
Elliptic curves, their companions, and their statistics

Barry Mazur

What is the probability that a cubic plane curve with rational
coefficients has infinitely many rational points?

Questions of this type (more exactly formulated, of course)

are among the many statistical themes being pursued in the

program Arithmetic Statistics at MSRI this semester. In

this colloquium I’ll give some background to help appreci-

ate current work on such problems.

All theories in mathematics have their share of theorems, conjectures
and heuristics. But Number Theory, more than the other branches of
mathematics thrives on—even depends on—the accumulation of aggre-
gates of numerical data that have to do with numbers themselves. (Of
course, no surprise, given its name!) Our program Arithmetic Statis-
tics then stands for those aspects of number theory—be it theory or
computation—that connect closely with this.

Why study aggregates?

It is curious how aggregates rather than single instances creeps into
our subject even when we aren’t looking for statistical trouble.
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Here is an example: the primes

3, 7, 11, 19, . . .

all lie in an arithmetic progression (they’re congruent to 3 mod 4)
and we know that there are infinitely many primes in this arithmetic
progression (and this can be shown in a Euclid-style way). In the
Erdös spirit, I’ll offer a $5 prize for anyone who can manage to provide
a proof of the fact that every linear form aX + b with a, b relatively
prime represents (for X 7→ x ∈ Z) at least one prime number and such
that the proof doesn’t actually show that it represents infinitely many
primes. I think my $5 is safe, but the point I want to make is that a
certain amount of our work is—whether we want it or not—inescapably
about “aggregates.”

There is also the pleasure one gets in just working in the thick of
“many numbers,” as is vividly expressed in this letter of Gauss to one
of his students (the italics are mine):

Even before I had begun my more detailed investigations
into higher arithmetic, one of my first projects was to
turn my attention to the decreasing frequency of primes,
to which end I counted the primes in several chiliads
and recorded the results on the attached white pages. I
soon recognized that behind all of its fluctuations, this
frequency is on the average inversely proportional to the
logarithm, so that the number of primes below a given
bound n is approximately equal to∫

dn/ log(n),

where the logarithm is understood to be hyperbolic.
Later on, when I became acquainted with the list in
Vegas tables (1796) going up to 400031, I extended my
computation further, confirming that estimate. In 1811,
the appearance of Chernaus cribrum gave me much plea-
sure and I have frequently (since I lack the patience for
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a continuous count) spent an idle quarter of an hour to
count another chiliad here and there. . .

Often, in modern number theory, to actually sample a sufficient
quantity of data that might allow you to guess even approximate qual-
itative behavior of the issue you are studying, you may have to go out
to very high numbers. For example, there are basic questions about
elliptic curves (E.g., what is the frequency of those possessing two in-
dependent rational points of infinite order?) and if you only test these
questions for curves of conductor < 108, you might be tempted to make
guesses that are not only wrong, but qualitatively wrong.

Also we sometimes find that the various members of any of the dif-
ferent aggregates we will be looking at (in this colloquium) tend to
directly influence each other. So the most effective way—perhaps the
only effective way— of studying them is as a single totality. In all
branches of mathematics, we see the advantage to studying as a sin-
gle ensemble full collections of likeminded mathematical objects—e.g.,
moduli in algebraic geometry, universal classifying spaces in algebraic
topology, etc. And there is also the theme that many analytic num-
ber theorists allude to when they say (as Iwaniec has said) that the
zeroes of different L-functions “know each other.” The tension of com-
puting statistics within an aggregate of instances that—in contrast to
independent coin tosses—’know each other’ is interesting!

All this was an introduction meant to lead to elliptic curves and to
hint that we will be paying special attention their arithmetic statistics.

1. Elliptic curves

An elliptic curve E over a field K is a projective smooth curve of
genus one with a chosen (K-rational) point, called the “origin”. Think-
ing of E as a locus of points

(x0, x1, . . . , xn)

in some projective space Pn we say that such a point is rational over
the field K if all the (finite) ratios of these coordinates lie in the field
K.
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Denote by E(K) the “pointed set” of K-rational points of E.

It is a theorem (essentially a corollary of the Riemann-Roch theorem)
that allows you to represent any elliptic curve over K as a cubic plane
curve (over K, of course) with its origin being its only point (even over
the algebraic closure K̄) at infinity.

This already is a beautiful piece of mathematics and if you haven’t
seen it before here is a hint about how you get such a representation,
each of these statements being directly obtainable from Riemann-Roch
together with the sole fact that the curve we are dealing with has genus
one:

• there is only one rational function on E (up to scalars) that has
at worst a single pole at one point on E, namely the constant
function 1;
• there are two independent rational functions on E having at

worst a double pole at the origin and no poles elsewhere: call a
choice of the ’new’ (i.e., nonconstant) function x;
• there are three independent rational functions on E having at

worst a triple pole at the origin and no poles elsewhere: call a
choice of the ’new’ function with an actual triple pole at the
origin y;
• and there is a linear relation satisfied by the seven functions

1, x, y, x2, xy, x3, y2,

all these having at worst poles of order six at the origin and
none elsewhere.

In particular we get a mapping of our E onto a plane cubic in x and y
(and this mapping turns out to be an isomorphism).

Even more explicitly, when K is a number field (our main focus
here), letting OK denote the ring of integers of K, we can choose our
functions x and y judiciously so that any such E can be given in an
affine plane by a cubic equation

(∗) y2 = x3 + ax+ b

for constant a, b ∈ OK , with its discriminant, ∆(a, b) = −4a3 − 27b2,
different from zero (this guarantees that E is a smooth curve).

Different pairs (a, b) may give rise to isomorphic elliptic curves; for
instance, for any element u ∈ OK setting Y = u3y and X = u2x gives,
after clearing terms in the displayed equation, the new cubic equation

Y 2 = X3 + Ax+B
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where (A,B) = (u4a, u6b). Here ∆(A,B) = u12∆(a, b).
It is natural then to represent an elliptic curve E by such an affine

model (*) with a and b not divisible by u4 and u6 respectively, for any
nonunit u ∈ OK ; equivalently, with minimal absolute value of the norm
of its discriminant, among all affine models (*) representing E.

For number theory it is quite a good thing that we can represent
elliptic curves over a number field K, i.e., curves of genus one over K
having a K-rational point, in such a clean way. This is not it at all the
case if you don’t require the curve of genus one to have a K-rational
point: it may well be that the only representation of such a curve that
is rational over the field K in question is as a curve of very high degree
in a projective space (and therefore any projection of such a curve to
the plane will represent it only birationally as a curve of high degree
with a large singularity locus). This issue will be what is behind the
deep questions having to do with what I’ll be calling the companions
to elliptic curves—later in this lecture.

Here are two things one can deduce from this representation (*):

2. Ordering the aggregate of elliptic curves:

We have a natural way of counting the curves!

Theorem 2.1. For any real number X there are only finitely many
isomorphism classes (over K) of elliptic curves (over K) with a rep-
resentation as above such that the absolute value of the norm of its
discriminate is less than X; i.e.,

|NK/Q∆(a, b)| < X.

That is, we can order the collection of these mathematical objects, in
terms of the size of the norms of the discriminants of their “smallest”
representations as above1.

1There are some slightly different, and competing, ways of ordering the array
of elliptic curves. For example by conductor, or as in Manjul Bhargava’s work by
the size of a natural “height-type” function H(E) := max{|NK/Qa|3, |NK/Qb|2}.
The issue of whether the statistics compiled via these different ways of counting are
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The proof of this finiteness exhibits the tendency of arithmetic results
about elliptic curves to interleave with each other. Recall the formula
for the discriminant:

∆ = −4a3 − 27b2

and if we ask for all integral solutions with given discriminant, we
are asking for all integral points on a certain affine model of a certain
elliptic curve. This finiteness result already requires significant results
in the arithmetic of elliptic curves: for each (rational) integer N 6= 0 let
N denote a finite collection of integers in OK such that every integer in
OK with norm equal to N is a twelfth power (of an integer in OK) times
an element of N . We are—in effect—counting the number of integral
solutions to the following finite collection of diophantine equations in
α and β:

−4α3 − 27β2 = ν

for ν running through the finite set N . Each of these equations are
again integral models of elliptic curves parametrized by the variables
α and β. They have only finitely many integral solutions in OK .

Moral: the integral solutions over K of these particular elliptic curves
“count” the totality of all elliptic curves over K. It’s an example of
elliptic curves “knowing” other elliptic curves.

That these affine models of elliptic curves have only finitely many
integral solutions in OK , was shown by Siegel (using methods that were
ineffective2 ; effective solutions to this were provided later by Baker;
and Faltings famous proof of Mordell-Conjecture also bears on this
problem.

independent of the method used to order these elliptic curves we’ll be referring to,
in what follows, as the question of robustness.

2these methods being related to the Mordell-Weil rank of these elliptic curves, a
notion which we’ll discuss later
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The rough number of such elliptic curves is—forX sufficiently large—
squeezed between X5/6−ε and X5/6+ε (any ε > 0 but presumably start-
ing at larger and larger X).3

3. The algebraic group structure on elliptic curves:

What follows is the usual half-minute discussion about elliptic curves
that many number theorists give as an introduction to their subject.
Its virtue is conciseness, but its great drawback is that it avoids any
mention of the dramatic historical evolution of the concept, that had
multiple beginnings coming out of elliptic integrals in mechanics and
other subjects. But here goes: these are two possible pictures of our
plane cubic (over the reals).

The elliptic curve will have two or one real component according as
it is representable by an equation

y2 = x3 + ax+ b

with a, b ∈ R where the cubic polynomial on the right-hand-side of the
equation has three real roots, or only one.

Now any smooth cubic hypersurface S in projective space of any
dimension has the property that any line L is either contained in S,
or else intersects it precisely in three points (if one counts intersections
with proper multiplicity, and if one works over C). This gives us a neat
binary relationship among (lots of) points in a cubic hypersurface—the
collinear relation: for any two points P,Q on the hypersurface draw
the unique straight line connecting P to Q and and if this line is not

3More fun would be to get a precise asymptotic estimate with an error term; this
is what Bhargava gets for the ordering of elliptic curves via the size of the function
E 7→ H(E).
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entirely contained in S, let R be its “third” intersection point with S.
The beauty of this construction is that it is (canonical) and is defined
over whatever field K the hypersurface S itself is defined. It is even
more beautiful when our smooth cubic hypersurface is an elliptic curve
E; i.e., E is of dimension one and for which we are given an “origin”
over K. Then the collinear relation is well-defined for any two points4

P,Q on E and will turn E into a commutative algebraic group by
setting the “origin” to be 0, the origin of the group, and stipulating
that the sum of any three collinear points be equal to 0. That this
rule turns out to yield an associative law, and therefore renders E an
algebraic group is one of the many miracles of projective geometry.

4. The Mordell-Weil Theorem

As we are doing number theory, one of the basic questions we would
naturally ask about an elliptic curve E over a number field K is: what is
the set of its rational points? Of course the intelligent thing to do here
is to ask for more: since this set has a natural abelian group structure,
we would also like to understand it together with this structure—or
to put it in other terms: can we actually use this group structure to
reduce our task of obtaining all the rational points? The answer is yes
and the key result here is:

Theorem 4.1. Let K be a number field and E an elliptic curve defined
over K. Then the (abelian) group of points of E that are rational over
K—denoted E(K) and called the Mordell-Weil group of E over
K—is finitely generated. That is,

E(K) ' Zr ⊕ a finite abelian group.

Here r := r(E;K) is called the Mordell-Weil rank of the ellip-
tic curve, E over K, and the finite group displayed above is called

4even if P = Q
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Mordell-Weil torsion (of E over K). There is a fascinating story
to tell about Mordell-Weil torsion. But one also has a (hard to prove)
theorem that assures us that we can simply ignore Mordell-Weil torsion
if we are considering the rough statistics of the full aggregate of elliptic
curves over K. Namely, using an important result of Merel it is not
hard to show:

Theorem 4.2. Let X be a real number. Let N (E;K,X) denote the
number of elliptic curves over K that has a representation

y2 = x3 + ax+ b

such that the absolute value of the norm of its discriminate is less
than X. Let Ntor free(E;K,X) denote the number among those with
torsion-free Mordell Weil group.

We have:

lim
X→∞

Ntor free(E;K,X)

N (E;K,X)
= 1.

So, if one is going to be considering averages over the range of all
elliptic curves, one can ignore the ones with torsion, or not. In any
event, the real mystery has to do with statistics regarding Mordell-
Weil rank which is what we will concentrate on from now on. But
before that, let us start with a single example:

5. Mordell’s question: “What products of two
consecutive integers are equal to a product of three

consecutive integers?”

The answer to this question, by the way, known to Mordell half a
century ago, is that the only such products are 0, 6, and 210. Of course,
the equation whose integral solutions “solves” Mordell’s Question is

E : y2 + y = x3 − x

and this is an affine model, over Z, of an elliptic curve over Q. It has
the clean virtue that the Mordell-Weil group of its associated elliptic
curve E is torsion-free of rank one, i.e.,

E(Q) ' Z,
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and a generator of its Mordell-Weil group is the point (x, y) = (0, 0).
(All rational points are generated by the “chord-and-tangent-process”
from this “double zero.”)

I mentioned at the end of the previous section that this is a “single
example,” but, following the theme of this colloquium, no single elliptic
curve is isolated from the range of all other elliptic curves. For example,
in a perfectly natural way, to every point P of our E above we can
associate a pair of elliptic curves EP ↔ E ′P that are related by—of
all things—a 37-isogeny. Moreover this association is rational over any
field—i.e., if the point P is rational over K then so is the pair, and
conversely. Even better: every such pair corresponds to a point (give
or take the two cusps) on E .

The famous modularity theorem of Wiles and Taylor, Breuil, Conrad,
and Diamond (saying that all elliptic curves over Q are “modular”) can
be interpreted as saying a similar thing for absolutely any elliptic curve
over Q: its points are in (a specific) natural correspondence to certain
finite subsets of elliptic curves, and as one ranges through all its points,
all elliptic curves will occur within this correspondence.

6. A quick course in how one bounds Mordell-Weil rank

For any elliptic curve E over a number field K we have had, for the
past eighty years or so a (proved) algorithm for providing an upper
bound for the Mordell-Weil rank, r(E,K) of E over K.

This algorithm focusses, more specifically, on finding an upper bound
for the number

rp = rp(E;K) := dimFp{E(K)/pE(K)}

(i.e., rp is the dimension of the Fp-vector space E(K)/pE(K), or equiv-
alently, logp |E(K)/pE(K)|.)
It has been known (by an elegant height argument) since the thirties
that finiteness of rp (for any one prime p) implies that E(K) is finitely
generated. Clearly, then, a finite bound for rp will, in turn, bound
r(E,K) since

rp(E;K) = r(E;K) + εp(E;K)

where

εp(E;K) := dimension of the Fp vector space of p− torsion of E(K).

(Note that εp(E;K) ≤ 2.) So, how to bound these rp’s?
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Happily, for each prime p an effective method of producing a certain
number sp := sp(E;K) called the p-Selmer rank such that two things
are known to be true and a third important feature of sp(E;K) is
conjectured:

(1) rp(E;K) ≤ sp(E;K);

(2) the difference, sp − rp, has an arithmetic algebraic geometric
interpretation, important in its own right (this interpretation
will be related to the existence of curves of genus one over K
that we’ll be calling companions to E and will be describing
presently, and

(3) Conjecture (derived from the Conjecture of Shafarevich-
Tate)
• For all p the difference sp − rp is even; moreover:
• For all but finitely many p, this difference is zero; i.e.,

rp(E;K) = sp(E;K).

7. Having an algorithm that is conjectured to always
work, but not yet proved to always work

Which is where we still are in the general problem of computing
Mordell-Weil rank. I used to say that you should spend your days
looking for rational points and your nights computing these sp’s for
p = 2, 3, 5, 7, 11, . . . and eventually—the conjecture predicts—you’ll
hit an equality (rp = sp) and from then on it will be easy to get all the
rational points. (Of course, I also hoped that no one would waste their
golden days and nights that way.) But if you do manage to compute
the Mordell-Weil rank, it still pays to try to compute the sp’s since
the differences sp(E;K)− rp(E;K) are telling you something interest-
ing about the arithmetic of E; namely: if any of these differences are
nonzero, then there are companions of E (not isomorphic to E) in the
sense that we will discuss below.

8. Companions

Let us work over the rational field K = Q. What do the following
five homogeneous cubic equations have in common?

A : 3X3 + 4Y 3 + 5Z3 = 0

B : 12X3 + Y 3 + 5Z3 = 0



12

C : 15X3 + 4Y 3 + Z3 = 0

D : 3X3 + 20Y 3 + Z3 = 0

E : X3 + Y 3 + 60Z3 = 0.

Well, the first thing to say is that these are all smooth genus one
(cubic plane) curves over Q, and if you adjoin appropriate cube roots
to the rational field, you can make any two, or all, of them equivalent
over the larger field. But there is lots more to say.

The curve E has a rational point (1,−1, 0) and if you take this as
the “origin” you have an elliptic curve.

The curve

A : 3X3 + 4Y 3 + 5Z3 = 0

is a famous curve, sometimes called the Selmer Curve. Selmer in the
1950’s showed that A has a rational point over Qp the p-adic comple-
tion of Q—for every prime number p, and it also (visibly) has a real
point , but A has no points rational over the number field Q. This was
a major moment, for it shows that cubic forms can behave in stark con-
trast to what happens with quadratic homogeneous forms, where the
Hasse Principle (sometimes called the local-to-global principle) guaran-
tees that if a quadratic form represents zero over every completion of
a number field it represents zero over the number field itself.

This also happens for the three other curves B,C,D. In fact, all
five curves are isomorphic to each other over each completion of Q, yet
they are all (isomorphically) distinct over Q.

This leads us to the definition of companion:

Definition: Let E be an elliptic curve over a number field K. A
companion to E is a curve C over K such that over every completion
Kv of K the curve C (viewed as algebraic curve over Kv) is isomorphic
to E over Kv.

So, if an elliptic curve E over K has a companion that isn’t isomor-
phic to E over K we have a phenomenon that violates the spirit of
the local-to-global principle (as in the theory of of quadratic forms).
Shafarevich and Tate conjecture that any elliptic curve E over K has
only finitely many distinct isomorphism classes of companions. This
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conjecture was formulated in the sixties, and some two decades passed
during which there was not even a single case where it was known to
be true.

The first case of an elliptic curve over a number field where one (a)
obtained the full list of isomorphism classes of its companions, and (b)
proved the list to be complete, and (c) where the list contained more
than one item, was the curve

E : X3 + Y 3 + 60Z3 = 0

above over K = Q, and this was achieved by Karl Rubin up in MSRI
twenty-five years ago.

9. The Shafarevich-Tate group

I have avoided, till now, any mention of the so-called Shafarevich-
Tate group Sha(E;K) the elements of which are the companion curves
to E over K with a tiny bit of extra structure (a choice of an isomor-
phism between the jacobian of the companion curve and E; you might
call this an orientation5 an abelian group. This choice of orientation
might remind one of the way the ideal class group ‘organizes’ the set
of equivalence classes of binary quadratic forms as an abelian group.
The similarity between ideal class groups and Shafarevich-Tate groups,

5It is a little theorem that every companion, as defined above, actually has an
orientation. Here is why: let E′ be the jacobian of a companion of the elliptic
curve E, so we now have two elliptic curves E,E′ over the number field K that are
isomorphic curves over every completion of K—and hence they are isomorphic as
elliptic curves over every completion of K (i.e., the isomorphism can be made to
preserve origins). It is easy to see that E and E′ become isomorphic (as elliptic
curves) over a finite Galois extension L of K, and hence can be viewed as twists
of one another, via a cohomology class in H1(Gal(L/K),Aut(E)) where Aut(E)
is the group of automorphisms of the elliptic curve E over L, giving Aut(E) its
natural Gal(L/K)-action. It is also easy to see using Cebotarev that if the Galois
action on Aut(E) is trivial, you win (since the field over which the cocycle twisting
E to E′ is a coboundary is cyclic, and the cocycle is a coboundary locally at every
completion of K). So we are reduced to the case where the Galois action on Aut(E)
is nontrivial, and by what we’ve just said, we see that E and E′ become isomorphic
over the splitting field of that Galois action. But this splitting field (if different
from K) is quadratic (and can only be different from K in the cases where j = 0, or
j = 123). Again using Cebotarev, together with the fact that E and E′ are locally
isomorphic at all completions tells us that the the cocycle twisting E to E′ is a
coboundary. QED.
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though, goes only so far—since it has been known since the 19th cen-
tury that ideal class groups are all finite, while it is still unknown, in
general, whether all Shafarevich-Tate groups are finite6

Conjecture (Shafarevich and Tate): Sha(E;K) is finite for
any E over any number field K.

Note: In the example case of

E : X3 + Y 3 + 60Z3 = 0

discussed in the previous section, Rubin showed that Sha(E; Q) '
Z/3Z × Z/3Z. The five companions listed in that section correspond
to the five pairs {x,−x} of elements in Sha(E; Q).

Having introduced this Shafarevich-Tate group, one can be more
specific in explaining the nature of the p-Selmer ranks described above;
namely, the relationship between E(K), Sha(E;K), and the p-Selmer
rank sp(E;K) is given by the equation:

sp(E;K) = rp(E;K) + dimFp{Sha(E;K)/p · Sha(E;K)}.

10. Density questions having to do with rank

Let K be a fixed number field and consider the collection of all
elliptic curves defined over K. The most natural ‘first question’ that is
somewhat of a statistical nature that you might ask about Mordell-Weil
rank is:

Does r(E;K) admit a finite upper bound (for fixed K
and all elliptic curves over K)?

Here, far from actually having a resolution of this yes or no question,
we don’t even seem to enjoy a uniform consensus about guesses for what
the truth is here, even for the field Q. (There are number theorists who
believe yes, and others who believe no.) The following chart, which I
got off the web, tabulates world’s record large ranks for elliptic curves
over Q—so far— with the year of their discovery and the winners.

6although it is known that dimFp
{Sha(E;K)/p ·Sha(E;K)} is finite for all E,K

and primes p.
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rank ≥ year Author(s)

3 1938 Billing
4 1945 Wiman
6 1974 Penney − Pomerance
7 1975 Penney − Pomerance
8 1977 Grunewald− Zimmert
9 1977 Brumer −Kramer
12 1982 Mestre
14 1986 Mestre
15 1992 Mestre
17 1992 Nagao
19 1992 Fermigier
20 1993 Nagao
21 1994 Nagao−Kouya
22 1997 Fermigier
23 1998 Martin−McMillen
24 2000 Martin−McMillen
28 2006 Elkies


Our knowledge, and the precision of our expectations, about densi-

ties, however, is somewhat more advanced.

Let us assume that you have chosen a size-function for your collection
E 7→ size(E) ∈ R where the main property you need is that for any
real number X there are only finitely many isomorphism classes of E’s
of size < X.

Let r(E;K) and sp(E;K) be the Mordell-Weil rank, and p-Selmer
rank of an elliptic curve E over K.

Here are the basic density questions you might ask:

(1) For a given non-negative number r does

ρ(K, r) := lim
X→∞

|{E with r(E;K) = r and size(E) < X}|
|{E with size(E) < X}|
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exist, and, if so, what is it?

(2) For a given non-negative number s does

σp(K, s) := lim
X→∞

|{E with sp(E;K) = s and size(E) < X}|
|{E with size(E) < X}|

exist, and, if so, what is it?

Of course, even more fun is to predict the rates of convergence of
these limits—i.e. to guess specific bounds on the error terms. This is
where the subtle random matrix heuristics come in.

The expectations regarding the answers to these density questions
seem to have more consensus than the question of boundedness of rank.
Here, then, are the current guesses:

11. Current Guesses, and Theorems, about Mordell-Weil
rank density

We expect 50% of the elliptic curves over K (ordered by any of the
standard size-functions) to have Mordell-Weil rank 0 and 50% to have
rank 1. This was first conjectured by Goldfeld in 1979 at least for fami-
lies of quadratic twists over Q, and in later years fit in with the various
heuristic viewpoints of Katz-Sarnak, and also, with precise bounds on
rates of convergence for quadratic twist families (Conrey, Keating, Ru-
binstein, and Snaith) coming from random matrix heuristics, and for
all elliptic curves over Q (Mark Watkins). This has been referred to as
the minimalist conjecture7. In the terminology of the previous section
then, the “minimalist conjecture” is that ρ(K, r) = 1/2 if r = 0, 1 and
ρ(K, r) = 0 if r ≥ 2. As hinted in the introduction above, this con-
jecture is widely believed—and yet it is difficult to get numerical data
that firmly support it! The reason for this is in the nature of the error
term that is also predicted (coming from random matrix heuristics).
The form that this type of error term takes (it will be slightly different
in different contexts) if X is the number of instances counted) is

aXb logc(X)

7The reason for the term “minimalist” is that—from the point of view of densi-
ties, these are the smallest possible densities that are compatible with the expected
parity of Mordell-Weil ranks: i.e., 0 is the smallest even number and 1 the smallest
odd.
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for specific numbers b < 1 (but b close to 1). It is diabolic how the
graphs of such functions are so very indistinguishable (to the eye) from
the linear function aX, but —of course—from the point of view of
densities the difference between aXb logc(X) (for any b < 1) and aX
is major! This is one of the perils of prediction of qualitative behavior
from too little data.

What can be proved?

If the minimalist conjecture is true, then the average Mordell-Weil
rank when compiled for all elliptic curves would be 1/2. This, therefore,
is the goal. In 1992 Armand Brumer showed (by analytic means, and
conditional on standard conjectures) that the average rank of elliptic
curves over Q is bounded by 2.3.

Recently, as I learned from Manjul Bhargava a few days ago, he
and Aren Shankar have established (unconditionally) that the “average
rank”8 over Q is ≤ 0.99. The method here is via what might be called
the “geometry of arithmetic orbits in linear representations of reductive
groups.” Manjul has hopes that these methods might work not only
over Q but also over any fixed number field K.

But for now, over Q they prove that:

ρ(K; 0) ≥ 0.075

and
ρ(K; 0) + ρ(K; 1) ≥ 0.80.

A striking further result that Bhargava obtained with Wei Ho is that
among elliptic curves possessing one point of infinite order, a subset of
positive density has Mordell-Weil rank one (at present this result is
only for elliptic curves only over Q).

12. Current Guesses, and Theorems, about statistics
regarding p-Selmer ranks

Perhaps the most striking heuristic guess, that follows the spirit—on
the one hand—of the Cohen-Lenstra heuristics that predict statistics
regarding the size of ideal classes, and on the other hand—of the ran-
dom matrix heuristics, is a recent idea of Poonen and Rains that would

8The quotation-marks here are meant to signal that the in-equalities regarding
averages that we will be discussing will always mean the lim supX→∞ (for upper
bounds) or the lim infX→∞ (for lower bounds) and if these upper and lower bounds
are not equal, no claim is being made that the limX→∞ actually exists.
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give a guess about the relative frequency that elliptic curves—sampled
from the collection of all elliptic curves—have a given p-Selmer rank.
The idea behind this heuristic is surprisingly simple: p-Selmer groups
are expressible as the intersection of two maximally isotropic subspaces
in a certain vector space endowed with a specific nondegenerate bilin-
ear form. Working this through, Poonen and Rains predict that the
probability that their intersection is of dimension r is

Dp(r) :=

∏r
j=1 p/(p

j − 1)∏∞
i=0(1 + p−i)

These being expected distributions of densities have the requiste
property that their sum is 1.

We have, for example, if p = 2 or 101:

r D2(r) D101(r)

0 0.20971 0.49505
1 0.41942 0.50000
2 0.27961 0.0049510
3 0.079890 0.000000485
4 0.010652 4.7107E − 13
5 0.00068723 4.5269E − 21
6 0.000021817 4.3072E − 31


Notice that the bulk of densities are distributed over the first two

possible ranks 0 and 1.
What is particularly curious about this collection of numbers

r 7→ Dp(r)

is that it is also the equilibrium distribution of a simple Markov Process.
The relevance of this Markov process to the heuristics we are interested
in in this context is not too clear, but it becomes far clearer, if one
considers the same p-Selmer rank statistical questions for collections of
elliptic curves that are quadratic twists of a given elliptic curve, which
we discuss below.

There are two combinatorial features of our numbers

r 7→ Dp(r)

(1) (Even versus Odd frequencies) The sum of the even densi-
ties is equal to the sum of the odd ones; i.e.:∑

r even

Dp(r) =
∑
r odd

Dp(r) = 1/2.
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(2) (Even versus Odd “sizes”) The sums

∑
r even

Dp(r) · pr =
∑
r odd

Dp(r) · pr = p+ 1.

This would suggest the following amazing conjecture.
Conjecture: Let K be a number field. The average “size”

of the p-Selmer groups in the collection of all elliptic curves over
K is p+1, for any prime number p. More generally the average
“size” of the N -Selmer group is σ(N) :=

∑
d | N 1.

Even more amazing is that Bhargava and Shakar prove that
this is the case for K = Q N = 2, 3, 4, 5.

13. Elliptic curves that are quadratic twists of a given
elliptic curve

Recall that to do statistics on these mathematical objects we have
to stipulate two things:

• the collection of objects to be counted, and
• the way in which they are ordered.

Before we get into the basic statistics, we should point out that there
is some degree of freedom in the choice of range of our collections. The
collection, for example, of elliptic curves given by families of quadratic
twists of a given elliptic curve has some fascinating features, and de-
serves to be studied separately. That is, fixing a, b ∈ OK and varying
d ∈ OK − {0} consider the family

dy2 = x3 + ax+ b.

The elliptic curves in this family are all isomorphic over C; they are
quadratic twists of one another (in various senses, but most directly:) in
the sense that any two of them become isomorphic over some quadratic
extension of the base field K.

Note also that modifying d by multiplying by a square in OK does
change the isomorphism type of the elliptic curve so what is really at
issue is a class of elliptic curves indexed by elements in OK −{0} mod
squares.

Here we have various possible useful naturally arising choices of or-
dering this same collection of objects, and although one (e.g., Dan
Kane) can sometimes prove a kind of robustness; i.e., that the averages
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that are computed via various different orderings are the same,9 things
are a bit delicate.

13.1. Work of Heath-Brown and Swinnerton-Dyer. The special
case of elliptic curves over Q with “full 2-torsion” (i.e., the kernel of
multiplication by 2 in E(Q) is as large as it can be; namely, isomor-
phic to the Klein group of order 4) has been studied from the point of
view of 2-Selmer statistics by Heath-Brown (1994) for the single fam-
ily of elliptic curves related to the congruence number problem, and
more recently (2008) by Swinnerton-Dyer for many families of elliptic
curves over Q. The 2-Selmer rank distributions achieved in this con-
text follows Poonen-Rains heuristics (with a shift of 2 due to rational
2-torsion). Moreover, the nature of this work puts the Markov Process
more naturally into this picture.

13.2. Quadratic twist families of elliptic curves over a given
(general) number field with “no” 2-torsion. Here the elliptic curves
are required to be of the form

dy2 = g(x)

over a number field K where the Galois group of g(x) over K is S3. Karl
Rubin, Zev Klagsbrun, and I are developing an approach (which has a
“Markov Process feel”) to unconditionally prove the basic statistics for
2-Selmer ranks for such families—although we must order the members
of our family in a certain box-like manner. There are surprises:

• Disparity: If E is semistable over K (and has full Galois action
on 2-torsion) then the densities of twists of E having even 2-
Selmer rank is equal to the density having odd 2-Selmer rank
(i.e., we have “parity”) if and only if K has a real place.

• K-dependence: Therefore things can change substantially with
changes of base field K. However, the even, and the odd, rank
statistics for 2-Selmer rank—separately—follow the Poonen-
Rains heuristic.

9Of course, naturally arising is a key phrase here: one can perversely order
infinite collections of objects to mess up things.


