

•
2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

•
2!, 3!, 4!, 5!, . . .

Discuss what is meant by easy
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Generally, a subset L ⊂ Z is called listable if there exists a finite computer program whose output
gives a sequence α1, α2, α3, . . . of integers such that the set L is precisely this collection of numbers;
i.e.,

L = {α1, α2, α3 . . . }.

A computer algorithm that does job this will be called a computer algorithm that “lists L.”

Note, though, that–even if the computer spits out a “new” integer every second— the ordering
in which the integers in L come via the computer’s list may be helter-skelter in terms of absolute
values. Therefore if you suspect that a given number, say 2, is not in L and need to have a definite
guarantee of the truth of your suspicion, well (. . . if you are right!) running the helter-skelter
computer algorithm for any finite length of time will be of no help to you.

• A more useful finite computer program might be, for example, a program that for each integer

N will, after some guaranteed time (e.g., no greater than NN ...N

hours) 3) actually produces
a complete list of all integers of absolute value ≤ N that are in L. (Call such a program a
deluxe program.)

• Somewhat intermediary to the above two types of computer programs (helter-skelter, and
deluxe) would be a pair of computer programs, one of which spits out the elements of L and
the other spits of the elements of the complement of L. Supplied with such a pair of programs
you might, at the very least, run the first program by day, and the second by night, for then
you are guaranteed to know—in some (perhaps unspecified, but) finite time whether or not
2 is in your set L.

The Halting Problem

A set L that has the property that it and its complement are both listable is called recursive.

If you have such a recursive set, then, as mentioned—listing the set L by day and its complement
N − L by night—you are guaranteed that for every N ∈ N you will know at some finite time
whether or not N is in your set.

There exist recursively enumerable sets that are not recursive. (The computer algorithms that list
such sets are necessarily quite helter-skelter!)

This is a consequence of the famous 1936 theorem of Alan Turing that was phrased in terms of the

3N successive exponentials, or choose any recursively formulatable estimate you like
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halting problem for algorithms. Turing showed that there exists no universal algorithm to tell you
whether or not any finite computer algorithm will terminate finitely, when run.

More specifically, the so-called halting set

H := {The set of couples (P, x)

where P is a program and

x is a possible input to program P and

such that Program P will eventually halt

if run with input x}

is recursively enumerable—once you code, in a computable way, the (P, x)’s as a subset of natural
numbers—BUT the complement of this set is not recursively enumerable.

Diophantine sets

Roughly, a Diophantine subset of integers (or of natural numbers) is a subset that can be defined
using the seemingly very restricted vocabulary of polynomials.

Here is one way of formulating this concept over a fairly general ring.

Let A be a commutative noetherian integral domain, the main example being A = Z.

Definition: Let D ⊂ A be a subset of the ring A.
Say that D is Diophantine in A if there exists a finite set of polynomials with coefficients in A,
in finitely many variables
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fi(T ;X1, X2, . . . , Xn) ∈ A[T,X1, X2, . . . , Xn]

(i = 1, 2, . . . ,m)

such that for α ∈ A the system of polynomial equations

fi(α;X1, X2, . . . , Xn) = 0

has a simultaneous solution

(X1, X2, . . . , Xn) = (a1, a2, . . . , an) ∈ An

if and only if

α ∈ D ⊂ A.

If this happens say that the set of polynomials cut out D.

Notice the evident proposition:

Proposition: If A = Z (or, more, generally, a countable ring) and D ⊂ A is Diophantine, then D
is listable.

Moreover, any set of polynomials

{fi(α;X1, X2, . . . , Xn)}i

(for i = 1, 2, . . . ,m) that “cut out” L leads to a computer algorithm that lists L.
Remarks:

(1) The collection of Diophantine subsets of an integral domain A is closed under finite union and
intersection.
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Proof: It suffices to do this for two Diophantine sets D,E ⊂ A:

Let the systems of polynomials
{fi(t;X1, . . . )}i

and
{gj(t;Y1, . . . )}j

cut out D and E respectively.

• The “union” of the two systems, (viewed as polynomials in t and the independent variables
Xµ and Yν) cuts out D ∩ E.

• The “product”system given by

{fi(t;X1, . . . ) · gj(t;Y1, . . . )}i,j

cuts out D ∪ E.

Diophantine sets are closed, as well, under polynomial mappings.

Mention: scheme-theoretic definition

(3) For us the most important ring is A = Z. In this context you can replace any finite system of
polynomials {fi(t;X1, . . . )}i that “cut out” a set D by a single polynomial

Σifi(t;X1, . . . )
2.

One is now faced with the task of building a Diophantine vocabulary.

Here is a list of subsets of Z that are Diophantine (and easily proven to be).

1. Lagrange’s Theorem says that any positive whole number is expressible as a sum of four
squares.
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E.g
4001 = (20)2 + 12 + 02 + 02

well . . . that might have been too easy an example . . .

In our Diophantine vocabulary, this means that the polynomial

f(t;X1, X2, X3, X4) := t− Σ4
i=1X

2
j

cuts out the set of positive integers; so the set of positive numbers is Diophantine.

2. Therefore it follows, by easy steps, that these sets are too:

• the set of numbers ≥ a for any given a ∈ Z,

• the set of numbers ≤ b for any given b ∈ Z,

• any finite subset of Z,

• the complement of any finite subset of Z.

3. So, if D is Diophantine, then any set obtained from D by removing and adding finite sets is
also Diophantine.

4. Arithmetic progressions are Diophantine; as are the set of all squares, all cubes, all n-th
powers for any given n.

5. Composite numbers.

6. For any fixed (say, nonsquare, positive) integer d, consider the set of integers t that come in
solutions of the Pell equation

t2 − ds2 = 1

(this being a set that grows roughly exponentially).

The evolution of Hilbert’s problem as developed through the work of

Martin Davis
Julia Robinson
Hillary Putnam

Yuri Matiyasevich:

The culminating theorem is due to Matiyasevich:
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Theorem Every listable subset of Z is Diophantine.

Thus listable and Diophantine are equivalent conditions for subsets of Z.

Since there exist listable subsets of Z that are not recursive—i.e., such that their complements are
not listable, Matiyasevich’s Theorem gives a negative answer to Hilbert’s question above, but does
far more than just that.

For example:

1. It certainly shows that there are systems of polynomials over Z that admit no “deluxe com-
puter program” as described.

2. The result also implies that relatively benign subsets of Z can be Diophantinely described, as
well. This is not as clear as one might think even for the most familiar subsets. For example:

• There is a system of polynomials that cut out the set of factorials 1!, 2!, 3! . . . The fact
that this set is Diophantine played a big role in the development of the subject.

By the way, to get such a polynomial one starts by finding a Diophantine way of ex-
pressing the binomial coefficients

(
n
m

)
and then dealing with the—to me surprisingly

unpromising—formula

m! = lim
n→∞

nm(
n
m

) .
(!!!)

The factorial operation has quite a powerful effect if one allows it to be used as a piece
of equipment to generate recursively enumerable sets. For example, the set of numbers
α > 1 such that the expression

α ·X1 + (α− 1)! ·X2 = 1

has a zero for integers X1, X2 is precisely the set of prime numbers. But regarding prime
numbers, more relevant for our story is the fact that. . .

• There is a polynomial over Z whose set of positive values is the set of exactly all prime
numbers for integral substitution of its variables. A specific such polynomial is given by
[JSWW76]:

(k + 2){1− [wz + h+ jq]2 − [(gk + 2g + k + 1)(h+ j) + hz]2 − [2n+ p+ q + ze]2[16(k +
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1)3(k+2)(n+1)2 +1f2]2− [e3(e+2)(a+1)2 +1o2]2− [(a21)y2 +1−x2]2x− [16r2y4(a2−
1) + 1−u2]2− [((a+u2(u2− a))2− 1)(n+ 4dy)2 + 1− (x+ cu)2]2− [n+ l+ vy]2− [(a2−
1)l2 + 1−m2]2− [ai+k+ 1− l− i]2− [p+ l(a−n−1) + b(2an+ 2a−n2−2n−2)−m]2−
[q+y(a−p−1) + s(2ap+ 2a−p2−2p−2)−x]2− [z+pl(a−p) + t(2ap−p2−1)−pm]2}

Comments on the History

This work ranges frrom 1944 when Emil Post said that Hilbert’s tenth problem “begs for an
unsolvability proof” to 1970 when Matijasevic clinched the theorem.

But I’ll begin in 1960, when Julia Robinson, sharpening work of Martin Davis, and Hillary
Putnam, showed that if there exists a roughly exponential function defined in a diophantine
way; i.e., a Diophantine set F of couples (a, b) in N×N with two properties:

(a) If (a, b) ∈ F then a < bb.

(b) For each positive integer k there is an (a, b) ∈ D with b > ak.

then all listable sets would be Diophantine.

In 1970, Matiyasevich provides a Diophantine definition of a set F as required by J.R.: he
defined his F to be the collection of pairs (a, b) such that

b = F2a

where Fn is the nth Fibonacci number, thereby completing the proof that all recursively
enumerable sets are Diophantine and establishing the fact that Hilbert’s tenth problem (over
Z) is unsolvable.

(I find this quotation of Matiyasevich illuminating:)

“The idea was as follows. A universal computer science tool for representing information
uses words rather than numbers. However, there are many ways to represent words by
numbers. One such method is naturally related to Diophantine equations. Namely, it
is not difficult to show that every 2× 2 matrix(

m11 m12

m21 m22

)
with the m’s being non-negative integers and the determinant m11m22 −m12m21 equal
to 1 can be represented, in a unique way, as a product of matrices

M0 :=

(
1 1
0 1

)
and

M1 :=

(
1 0
0 1

)
.
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It is evident that any product of such matrices has non-negative integer elements and
the determinant equals 1. This implies that we can uniquely represent a word in the
two-letter alphabet M0,M1 by the four-tuple

(m11,m12,m21,m22)

such that the numbers evidently satisfy the Diophantine equation

m11m22 −m12m21 = 1.

Under this representation of words by matrices, the operation of concatenation-of-words
corresponds to matrix multiplication and thus can be easily expressed as a system
of Diophantine equations, opening up a way of transforming an arbitrary system of
word equations into “equivalent” Diophantine equations. Many decision problems about
words had been shown undecidable, so it was quite natural to try to attack Hilbert’s
tenth problem by proving the undecidability of systems of word equations.”

. . .

SEE BELOW for material. Start with some examples of sets that are easy to “list”

•
2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

•
2!, 3!, 4!, 5!, . . .

See [M] and [Sh100b] for good expository accounts of this notion listable. Naively,

• a listable subset of Z (synonyms: recursively enumerable, computably enumerable) is a subset
L ⊂ Z for which there exists a finite computer program whose output gives a sequence
α1, α2, α3, . . . of integers such that the set L is precisely this collection of numbers; i.e.,

L = {α1, α2, α3 . . . }.

A computer algorithm that does job this will be called a computer algorithm that “lists L.”

Note, though, that the ordering in which the integers in L come via the computer’s list may
be helter-skelter in terms of absolute values. Therefore if you suspect that a given number,
say 2, is not in L and need to have a definite guarantee of the truth of your suspicion, well
(. . . if you are right!) running the helter-skelter computer algorithm for any finite length of
time will be of no help to you.

• A more useful finite computer program might be, for example, a program that for each integer

N will, after some guaranteed time (e.g., no greater than NN ...N

hours4) actually produces
a complete list of all integers of absolute value ≤ N that are in L. (Call such a program a
deluxe program.)

4N successive exponentials, or choose any recursively formulatable estimate you like
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• Somewhat intermediary to the above two types of computer programs (helter-skelter, and
deluxe) would be a pair of computer programs, one of which spits out the elements of L and
the other spits of the elements of the complement of L. Supplied with such a pair of programs
you might, at the very least, run the first program by day, and the second by night, for then
you are guaranteed to know—in some (perhaps unspecified, but) finite time whether or not
2 is in your set L.

5 The Halting Problem

As mentioned, a set L that is listable by a finite computer algorithm will be referred to as listable
or recursively enumerable. And a set L that has the property that it and its complement are both
listable is called recursive. What we will be using below is the fact (cf. [Sm]) that there exist
recursively enumerable sets that are not recursive. (The computer algorithms that list such sets are
necessarily quite helter-skelter!) The existence of recursively enumerable sets that are not recursive
is a consequence of the famous 1936 theorem of Alan Turing that was phrased in terms of the
halting problem for algorithms. Turing showed that there exists no universal algorithm to tell you
whether or not any finite computer algorithm will terminate finitely, when run. More specifically,
the so-called halting set

H := {The set of couples (P, x) where P is a program and x is a possible input to program P and

such that Program P will eventually halt if run with input x}

is recursively enumerable, (i.e., there is fairly evidently a computable function that lists all of the
pairs (P, x) it contains) but the complement of this set is not recursively enumerable.

6 Diophantine sets

Roughly, a Diophantine subset of integers (or of natural numbers) is a subset that can be defined us-
ing the seemingly very restricted vocabulary of polynomials. For the classical notion of Diophantine
subset of a commutative ring see [DL78], [Den80]. Here is one way of formulating this concept.
Let A be a commutative noetherian integral domain, the main example being A = Z.

Definition 2. Let D ⊂ A be a subset of the ring A.
Say that D is Diophantine in A if there exists a finite set of polynomials with coefficients in A,
in finitely many variables

fi(T ;X1, X2, . . . , Xn) ∈ A[T,X1, X2, . . . , Xn]

(i = 1, 2, . . . ,m) such that when specializing to some value T = α ∈ A we have that the system of
polynomial equations

fi(α;X1, X2, . . . , Xn) = 0
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(for i = 1, 2, . . . ,m) has a simultaneous solution

(X1, X2, . . . , Xn) = (a1, a2, . . . , an) ∈ An

if and only if

α ∈ D ⊂ A.

If this happens say that the set of polynomials cut out D.

Notice the evident proposition:

Proposition 1. If A = Z (or, more, generally, a countable ring) and D ⊂ A is Diophantine, then
D is listable. Moreover, any set of polynomials {fi(α;X1, X2, . . . , Xn)}i (for i = 1, 2, . . . ,m) that
“cut out” L leads to a computer algorithm that lists L.

Proof: Choose some ordering of An+1 (e.g., lexicographical based on an ordering of A; if A =
Z my preference is for the evident ordering of Z: that is, −n precedes +n and otherwise it is
nondecreasing in the absolute value of n) and run through the n+1-tuples (α; a1, a2, . . . , an) ∈ An+1

computing fi(α; a1, a2, . . . , an) for i = 1, 2, . . . : every time you get a hit—i.e., every time that
fi(α; a1, a2, . . . , an) = 0 for i = 1, 2, . . . you record the “α” if it hasn’t been previously recorded
giving a (possibly empty, of course) sequence α1, α2, . . . listing D.

Remarks: (1) The collection of Diophantine subsets of an integral domain A is closed under finite
union and intersection.

Proof: It suffices to do this for two Diophantine sets D,E ⊂ A: if the systems of polynomials
{fi(t;X1, . . . )}i and {gj(t;Y1, . . . )}j cut out D and E respectively, then the “union” of the two
systems, (viewed as polynomials in t and the independent variables Xµ and Yν) cuts out D ∩ E
while the system given by {fi(t;X1, . . . ) · gj(t;Y1, . . . )}i,j cuts out DS ∪ E.

(2) A more general (and, perhaps, algebro-geometrically more natural) way of thinking of Dio-
phantine set is the following:

Let S be an integral noetherian scheme—say an affine scheme S = Spec(A) where A is a noetherian
integral domain— and T an S-scheme of finite type. Let T = T (S) the set of S-valued points of
the S-scheme T . A subset D ⊂ T is Diophantine if there is a morphism of S-schemes of finite
type f : X → T such that

D = f(X(S)) ⊂ T (S) = T .

To relate the above to the previous definition let S = Spec(A) and let T = Spec(A[t]) denote the
affine line over Spec(A). So the set T of A-rational points of T , i.e.,

T = T (A) = HomA(A[t], A).
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is simply the set A. Diophantine subsets of the ring A are nothing more than the images of the
sets of A-rational points,

X(A) −→ T (A) = A,

where X → T range through all morphisms of finite type of A-schemes (of finite type) X.

A vague, but general question, then for any scheme T of finite type over such a base S would be:

To give a useful algorithmic characterization of the subsets D ⊂ T that are Diophantine.

(3) For us the most important ring is A = Z, and scheme T is the affine line. In this context you
can replace any finite system of polynomials {fi(t;X1, . . . )}i that “cut out” a set D by a single
polynomial

Σifi(t;X1, . . . )
2.

Here is a list of subsets of Z that are Diophantine (and easily proven to be).

1. Lagrange proved that any positive whole number is expressible as a sum of four squares.

E.g
401 = (20)2 + 12 + 02 + 02

well . . . that might have been too easy an example . . .

Lagrange’s Theorem says, in our vocabulary, that the polynomial

f(t;X1, X2, X3, X4) := t− Σ4
i=1X

2
j

cuts out the set of positive integers; so the set of positive numbers is Diophantine.

2. Therefore it follows, by easy steps, that these sets are too:

• the set of numbers ≥ a for any given a ∈ Z,

• the set of numbers ≤ b for any given b ∈ Z,

• any finite subset of Z,

• the complement of any finite subset of Z.

3. So, if D is Diophantine, then any set obtained from D by removing and adding finite sets is
also Diophantine.
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4. Arithmetic progressions are Diophantine; as are the set of all squares, all cubes, all n-th
powers for any given n.

5. Composite numbers.

6. For any fixed (say, nonsquare, positive) integer d, consider the set of integers t that come in
solutions of the Pell equation

t2 − ds2 = 1

(this being a set that grows roughly exponentially).

7 Davis/(Julia) Robinson/Putnam/ Matiyasevich

Here, in a nutshell, is the general status of this question we inherited from Hilbert and from
“classical work” of Martin Davis, Julia Robinson, Hillary Putnam and Yuri Matiyasevich. The
culminating theorem is Matiyasevich’s:

Theorem 4. Every listable subset of Z is Diophantine.

Thus listable and Diophantine are equivalent conditions for subsets of Z. Since there exist listable
subsets of Z that are not recursive—i.., such that their complements are not listable, Theorem 4
gives a negative answer to Hilbert’s question above, but does far more than just that.

For example:

1. It certainly shows that there are systems of polynomials over Z that admit no “deluxe com-
puter program” as described.

2. The result also implies that relatively benign subsets of Z can be Diophantinely described, as
well. This is not as clear as one might think even for the most familiar subsets. For example:

• There is a system of polynomials that cut out the set of factorials 1!, 2!, 3! . . . The fact
that this set is Diophantine played a big role in the development of the subject5.

The factorial operation has quite a powerful effect if one allows it to be used as a piece
of equipment to generate recursively enumerable sets. For example, the set of positive
numbers α such that the expression

(α+ 1) ·X1 + α! ·X2 = 1

has a zero for integers X1, X2 is precisely the set of prime numbers. But regarding prime
numbers, more relevant for our story is the fact that. . .

5 To get such a polynomial one starts by finding a Diophantine way of expressing the binomial coefficients
(
n
m

)
and then dealing with the—to me surprisingly unpromising—formula

m! = lim
n→∞

nm(
n
m

) .
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• There is a polynomial over Z whose set of positive values is the set of exactly all prime
numbers for integral substitution of its variables. A specific such polynomial6 is given
in [JSWW76]:

(k + 2){1− [wz + h+ jq]2 − [(gk + 2g + k + 1)(h+ j) + hz]2 − [2n+ p+ q + ze]2[16(k +
1)3(k+2)(n+1)2 +1f2]2− [e3(e+2)(a+1)2 +1o2]2− [(a21)y2 +1−x2]2x− [16r2y4(a2−
1) + 1−u2]2− [((a+u2(u2− a))2− 1)(n+ 4dy)2 + 1− (x+ cu)2]2− [n+ l+ vy]2− [(a2−
1)l2 + 1−m2]2− [ai+k+ 1− l− i]2− [p+ l(a−n−1) + b(2an+ 2a−n2−2n−2)−m]2−
[q+y(a−p−1) + s(2ap+ 2a−p2−2p−2)−x]2− [z+pl(a−p) + t(2ap−p2−1)−pm]2}

8 Comments on the History

For a historical (and basic mathematical) account of this work it would be difficult, I think,
to do better than the very informative wikipedia entry on Hilbert’s tenth Problem which has
a chart listing work ranging from 1944 when Emil Post said that Hilbert’s tenth problem
“begs for an unsolvability proof” to 1970 when Matijasevic clinched the theorem.(We’re told
that this Wikipedia entry was composed by Martin Davis, so it is no surprise that it is that
excellent!)

On the way to the final formulation of the theorem there is Martin Davis’s formulation of
what we’ll, for reference, call Davis Sets, these being sets of natural numbers ∆ such that
there exists a polynomial with integral coefficients

P (T,K, Y,X1, X2, . . . , Xn)

in independent variables T,K, Y,X1, X2, . . . , Xn for some n, such that a ∈ A if and only if
there is a nonnegative integer y such that for all nonnegative integers k < y the polynomial
P (a, k, y,X1, X2, . . . , Xn) has a solution in natural numbers X1 = a1, X2 = a2, . . . , Xn = an.
Now Davis sets are fairly clearly recursively enumerable. In 1949 Davis proved the converse:
that every recursively enumerable subset of the set of natural numbers has the above form;
i.e., is Davis.

A year later, working independently, Julia Robinson formulated her hypothesis that asserts
that—roughly speaking—there exists some function

“Exp : ”N −→ N

that behaves at least vaguely like an exponential function and whose graph is Diophantine (a
sloppy exponential would be enough). Her hypothesis that came to be known as “J.R.” and
explicitly is:

Hypothesis J.R.: There exists a Diophantine set F of couples (a, b) in N × N with two
properties:

(a) If (a, b) ∈ F then a < bb.

6As you’ll see from its equation, this is not the most efficacious way of finding prime numbers, but . . .
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(b) For each positive integer k there is an (a, b) ∈ D with b > ak.

Using hypothesis J.R., Robinson shows that the set EXP of triples (a, b, c) with a = bc is
Diophantine, and from this that the set of primes, and the set of factorials is Diophantine as
well.

In 1959 Martin Davis and Hillary Putnam showed—assuming that there were arbitrarily long
arithmetic progressions of prime numbers—that Hypothesis J.R. implies the equivalence of
Diophantine and recursively enumerable, and thereby conditionally establishing a solution to
Hilbert’s Tenth Problem (the “conditions” being the existence of arbitrarily long arithmetic
progressions of primes, and J.R.).

A year later, Robinson showed how to avoid the use of the hypothesis that arbitrarily long
arithmetic progressions of primes exist, thereby showing that J.R. alone implies a solution to
Hilbert’s Tenth Problem.

In 1970, Matiyasevich provides a Diophantine definition of a set F as required by J.R.: he
established his F as the collection of pairs (a, b) such that

b = F2a

where Fn is the nth Fibonacci number, thereby completing the proof that all listable sets are
Diophantine and establishing the fact that Hilbert’s Tenth Problem (over Z) is unsolvable.

9 Some comments by Matiyasevich

(We find this quotation of Matiyasevich illuminating:)

“The idea was as follows. A universal computer science tool for representing information
uses words rather than numbers. However, there are many ways to represent words by
numbers. One such method is naturally related to Diophantine equations. Namely, it
is not difficult to show that every 2× 2 matrix(

m11 m12

m21 m22

)
with the m’s being non-negative integers and the determinant m11m22 −m12m21 equal
to 1 can be represented, in a unique way, as a product of matrices

M0 :=

(
1 1
0 1

)
and

M1 :=

(
1 0
1 1

)
.
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It is evident that any product of such matrices has non-negative integer elements and
the determinant equals 1. This implies that we can uniquely represent a word in the
two-letter alphabet M0,M1 by the four-tuple

(m11,m12,m21,m22)

such that the numbers evidently satisfy the Diophantine equation

m11m22 −m12m21 = 1.

Under this representation of words by matrices, the operation of concatenation-of-words
corresponds to matrix multiplication and thus can be easily expressed as a system
of Diophantine equations, opening up a way of transforming an arbitrary system of
word equations into “equivalent” Diophantine equations. Many decision problems about
words had been shown undecidable, so it was quite natural to try to attack Hilbert’s
tenth problem by proving the undecidability of systems of word equations.

My next attempt was to consider a broader class of word equations with additional
predicates. Since the ultimate goal was always Hilbert’s tenth problem, I could con-
sider only such predicates, which (under suitable coding) would be represented by Dio-
phantine equations. In this way I came to what I have called equations in words and
length. Reduction of such equations was based on the celebrated Fibonacci numbers. It
is well known that every natural number can be represented, in an almost unique way,
as the sum of different Fibonacci numbers, none of which are consecutive7 (this is the
so called Zeckendorf representation). Thus we can look at natural numbers as words
in a two-letter alphabet {0, 1} with the additional constraint that there cannot be two
consecutive 1’s. I managed to show that under this representation of words by numbers
both the concatenation of words and the equality of the length of two words can be
expressed by Diophantine equations.”

The culminating theorem is Matiyasevich’s:

Theorem 5. Every computably enumerable subset of Z is diophantine (relative to Z).

This fundamental result, of course, gives a negative answer to the question above, but does far
more than just that.

For example:

1. The result implies that relatively benign subsets of Z can be diophantinely described, as
well. This is not as clear as one might think even for the most familiar subsets, and seems
interesting to me: for example, there is a polynomial over Z whose set of positive values is
the set of exactly all prime numbers for integral substitution of its variables. A specific such
polynomial (taking hardly two dozen lines of print) is given in [JSWW76].

7E.g., 30 = 1 + 8 + 21.
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2. One is not yet finished mining this for concrete versions of “unsolvable problems” but it
clearly will give us a wealth of such problems. See, for example, recent postings of Harvey
Friedman; these have possible relations to Mnëv’s (1988) result that any scheme over Z can be
expressed as a moduli space classifying configurations8 of finite points in ¶2. Harvey Friedman
poses nine different “Families of Problems” regarding configurations of rational lines in the
Euclidean plane, These problems ask for existence or nonexistence of integral intersections
(with various properties) of linear configurations. Friedman discusses whether the problems
in each of these families can be done in ZFC or whether there are examples of problems
in that family that cannot: apparently three of Friedman’s problem-families can be solved
in ZFC, three cannot, and for the remaining three—if Hilbert’s Tenth Problem (over Q) is
undecidable—then these cannot be done in ZFC.

More recent work (Denef/Denef-Lipschitz/Pheidas/Shalpentokh/Poonen) developed ideas that cul-
minated in the following result:

Theorem 6. If a certain stability result in the arithmetic of elliptic curves holds9 over K, then
for any number field K every recursively enumerable subset of OK , the ring of integers in K is
diophantine (relative to OK).

As mentioned earlier, Karl Rubin and I have recently shown that this stability result holds if you
assume the 2-primary part of the classical Shafarevich-Tate Conjecture [MR09]. As a consequence
we have shown that, conditional on the 2-primary part of the Shafarevich-Tate Conjecture, Hilbert’s
Tenth problem has a negative answer for the ring of integers in any number field.

Since Kirsten Eisenträger has, in her thesis, related Hilbert’s Tenth Problem over rings of integers
in number fields to a much more general class of rings, one gets—thanks to her work:

Theorem 7. Conditional on the 2-primary part of the Shafarevich-Tate Conjecture, Hilbert’s Tenth
problem has a negative answer for any commutative ring A that is of infinite cardinality, and is
finitely generated over Z.

8 By a configuration type let us mean a number N and a collection of subsets S1, S2, . . . Sn of the set [1, 2, . . . , N ].
The configuration space associated to such a type is the space of all ordered sets of N points in ¶2 subject to the
requirement that the points corresponding to S1 are collinear, and ditto for S2, . . . , Sn.

9 Specifically the stability result asserts that for every prime degree Galois extension of number fields L/K there
exists an elliptic curve E over K with

rankE(K) = rankE(L) > 0.
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Part III

Elliptic curves and techniques for studying
their arithmetic

10 The virtues of elliptic curves

The study of Elliptic curves has quite a unifying effect—which is a source of joy and surprise. It
brings together so many other fields of mathematics, and physics and applied areas.

For example, in their essential role in cryptography, elliptic curves have a certain predominance
that warrants publications such as this 1999 government memo:
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The first page of that memorandum already gets down to the business of discussing the discrete
logarithm problem when posed in terms of the near-cyclic group of rational points of those preferred
elliptic curves, and specifically, the difficulty of computing such logs, which—in this game—is a
virtue.

But going a bit further back:
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11 In the ancient Greek problems about numbers

In Diophantus’ Problem 24 of Book IV of his treatise (to “divide a number into two numbers so
that their product is a cube minus its side”) elliptic curves arise implicitly as cubic equations of
two variables, and one already sees a hint of (to put it in modern language) the problem of simply
finding points on them.

In modern vocabulary, Elliptic curves can be represented as smooth plane cubic curves with one
point at infinity, and therefore by adroit linear change of variables can be given by an affine equation
of the form

y2 = g(x) := x3 + cx+ d,

for c, d constants, where the cubic polynomial g(x) has no multiple roots. Such curves then are
very algebraic objects, and can be defined over any field k, by taking the constants c, d ∈ k. The
“elliptic curve” E itself then is the projective model of this affine curve, and its points rational over
the field k is usually denoted E(k) which consists of the single point at infinity –usually called,
perversely, 0 or the origin—and all affine points (α, β) each entry in k, satisfying the equation
y2 = α3 + c · α + d. Some readers of Diophantus seem to already find in his treatise hints of what
later came to be called the “chord-and-tangent process” for making new points on this curve E
(rational over k) from pairs of points in E(k):

This process banks on the fact that our curve is a cubic–i.e., of degree 3— and therefore any
straight line (in projective space) will intersect it in exactly three points, counting multiplicity, and
depends only on the observation that any line in the projective plane passing through two points
with coefficients in a field k will itself be defined over k and hence the third intersection point with
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E will have its coordinates in k as well. Defining an addition law of E(k) by stipulating that any
’three’ collinear points sum to zero, gives E(k), as it turns out, an abelian group structure:

E(k)× E(k) −→ E(k)

and, taking the algebraic geometric point of view, allows us to think of our elliptic curve as a
commutative algebraic group , i.e., an abelian variety.

12 At the time of Abel and Jacobi,

we would already see the trace of elliptic curves and their periods in the exact solution of the
problem of the ‘period’ of a simple pendulum as a function of θ, the arc of swing. These show up
as integrals over paths on the implicit Riemann surface. (Below k depends only on the physical
shape of the pendulum.)

Periodk(θ) =

∫ tan θ

0
(

dx√
(1 + x2)(1 + k2x2)

.

13 From the viewpoint of Weierstrass,

elliptic curves over the complex numbers might arise from double periodic meromorphic functions–
℘Λ(z)— on the complex plane. Here is a picture where the color correlates (somehow) to the
absolute value of a Weierstrass ℘-function.
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The structure of doubly-periodic functions being had been viewed (historically) as some companion
to the ‘singly-periodic’ exponential covering (z 7→ e2πiz) of the multiplicative group of complex
numbers:

C −→ C∗ ' C/2πiZ.

The exponential map is, of course, transcendental. AND it has the following sharper property,
thanks to the theorem of Lindemann and Weierstrass that any finite collection of Q-linearly inde-
pendent algebraic numbers have the property that their exponentials and algebraically independent
over Q.

The corresponding ‘doubly-periodic’ projections that form quotients of C by lattices Z×Z ≈ Λ ⊂ C
that produce complex tori,

E = EΛ := C/Λ,

have the property, first, that the pair consisting of the value, ℘Λ(z), of the ℘-function at a point
z ∈ C and the value of its derivative, ℘′Λ(z), at that point determine z modulo Λ, i.e., determine
the image of z in E. Moroever, those two (meromorphic) functions ℘Λ(z) and ℘′Λ(z) satisfy a cubic
polynomial equation. That is, putting y := ℘′Λ and x := ℘Λ the parametrization (x, y) = (℘Λ, ℘

′
λ)

satisfies the equation given above,
y2 = x3 + cx+ d,

for suitable complex numbers c = cΛ, d = dΛ ∈ C. We already have here a fascinating, but still
simple, structure following the parallel of the exponential function: we have an analytic homomor-
phism of groups
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C
πΛ−→ E

where both domain and range are algebraic groups, and the quotient is formed by passing to the
orbits under the action (translation) of Λ, the group of integral points yet another group. As with
the exponential function, we have what may be called a bi-algebraic structure, where E is defined
over a number field (i.e., the c and d are algebraic numbers) the issues of comparison of algebraicity
and/or transcendentality of a point and/or its image in the complex plane, under the analytic
mapping πΛ delicate. In fact, we have: the Schneider-Lang Theorem that guarantees that if cΛ and
dΛ are algebraic, then the nonzero points of Λ ⊂ C are transcendental.

The variation of possible discrete (rank two) lattices Λ ⊂ C can be regularized by taking the lattices
of the form Λτ := Z+τ ·Z ⊂ Cwhere τ = x+iy has imaginary part positive (i.e., τ lies in the upper
half plane H ⊂ C). The isomorphism class of Eτ := EΛτ depends only on the orbit of τ ∈ H under
the action of SL2(Z), the quotient being parametrized by one of the most fascinating functions in
the subject, the elliptic modular function j : H −→ H/PSL2(Z) ' C. The isomorphism class of the
elliptic curve Eτ over C is determined by the value j(τ) and conversely, given any complex value
it is the “j” of a unique isomorphism class of elliptic curves.

Here, again, one has a bi-algebraic structure,

That is, an analytic domain H ⊂ P1(C) open in an algebraic variety P1(C) on which we have an
action of an algebraic group (a group scheme) PGL2(C) such that the action of its subgroup of
real points, PSL2(R), preserves H, and the action of its subgroup of integral points, PSL2(Z), act
discretely giving the bi-algebraic structure,

H ⊂ C
j ↓
C

The range C when it appears here is sometimes called the j-line for, in perhaps a slightly ragged
way it classifies all elliptic curves, and can be constituted to parametrize a family of elliptic curves
with given j.

AND as in the case of the exponential map, we have a corresponding version of the Lindemann-
Weierstass Theorem (The “Ax-Lindemann Conjecture,” proved by Klinger, Ullmo and Yafaev. ***
)

As is standard nowadays, we systematically consider, and classify, elliptic curves endowed with
certain specific properties, or features, such as pairs of elliptic curves together with a chosen point
of order N—the completed moduli space for such problems being a curve usually denoted

X1(N) := H/Γ1(N) ∪ cusps

or cyclic subgroup of order N ,
X0(N) := H/Γ0(N) ∪ cusps
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or—as we shall see in a moment—other structures as well. These modular curves have natural
models over Q. The modular curve X0(N) may also be interpreted as classifying cyclic isogenies
E → E′ of elliptic curves of degree N . This is because if you have a cyclic subgroup CN of order
N in E, letting E′ := E/CN , the natural projection π : E → E′ is a homomorphism with kernel a
finite cyclic subgroup of order N (this being the definition of cyclic isogeny) and the converse, too,
is clear. Note that there is a natural involution— the Atkin-Lehner involution w of X0(N) which
sends the cyclic isogeny E → E′ to E′ → E (by passing to the dual).

An extremely celebrated theorem, the modularity theorem (Wiles, Taylor, ...) guarantees that any
elliptic curve over Q admits a parametrization by such a modular curve X0(N) and the parametriza-
tion

π : X0(N)→ E

is defined over Q unique up to sign if you require that both the integer N and the degree of π be
minimal, among all such parametrizations. In the sense that the curves X0(N) classify all elliptic
curves with the requisite cyclic isogeny, and the parametrization π covers E, so in a sense one could
say that every elliptic curve over Q knows all elliptic curves—each of its points classifying a finite
set of elliptic curves (with particular structure).

14 In the era of Mordell,

the arithmetic of elliptic curves was already in full swing, and any number of a host of questions
Mordell himself asked, such as

What products of two consecutive integers are equal to a product of three consecutive
integers?

leads to very interesting questions about elliptic curves. The answer to this question, by the way,
known to Mordell half a century ago, is that the only such products are 0, 6, and 210.

The equation whose integral solutions “solves” Mordell’s Question is

E : y2 + y = x3 − x

and this is an affine model, over Z, of an elliptic curve over Q which we’ll call Mordell’s Elliptic
Curve.

Now if you want to know the answer to Mordell’s question, you need only study the integral
solutions of that equation. For such equations (quadratic expressions of the variable y as equal to
cubic expressions of x)—-and in contrast to the general problem of integral solutions as posed by
Hilbert’s Tenth Problem and as solved negatively by Matyasevich—there is an algorithm allowing
one to finitely determine all its integral solutions.
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If we return to Mordell’s equation and ask for its rational rather than only integral solutions, we
get quite a different, and beautiful, answer: there are infinitely many rational solutions, and all of
them are ‘generated’ out of the simplest of its solutions: (x, y) = (0, 0).

Remarks:

1. Notice the growth of the numerators and denominators of these solutions. On the page they
trace out the shadow of a parabola (and would do so more strikingly if I put it in smaller
type and computed more of them). The equation of the ‘limit’ parabola is itself an important
arithmetic invariant of the elliptic curve (if I normalize for the size of typefont)—determined
by the canonical heights of those point, and related to the regulator of the elliptic curve10

of this elliptic curve. The way Bjorn Poonen and *** use to reconstruct–in a diophantine
manner—the ring of integers of a number field K in the ring of integers of an extension field
L in the case where one has an elliptic curve over K diophantine-stable for L/K such that
E(K) = E(L) is a group of rank one11 is to work closely with the common structure of their
groups of rational points and make close use of the denominators of the x-coordinates of
rational points. This follows a long tradition, beginning with the use of Pell’s equation, and
is a remarkable project.

10 (which happens to be 0.0511114082399688 . . . and equal—in this case—to the ratio of the value of the derivative
of the L-function divided by the real period, 0.305999773834052 . . . /5.98691729246392)

11(later work of *** allows one to use stability when the rank is more generally just ≥ 1)
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2. Mordell’s elliptic curve knows all other elliptic curves in the sense described above insofar
as it’s points classify (symmetrically) pairs E → E′ and E′ → E each of them being a
37-isogeny, and each dual to the other.

3. The curve E − 0 is a quotient of Y0(37) by the Atkin-Lehner involution. So it comes with
a natural covering H → E . In this way Mordell’s elliptic curve inherits the hyperbolic
structure of H In particular, is laced with the image of all the closed geodesics. For any
rational number a/b define the vertical line in the upper half place with abscissa a/b:

I(a/b) := {a/b+ iy | 0 ≤ y ≤ ∞}

and consider its image in E . This is a countably infinity family of loops,starting and ending
at 0, on the Riemann surface E and are actual geodesics in the hyperbolic structure of E − 0.
The “modular symbols” discussed previously are rational numbers with bounded denominators
obtain by integrating a natural differential form over these curves, normalized by division by
a period. In the drawings below we draw E as a recognizable torus, so unfortunately you
lose the vision of these loops as geodesics. But here are a few (thanks loads to Hao Chen for
these!)

I(1/7)

I(4/5)
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I(389/4001)

A fundamental theorem (1922) for any elliptic curve E of Mordell (over Q) extended by
Andrei Weil over any number field K says that the group E(K) is a finitely generated abelian
group (called naturally, the Mordell-Weil group of E over K) and so is characterized up
to isomorphism by its two invariants:
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• its torsion subgroup, T (E,K),

• and its rank r(E,K).

I.e.,

E(K) ' T (E,K)
⊕

Zr(E,K).

This immediately leads to two mathematical projects that are—as it turns out—surprisingly
different.

• Study the behavior of torsion (E,K) 7→ T (E,K),

• Study the behavior of rank (E,K) 7→ r(E,K),

15 Torsion

Torsion in elliptic curves have, as one of their many neat realizations, periodic arrays in the
classical it Poncelet Billiard game where you have a configuration of two conics in the plane
(I think of one of them as the “outer conic” comprising the outer profile of the billiard table,
encircling the other conic, which we’ll call the “inner conic,” and which we can think of as
an obstruction on the table. The game is to make a shot that bounces multiple times off the
rim of the outer conic, but each time it comes back, its path just grazes the inner one, and it
makes a finite periodic trajectory this way.

We have a complete classification of torsion, rational over Q for elliptic curves defined over
Q. It could be stated this way. . .
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Theorem 8. T (E,Q) is either cyclic of order ≤ 10, or order 12, or else is a direct product
of a cyclic group of order 2 with a cyclic group of order 2, 4 or 6. Moreover, for each of these
structures there is a single rationally-parametrized one parameter family of elliptic curves with
that type of torsion subgroup.

. . . or in the following more suggestive “minimalist” way:

Theorem 9. The isomorphy type of a finite group T occurs as the rational torsion group
T (E,Q) of some elliptic curves over Q only when it is forced to occur, by algebraic geometry.
Namely, only when the modular curve classifying elliptic curves endowed with such a finite
subgroup is isomorphic to P1. In such a case, there is an infinite rationally parametrized
family of elliptic curves over Q possess T as rational torsion group. .

Say, then, that an elliptic curve E over a number field of degree d with rational torsion group
T (E,K) is sporadic if it doe not occur in a rationally parametrized family (over Q) of elliptic
curves E over number fields of degree d with rational torsion group T (E,K).

So, there are no sporadic points over number fields of degree 1. Thanks to Merel, Oesterlé,
Parent, Kamienny, and very recent progress due to Maarten Derickx, Sheldon Kamienny,
William Stein, Michael Stoll, and van der Hoej there’s a very promising area to be explored
for torsion over fields of degree d over Q.

Fix a positive integer d and let P (d) be the largest prime number p such that there exists an
elliptic curve (without CM; i.e., without ‘extra’ endomorphisms) defined over some number
field of degree ≤ d over Q and for which there is a point of order p on that elliptic curve,
rational over that field.

We have the proved bounds, the upper bound being the result of Merel, Oesterlé, Parent :

d1/2 << P (d) << 3d.

Conjecture 10.
P (d) <<ε d

1/2+ε.

Here below is a graph computed by Maarten Derickx and Mark van Hoej. It is a log-log
plot where the axes are (x, y) = (log p, log d), the data points recording examples of ‘lowest’
degree d for the corresponding p occurs as prime torsion in a non-CM elliptic curve (over a
field of degree d). The quotation-marks around the word ‘lowest’ is meant to signal that the
blue data points and the blue extrapolated line corresponds to the lowest d for which there
is a rational family of such examples of prime torsion p over fields of degree d. The red data
points correspond to the sporadic points. The green curve is the proved (exponential) lower
bound relating d to p. Visibly, much more computation needs to be done if we are to be able
to surmise any general behavior with some feeling that there is evidence behind our guess.
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16 Density questions having to do with rank

Let K be a fixed number field and consider the collection of all elliptic curves defined over
K. The most natural ‘first question’ that is somewhat of a statistical nature that you might
ask about Mordell-Weil rank is:

Does r(E;K) admit a finite upper bound (for fixed K and all elliptic curves over
K)?

Here, far from actually having a resolution of this yes or no question, we don’t even seem
to enjoy a uniform consensus about guesses for what the truth is here, even for the field Q.
(There are number theorists who believe yes, and others who believe no.) The following chart,
which I got off the web, tabulates world’s record large ranks for elliptic curves over Q—so
far— with the year of their discovery and the winners.
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rank ≥ year Author(s)

3 1938 Billing
4 1945 Wiman
6 1974 Penney − Pomerance
7 1975 Penney − Pomerance
8 1977 Grunewald− Zimmert
9 1977 Brumer −Kramer
12 1982 Mestre
14 1986 Mestre
15 1992 Mestre
17 1992 Nagao
19 1992 Fermigier
20 1993 Nagao
21 1994 Nagao−Kouya
22 1997 Fermigier
23 1998 Martin−McMillen
24 2000 Martin−McMillen
28 2006 Elkies


To see what’s involved in the last entry (Elkies elliptic curve) of this table:

Elkies elliptic curve:

E : Y 2 +XY + Y = X3 −X2−

2006776241557552658503320820

9338542750930230312178956502X

+

34481611795030556467032985690390720374855

944359319180361266008296291939448732243429

Independent points of infinite order:

P1 = [-2124150091254381073292137463, 259854492051899599030515511070780628911531]

P2 = [2334509866034701756884754537, 18872004195494469180868316552803627931531]

P3 = [-1671736054062369063879038663, 251709377261144287808506947241319126049131]

P4 = [2139130260139156666492982137, 36639509171439729202421459692941297527531]

P5 = [1534706764467120723885477337, 85429585346017694289021032862781072799531]

P6 = [-2731079487875677033341575063, 262521815484332191641284072623902143387531]
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P7 = [2775726266844571649705458537, 12845755474014060248869487699082640369931]

P8 = [1494385729327188957541833817, 88486605527733405986116494514049233411451]

P9 = [1868438228620887358509065257, 59237403214437708712725140393059358589131]

P10 = [2008945108825743774866542537, 47690677880125552882151750781541424711531]

P11 = [2348360540918025169651632937, 17492930006200557857340332476448804363531]

P12 = [-1472084007090481174470008663, 246643450653503714199947441549759798469131]

P13 = [2924128607708061213363288937, 28350264431488878501488356474767375899531]

P14 = [5374993891066061893293934537, 286188908427263386451175031916479893731531]

P15 = [1709690768233354523334008557, 71898834974686089466159700529215980921631]

P16 = [2450954011353593144072595187, 4445228173532634357049262550610714736531]

P17 = [2969254709273559167464674937, 32766893075366270801333682543160469687531]

P18 = [2711914934941692601332882937, 2068436612778381698650413981506590613531]

P19 = [20078586077996854528778328937, 2779608541137806604656051725624624030091531]

P20 = [2158082450240734774317810697, 34994373401964026809969662241800901254731]

P21 = [2004645458247059022403224937, 48049329780704645522439866999888475467531]

P22 = [2975749450947996264947091337, 33398989826075322320208934410104857869131]

P23 = [-2102490467686285150147347863, 259576391459875789571677393171687203227531]

P24 = [311583179915063034902194537, 168104385229980603540109472915660153473931]

P25 = [2773931008341865231443771817, 12632162834649921002414116273769275813451]

P26 = [2156581188143768409363461387, 35125092964022908897004150516375178087331]

P27 = [3866330499872412508815659137, 121197755655944226293036926715025847322531]

P28 = [2230868289773576023778678737, 28558760030597485663387020600768640028531]

We seem to have no new entries for the above table in the past eight years, but our knowledge,
and the precision of our expectations, about densities of ranks is extending daily thanks to
people in this room!

17 The computable upper bound, and the constraint of parity

• A theorem: For every prime number p there is a computable number rp(E,K)—called
the reduced mod p-Selmer rank—that constitutes an upper bound for the Mordell-
Weil rank:

r(E,K) ≤ rp(E,K).

• A Conjecture:
r(E,K) ≡ rp(E,K) mod 2,

i.e., the Mordell-Weil rank is of the same parity as the reduced mod p-Selmer rank (for
every p).

• A Fact: We have (at least) the beginning of an understanding of statistical questions
regarding the parity of reduced mod p-Selmer rank (and this conjecturally translates to
a similar understanding of the statistics of Mordell-Weil rank).

Let’s make some guesses now about rank, following the minimalist instinct. However, at this
point it pays

• to repeat that parity is indeed a constraint and something that one must take careful
account of, before making guesses, and
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• to note that to do statistics about infinitely many instances one must say how one orders
them. The ordering arrangement doesn’t have to be a full linear ordering, but at the
very least it should be given by an increasing system of finite subsets of the objects that
are being studied, where the union of all these finite subsets is the whole. Then, one can
talk about densities, or probabilities of features.

We will discuss statistics for the following two types of families.

(a) All elliptic curves defined over a fixed number fieldK. This infinite collection is “ordered”
by the size of the absolute value of the norm of the conductor.

(b) All quadratic twists of a given elliptic curve E over a given field K. This boil down to
considering the class of elliptic curves expressible by the equations

E(d) : dy2 = x3 + ax+ b

for a, b, d ∈ K, with a, b fixed and d an integer of K, varying (mod squares). This infinite
collection is “ordered” by the maximum size of the absolute value of the norm of any
prime ideal dividing d.

The minimalist instinct then suggests:

Question 3. Is it true that, in either of these cases, if we consider the statistics of the sub-
collection with even Mordell-Weil rank parity, it is 100% likely that the Mordell-Weil rank of
a member of that family is 0? And as for the statistics of the sub-collection with odd Mordell-
Weil rank parity, is it 100% likely that the Mordell-Weil rank of a member of that family is
1?

(For the second type of family, at least for those over K = Q, this was already conjectured
by Dorian Goldfeld in 1979.)

Of course, to connect these expectations with a general sense of the average rank, we should
either know or guess something about the density of parity.

18 All elliptic curves over a fixed number field

For the first type of family described above, i.e. for all elliptic curves defined over a fixed
number field K, we expect that the distribution of even/odd parities is 50/50; i.e., half are
even and half are odd, when the count is made according to the ordering that we described.

This would suggest the following target:

Conjecture 11. The average Mordell-Weil rank for all elliptic curves over any fixed number
field K is 1/2.

In 1992 Armand Brumer showed (by analytic means, and conditional on standard conjectures)
that the average rank of elliptic curves over K = Q is bounded above by 2.3.

More recently we have the magnificent achievement of Arul Shankar and Manjul Bhargava
who established that it is bounded above by 0.99.

NOTE: I should include the most up-to-date announcements of Manjul and his co-authors!

This is by a formidable new tack on the geometry-of-numbers approach to counting mathe-
matical objects related to this problem. Things are moving and we might hope for continued
progress here in the coming years.
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19 Quadratic twist families

Here we have some classical work by Heath-Brown for a specific family, and by Swinnerton-
Dyer (with a recent improvement by Dan Kane) for the special case of elliptic curves over
Q that have particular features related to their 4-torsion. Importantly, they establish finite
average values of Mordell-Weil ranks for these families.

But, conceiving the problem for more general number fields one encounters a (surprising) new
feature in the nature of parity itself. This is described in recent work of Zev Klagsbrun, Karl
Rubin and myself. We deal with the mod 2-Selmer rank parity for a quadratic twist family
over a number field K. This, then, is conjecturally the Mordell-Weil rank parity. We show
that in the case where the number field K has at least one real embedding, the distribution of
even/odd parities is 50/50. But even if you fix a specific elliptic curve E but allow your self
to consider different choices of field K over which you gather parity statistics, the proportions
of even/odd can change dramatically. For example, take the elliptic curve (labelled 50B1 by
Cremona)

E : y2 + xy + y = x3 + x2 − 3x− 1.

By judicious choices of fields K one can obtain quadratic twist families whose mod 2-Selmer
rank parity ratios take on a dense set of numbers in the range (0, 1).

Part IV

L-functions and Selmer groups

Let E be an elliptic curve over a number field K. Here are the basic tools we have to understand
its arithmetic. I’ll formulate this for K = Q, and then comment on how this description does or
does not extend to other number fields and elliptic curves.

• The local study.

We want to reduce E modulo p systematically for primes p. For all but finitely many primes
we can get its reduction mod p— an elliptic curve over Fp—by simply reducing the coefficents
of its equation mod p. We define the basic local invariant ap(E) := 1+p−|E(F)|p. Knowledge
of these ap’s for primes p gives us knowledge of the isogeny class of each of the elliptic curves
E/Fp . Even for the remaining finitely many primes, there is a natural definition of an “ap.”
To summarize:

The local information for the arithmetic of E is given by the function on primes:

p 7→ ap ∼ isogeny class of the reduction of E mod p.

• Taking all the local studies together. We put this together to get the L-function as
Dirichlet series.

L(E,Q, s) =
∏
p

1

1− app−s+ p1−2s
=
∑
n∈Z

ann
−s
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where the coefficients an are easily expressible in terms of the ap for p prime.

So far, we can do something analogous for all E and all K, giving a Dirichlet series L(E,K, s)
convergent in right half-plane.

• The implications for global arithmetic.

Conjecture 12. The Dirichlet series L(E,K, s) extends to an analytic function in a region
including the point s = 1 and has a zero at s = 1 of order equal to the rank of E(K).

The extension of L(E,Q, s) to an entire function on the complex plane is, of course, one of
the great achievements of modern number theory, and follows from the modularity theorem
of ***. The full conjecture holds in the case where the order of zero at s = 1 is 0, or 1, thanks
to ****

The restriction of use of this basic tool of arithmetic is first, that the analytic extension is known
for only a limited class of number fields; and the remainder of the conjecture, when known to be
true, is at the moment known only in cases where the order of vanishing is 0 or 1.

20 Some words about the methods for proving diophantine sta-
bility

20.1 Descent

The standard method—perhaps the only fully proved method—of finding upper bounds for r(E,K)
for specific elliptic curves E over specific fields K (or when extended to abelian varieties over number
fields K) is the method of descent that seems to have been already present in some arguments due
to Fermat and has been elaborated and refined ever since. These days “descent” is done via
computation of what are called Selmer groups. Here is the “shape” of the descent method as it
has evolved in present times. One should note that there are two virtues to this classical method. It
is ‘elementary’ in the sense that its ingredients are hardly anything more than Galois cohomology
and basic algebraic number theory. Also it works for all number fields. I’ll explain it first for
elliptic curves when the base field K is the rational field Q, and then discuss the differences that
one encounters over general fields and for general abelian varieties.

Remember, though, that I want to explain the diophantine stability features that it helps with,
so we will also be considering the relative theory when one passes from our base field to a cyclic
extension of prime degree ` over the base field.
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20.2 Selmer groups

For simplicity, fix the elliptic curve E over Q and a prime ` to illustrate the method. The basic
exact sequence of Gal(Q̄/Q)-modules given by multiplication by `,

0→ E[`]→ E(Q̄)
×`−→ E(Q̄)→ 0

gives us, after passing to cohomology, an injection

E(Q)/`E(Q) ↪→ H1(Gal(Q̄/Q), E[`]).

The F`-vector space H1(Gal(Q̄/Q), E[`]) is infinite dimensional, and we want to capture the sub-
space E(Q)/`E(Q), thereby computing—after a tiny bit of work—the Mordell-Weil rank of E over
Q.

Locally,over Qp for any prime p we have the same story,

E(Qp)/`E(Qp) ↪→ H1(Gal(Q̄p/Qp), E[`]).

and the global and local pictures fit neatly together in that the projection

H1(Gal(Q̄/Q), E[`])→ H1(Gal(Q̄p/Qp), E[`])

sends E(Q)/`E(Q) to
E(Qp)/`E(Qp) ↪→ H1(Gal(Q̄p/Qp), E[`]).

E(Q)/`E(Q) //

��

H1(Gal(Q̄/Q), E[`])

��
E(Qp)/`E(Qp) // H1(Gal(Q̄p/Qp), E[`])

It is natural, then to try to at least approximately ‘cut out’ the subspace E(Q)/`E(Q) by using
all this local information together. That is the purpose of the Selmer group, S`(E).

Definition 3. S`(E) ⊂ H1(Gal(Q̄/Q), E[`]) is the intersection over all prime p of the inverse
images of the images

E(Qp)/`E(Qp) ⊂ H1(Gal(Q̄p/Qp), E[`]).

What we have done, then, is to impose a local condition for each prime p: that the cohomology
classes giving elements of the Selmer group reduce to specific subgroups in local cohomology. The
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subgroups will be called “local conditions.” The Selmer group is the subgroup consisting of all
cohomology classes in this infinite dimensional vector space H1(Gal(Q̄/Q), E[`]) that satisfies all
these local conditions.

Let us call these local conditions our base local conditions noting that if we imposed other local
conditions, we will probably get different groups. AND nothing stops us from defining ‘Selmer
groups’ with any local conditions we want—artificial Selmer groups so to speak. We will eventually
do this, modifying our base Selmet conditions at finitely many primes.

The base Selmer group has four key properties, the last two being conjectures:

• S`(E) is computable in theory and is a finite dimensional F` vector space; i.e., there is indeed
a finite algorithm that computes it.

• The subspace E(Q)/`E(Q) is contained in S`(E).

• Conjecture: the dimensions of E(Q)/`E(Q) and in S`(E) have the same parity.

• Conjecture: If ` >> 0 E(Q)/`E(Q) = S`(E).

20.3 The relative theory (for elliptic curves)

Here we consider a cyclic extension L/Q. The issue for us is whether or not rank(L) > rank(Q).
The Galois group Gal(L/Q) acts on the finite dimensional Q-vector space E(L)⊗Q. Diophantine
stability here requires that the action be trivial, i.e, for any Dirichlet character χ of order ` that
cuts out this cyclic field extension, the χ-component of the Gal(L/Q)-representation E(L) ⊗ Q
vanish. We view

χ : GQ → µ`

as a homomorphism of the Galois group GQ := Gal(Q̄/Q onto the group of `-roots of unity (we
won’t say where these `-th roots of unity lie), and L is the field fixed by the kernel of χ.

The χ-twisted Selmer group. Given such a Dirichlet character χ we consider the packet of local
characters

{χp : GQp → µ`}p
obtained from it. There is a procedure for twisting the local Selmer condition at p by a local
character GQp → µ`}p at p and we do this, guided by the packet of local characters coming from
a global character χ. By imposing those “χ-twisted” local conditions attached to the local charac-
ters χp related to the global character χ on classes in the same infinite dimensional vector space
H1(Gal(Q̄/Q), E[`]) one defines a χ-twisted Selmer group S`(E;χ) with one important property
for us:

If, for any χ cutting out L/Q, we have S`(E;χ) = 0, then rank(L) = rank(Q).
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The aim, then, is starting with any S`(E;χ) which has positive dimension, to modify the local χp’s
at one prime p at a time—by multiplying χ by a local character ψp at a very judicious choice of
prime p and prove that S`(E;χ · ψp) has lower dimension. (in fact, one lower dimension). Keep
going, to end up with an artificial, perhaps, collection of local conditions giving trivial Selmer
group.

In a general situation, two obstacles stand in the way of this plan:

1. Enough critical primes To identify the judicious primes p above that perform this ‘lowering
of dimension’ for us. We call them critical primes p and their basic features are that p is of
good reduction for E and ` divides p−1 (no problem finding primes of this sort) and that the
action of φp, the Frobenius element at p on the F`-vector space E[`] have a one-dimensional
subspace of fixed vectors; colloquially a ‘unique’ fixed eigenvector. Here—given some other
hypotheses that will obtain when ` >> 0)—we make use of Global Duality to guarantee
that between the strictest local condition at p and the most relaxed local condition at p, the
corresponding Selmer groups differ in size by one dimension.

Moreover, we engineered our choice of prime p so that the reduction homomorphism mapping
S`(E,χ) is onto the one-dimensional Selmer local condition. In this set-up, any change of
local condition subgroup at p will define an “artificial global Selmer group” of dimension one
less than dim S`(E,χ).

Iterating this process a finite number of times, leads us to a modification of the base local
conditions at finitely many critical primes, such that teh artifically constructed Selmer group
is zero.

2. Enough silent primes In the account we gave, we modified local conditions for the con-
struction of our Selmer group, a single place at a time, to keep lowering dimension. Why,
at the end of our process, is there a global Dirichlet character whose corresponding local
characters give us the local Selmer conditions we end up with? The answer is: there needn’t
be such: we’ll call such non-globalizable systems of local characters “semi-local.” Here is
where “silent primes” enter. For ` >> 0, there are primes p ≡ 1 modulo` (p 6= 2 and of good
reduction for E) such that φp has no nonzero fixed vectors in its action on E[`]. For these,
the local cohomology group vanishes.These we’ll call silent primes, for the twisting the local
condition at such primes by ψp doesn’t change the local condition, hence the Selmer group.
But judicious twisting by silent primes will turn semi-local characters to global ones.

3. Result: we end up with a global character Ψ of order ` such that

S`(E,Ψ) = 0.

In fact quite a number of characters Ψ—but, unfortunately—not a positive density of them.

20.4 The relative theory (for absolutely simple abelian varieties)

The issue of critical primes and silent primes becomes more delicate in the context of abelian
varieties, and we thank Michael Larsen for writing an appendix to our paper that provides what is
needed. To make things simple, we’ll discuss what is needed when End(A) = Z.
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Theorem 1. (Larsen) If A is an abelian variety over a number field K with EndK̄A = Z, then:

here exists a positive density set of primes ` for which:

1. “Silent elements” there exists g0 ∈ Gal(K̄/Kab) such that A[`]g0, and

2. “Critical elements” there exists g1 ∈ Gal(K̄/Kab) such that A[`]g1 ∼= F`.

We apply this theorem, using the Cebotarev density theorem, to find our silent primes and critical
primes; i.e., primes such that their corresponding Frobenius elements are silent, or critical elements.
There are two steps, both interesting, in the proof of this theorem. The first is a proposition about
general irreducible representations of simply connected, split semisimple algebrac groups over F`

(for ` >> 0).

Larsen

Proposition 2. (Larsen) For every positive integer n, there exists a positive integer N such that
if ` is a prime congruent to 1 (mod N), G is a simply connected, split semisimple algebraic group
over F`, and ρ : G(F`) → GLn(F`) is an almost faithful absolutely irreducible representation such
that (Fn

` )ρ(g0) = (0) for some g0 ∈ G(F`), then there exists g1 ∈ G(F`) such that

dim(Fn
` )ρ(g1) = 1.

The key to the proof of this is to find the appropriate element in the image of a principal homo-
morphism of SL2 into G.

Michael Larsen applies his proposition to the Galois representations associated to A, an abelian
variety over a number field K with EndK̄(A) = Z

Theorem 2. If A is an abelian variety (of dimension d) over a number field K with EndK̄(A) =
Z, then there exists a positive density set of primes ` for which there exist elements g0, g1 ∈
Gal(K̄/Kab) such that A[`]g ∼= 0 or F` respectively.

Of course, here, we are looking for elements in AutF`(A[`]) ∼ GL2d(F`) in the image,

Γ̄` ⊂ GL2d(F`),

of the Galois group GK . This for ` >> 0.

Step 1:The first task is to relate this image, Γ̄`—up to an index bounded independent of ` to a the
F` points of a simply connected split semisimple algebraic group. Let G`/Q` denote the Zariski-
closure of Γ`. By a theorem of Serre Course84-85,Ribet-1-29-81, by replacing K with a larger
number field if necessary, we may assume that G` is connected for all `. Further enlarging K, by
another theorem of Serre Vigneras, we may assume that for all ` � 0 there exists an absolutely
irreducible connected reductive subgroup H` of GLn over F` such that Γ̄` is a subgroup of index
≤ B(n) of H`(F`), where B(n) does not depend on `. By Proposition ??, for all ` sufficiently
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large, the rank of G` equals the rank of H`, and there exists a number field L such that for every
sufficiently large `, H` is split whenever ` splits completely in L.

Let G̃` and H̃` denote the simply connected cover of the derived group of G` and H` respectively.
There exists an integer r depending only on n such that every element g ∈ G`(Q`) (resp. h ∈
H`(F`)) can be written grn = det(g)rg0 (resp. hrn = det(h)h0) and g0 (resp. h0) lies in the derived
group of G`(Q`) (resp. H`(F`)). Thus g0 lies in the image of G̃`(Q`) → G`(Q`), and likewise for
h0.

Step 2: Use the rather detailed classification theorems of representations of reductiv groups; results
of Serre, Ribet, Larsen and Pink to conclude.
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