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1. Introduction

Raoul Bott has inspired many of us by the magnificence of his ideas, by the
way he approaches and explains mathematics, and by his warmth, friendship, and
humor. In celebration of Raoul’s eightieth birthday we offer this brief article in
which we will explain how the recent cohomological ideas of Jan Nekovár̆ [N2] imply
(under mild hypotheses plus the Shafarevich-Tate conjecture) systematic growth of
the ranks of the group of rational points in certain elliptic curves as one ascends
the finite layers of appropriate towers of number fields.

LetK/k be a quadratic extension of number fields, and denote by σ the nontrivial
automorphism of K/k. Let p be an odd prime number.

By a Zp-power extension of K we mean an abelian extension L/K with Galois
group Zd

p for some d. If L/K is a Zp-power extension and L/k is Galois, then σ
acts on Gal(L/K) and we will say that L/K is k-positive (resp. k-negative) if σ
acts trivially (resp. by the scalar −1) on Gal(L/K). Thus L/k is abelian if L/K is
k-positive, and Gal(L/k) is a generalized dihedral group if L/K is k-negative.

For any such K/k there is a maximal k-positive Zp-power extension K +, and a
maximal k-negative one K −. The extension K +/K is always nontrivial because K +

contains the cyclotomic Zp-extension of K. The extension K −/K is nontrivial if K
is not totally real (see Lemma 3.2).

If E is an elliptic curve defined over K and L is a (possibly infinite) extension of
K, say that E has Mordell-Weil growth relative to L/K if for every finite extension
F of K in L, the rank of the Mordell-Weil group E(F ) is at least [F : K]. In
particular, if [L : K] is infinite this property will imply that the Mordell-Weil rank
of E over L is infinite. Say that E has p-Selmer growth relative to L/K if the
pro-p-Selmer rank of E over F is at least [F : K] for all finite extensions F of K in
L.

Recent work of Nekovár̆ ([N2], especially §10.7) shows that under extremely
mild hypotheses, if E is an elliptic curve over k that has odd pro-p-Selmer rank
over K and that is of good ordinary reduction at the primes above p, then E has
p-Selmer growth relative to K −/K. Assuming the Shafarevich-Tate conjecture,
this is equivalent to the statement that (under the same hypotheses) if E has odd
Mordell-Weil rank overK, then it has Mordell-Weil growth relative to either K −/K.

In this paper we do two things. First, we give a somewhat different exposition of
Nekovár̆’s theorem, in the hope of making this important result more accessible and
widely known. Namely, we will show how to derive a weaker version of Nekovár̆’s
theorem (Theorem 3.1 below) from the main result of [MR2] (which in turn relies

version of March 15 2005
The authors are supported by NSF grants DMS-0403374 and DMS-0140378, respectively.

1



2 BARRY MAZUR AND KARL RUBIN

crucially on [N2]) using a pair of functional equations satisfied by an “algebraic”
p-adic L-function attached to E over K.

Second, we describe some conditions under which we can prove that the pro-
p-Selmer rank and/or the Mordell-Weil rank of E over K are necessarily odd
(Corollaries 3.6 and 3.7). This enables us to give families of examples (see §5)
of Zd

p-extensions with p-Selmer growth.
An important instance of the above setup is when K is a quadratic imaginary

field, k = Q, and σ is complex conjugation. In this case K + is the cyclotomic
Zp-extension of K and K − is the anti-cyclotomic Zp-extension of K. The results
of Cornut, Vatsal, and Nekovár̆ [C, V, N1] show that if E is defined over Q, E has
good ordinary reduction at p, and rank(E(K)) is odd, then E has Mordell-Weil
growth relative to K −/K. (See also the recent preprint [CV] of Cornut and Vatsal
generalizing their work to CM-fields.)

There are other prior results that unconditionally imply only p-Selmer growth
(as ours do) rather than Mordell-Weil growth, relative to the anticyclotomic Zp-
extension K −/K of an imaginary quadratic field. Greenberg proved in [G1] that
if E is an elliptic curve over Q with complex multiplication by K, p > 3 is a
prime of good ordinary reduction for E, and ords=1L(E/Q, s) is odd, then E has
p-Selmer growth relative to K −/K. Skinner and Urban prove in a recent preprint
[SU] that given a p-ordinary classical newform of arbitrary weight at least 2 and
of odd analytic rank over a quadratic imaginary field K, and satisfying some mild
conditions, its pro-p-Selmer group has p-Selmer growth relative to K −/K.

Most of the work in this article is on the “algebraic,” rather than the “analytic,”
aspect of the arithmetic. However, the motivation for our work is analytic, in the
sense that our main result would follow fairly directly from a generalized version
of the Parity conjecture. Namely, if F is a finite extension of K in K − and ψ is a
character of Gal(F/K), the Parity conjecture gives the first and last congruences

rank(E(K)) ≡ ords=1L(E/K, s) ≡ ords=1L(E/K,ψ, s)

≡ multiplicity of ψ in E(F )⊗C (mod 2)

and the middle one is a root number calculation. Our result (if we assume the
Shafarevich-Tate conjecture) is the weaker implication that for every such ψ

rank(E(K)) is odd ⇒ the multiplicity of ψ in E(F )⊗C is positive.

See Corollaries 3.6 and 3.7 for special cases in which we can replace our “odd
rank” assumption by a root number assumption (i.e., a congruence condition on
the conductor of E/Q).

We conclude this introduction with two potential generalizations of the results
of this paper.

First, in general L(E/K, s) will factor into a product of L-functions. It is possible
that ords=1L(E/K, s) is even because an even number of the factors have odd-
order vanishing. In this case we expect that rank(E(K)) is even, so the results
of this paper would not apply. However, we expect that the individual factors of
L(E/K, s) that vanish will contribute Zp-power extensions of L/K where E has
p-Selmer growth. This should lead to examples in which the pro-p-Selmer rank of
E over F is at least r[F : K] for every finite extension F of K in L, with r > 1.

Second, the results of this paper for Selmer groups of elliptic curves should also
apply to Selmer groups of (classical) p-ordinary newforms of arbitrary even weight
k ≥ 2.
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We hope to deal with these generalizations in a future paper, by refining the
results of [MR2] and combining those refined results with the methods of this paper.

We would like to thank Jay Pottharst for reading a preliminary version of this
paper and for providing us with a simpler version of Lemmas 6.3 and 6.4.

2. The setting

Fix an elliptic curve E defined over a number field k, and a rational prime p > 2.
For every finite extension F of k we have the p-power Selmer group

Selp(E,F ) := ker
(
H1(F,E[p∞]) −→

∏
v

H1(Fv, E)
)
,

where E[p∞] is the Galois module of p-power torsion on E, and the product is over
all places v of F . This Selmer group sits in an exact sequence

0 −→ E(F )⊗Qp/Zp −→ Selp(E,F ) −→ X(E,F )[p∞] −→ 0

where X(E,F )[p∞] is the p-primary part of the Shafarevich-Tate group of E over
F . If F is an arbitrary algebraic extension of Q, we define

Selp(E,F ) := lim−→ Selp(E,F ′),

direct limit (with respect to restriction maps on Galois cohomology) over finite
extensions F ′ of k in F , and the Pontrjagin dual

Sp(E,F ) := Hom(Selp(E,F ),Qp/Zp).

Throughout this paper, if M is a module over an integral domain R, the R-rank
of M will be defined by rankR(M) := dimFrac(R)M ⊗R Frac(R), where Frac(R) is
the field of fractions of R.

Fix a quadratic extension K of k and let σ denote the nontrivial automorphism
of K/k. Let K denote the maximal Zp-power extension of K (the compositum of
all Zp-extensions of K) and Γ := Gal(K /K). Then K is Galois over k, and so σ
acts on Γ. We let Γ± denote the subgroup of Γ on which σ acts by ±1, and let
K ± be the fixed field of Γ∓, so that Gal(K ±/K) ∼= Γ±. Then K + is the maximal
k-positive Zp-power extension of K, and K − is the maximal k-negative one, as
discussed in the introduction. Putting d± = rankZp(Γ±), Leopoldt’s conjecture
for K implies that d+ = r2(k) + 1 and d− = r2(K) − r2(k), where r2 denotes the
number of conjugate pairs of complex embeddings of a number field.

For example, if K is an imaginary quadratic field, then k = Q, d+ = d− = 1 and
K + and K − are the usual cyclotomic and anticyclotomic Zp-extensions of K.

If Kv is the completion of K at a prime v, we denote by E0(Kv) the subgroup of
points of E(Kv) with nonsingular reduction, so [E(Kv) : E0(Kv)] is the Tamagawa
number at v in the Birch and Swinnerton-Dyer conjecture for E/K.

We will assume the following throughout this paper:

p > 2 and E has good ordinary reduction at all primes of K above p, (2.1)

E(K) has no p-torsion, (2.2)

for every prime v of K of bad reduction, [E(Kv) : E0(Kv)] is prime to p. (2.3)



4 BARRY MAZUR AND KARL RUBIN

3. Results

Assume for this section that (2.1), (2.2), and (2.3) hold. The following theorem
is a weakened version of Nekovár̆’s Theorem 10.7.17 [N2] (Nekovár̆ shows that in
fact the conclusion holds with ε = “−”).

Theorem 3.1. Suppose that (2.1), (2.2), and (2.3) hold. If rankZp
(Sp(E,K)) is

odd, then for at least one sign ε = “+” or “−” we have
(i) Sp(E,K ε) is not a torsion Zp[[Γε]]-module,
(ii) for every finite extension F of K in K ε the Selmer module Sp(E,F ) has

a submodule isomorphic to Zp[Gal(F/K)], and in particular

rankZp(Sp(E,F )) ≥ [F : K].

We will give a proof of Theorem 3.1 in §10. Our method is to show that there is
an “algebraic p-adic L-function” satisfying two different functional equations (see
Corollary 9.2), and taken together these functional equations imply the theorem.
In addition, assuming a standard conjecture we will show (as Nekovár̆ does) that
Theorem 3.1 holds with ε = “−” (see Corollary 3.5 below).

See Proposition 4.1 below for an explanation of why one would expect a result
like Theorem 3.1 to hold.

Theorem 3.1(ii) says that E has p-Selmer growth relative to K ε/K, using the
terminology of the introduction. The following lemma shows that this statement is
often nontrivial.

Lemma 3.2. If K is not totally real then both [K + : K] and [K − : K] are infinite.

Proof. We need to show that both d+ and d− are positive. We have d+ ≥ 1 since
KQ∞ ⊂ K +. Class field theory shows that d− ≥ r2(K) − r2(k) (with equality
if Leopoldt’s conjecture holds), and we have r2(K) ≥ 2r2(k) since each complex
place of k splits in K. Therefore if K is not totally real then r2(K) > r2(k) and
d− > 0. �

Before giving some corollaries of Theorem 3.1 we recall two well-known conjec-
tures. Let Q∞ denote the (cyclotomic) Zp-extension of Q.

p-primary Shafarevich-Tate Conjecture. For every finite extension F of K in
K , the p-part X(E,F )[p∞] of the Shafarevich-Tate group of E over F is finite.

Torsion Conjecture ([M]). The Selmer module Sp(E,KQ∞) is a torsion
Zp[[Gal(KQ∞/K)]]-module.

Remark 3.3. If X(E,F )[p∞] is finite, then Sp(E,F ) ⊗Zp Qp = E(F ) ⊗Z Qp.
Thus if the p-primary Shafarevich-Tate conjecture holds, then in Theorem 3.1 and
the corollaries below we can replace the Selmer groups Sp(E,K) and Sp(E,F ) by
the Mordell-Weil groups E(K) and E(F ) (and replace rankZp by rankZ).

Corollary 3.4. Suppose that rankZp(Sp(E,K)) is odd.
(i) If K is not totally real then rankZp(Sp(E,F )) is unbounded as F runs

through finite extensions of K in K .
(ii) More generally, if L is a Zd

p-extension of K that is Galois over k, and the
nontrivial automorphism σ of K/k acts on Gal(L/K) with both eigenvalues
+1 and −1, then rankZp(Sp(E,F )) is unbounded as F runs through finite
extensions of K in L.
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Proof. First consider (ii). Since σ acts on Gal(L/K) with both eigenvalues +1 and
−1, we have that both L ∩ K + and L ∩ K − have infinite degree over K. Thus
assertion (ii) follows directly from Theorem 3.1(ii).

Assertion (i) now follows from (ii) and Lemma 3.2. �

The following result was proved by Nekovár̆ ([N2] Theorem 10.7.17) even without
assuming the Torsion conjecture.

Corollary 3.5. Suppose that rankZp(Sp(E,K)) is odd and that the Torsion con-
jecture holds. Then Theorem 3.1 holds with the sign ε = “−”, i.e.,

(i) Sp(E,K −) is not a torsion Zp[[Γ−]]-module,
(ii) for every finite extension F of K in K − the Selmer module Sp(E,F ) has

a submodule isomorphic to Zp[Gal(F/K)], and in particular

rankZp(Sp(E,F )) ≥ [F : K].

Proof. If the Torsion conjecture holds then by Corollary 6.6 below Sp(E,K +) is a
torsion Zp[[Γ+]]-module, and so the corollary follows from Theorem 3.1. �

The following two corollaries apply when the elliptic curves E is defined over Q,
and the field K is Galois over Q. They replace the condition “rankZp(Sp(E,K))
is odd” by group-theoretic conditions on Gal(K/Q) and congruence conditions on
the conductor of E. We will deduce both of them from Corollary 3.5 in §11, by
showing that their hypotheses imply that rankZp(Sp(E,K)) is odd. Corollary 3.6
assumes the p-primary Shafarevich-Tate conjecture, while Corollary 3.7 does not,
and the two corollaries make different assumptions about Gal(K/Q).

Corollary 3.6. Suppose that the p-primary Shafarevich-Tate conjecture and the
Torsion conjecture hold, and that

(a) E is defined over Q and K is a Galois extension of Q whose discriminant
is relatively prime to the conductor NE of E,

(b) ∆ := Gal(K/Q) is the semidirect product of a (normal) subgroup of odd
order with a nontrivial cyclic 2-group,

(c) the Dirichlet character χ corresponding to the (unique) quadratic field con-
tained in K satisfies χ(−NE) = −1.

Then for every subfield k of K with [K : k] = 2, if K − is the maximal k-negative
Zp-power extension of K,

(i) Sp(E,K −) is not a torsion Zp[[Γ−]]-module,
(ii) for every finite extension F of K in K −, E(F ) has a submodule isomorphic

to Z[Gal(F/K)], and in particular rankZ(E(F )) ≥ [F : K].

Corollary 3.7. Suppose that the Torsion conjecture holds, and that
(a) E is defined over Q and K is a Galois extension of Q whose discriminant

is relatively prime to the conductor NE of E,
(b) ∆ := Gal(K/Q) has a unique quotient of order 2, and every irreducible

Qp-representation of ∆ not factoring through that quotient has even di-
mension,

(c) the Dirichlet character χ corresponding to the (unique) quadratic field con-
tained in K satisfies χ(−NE) = −1.

Then for every subfield k of K with [K : k] = 2, if K − is the maximal k-negative
Zp-power extension of K,



6 BARRY MAZUR AND KARL RUBIN

(i) Sp(E,K −) is not a torsion Zp[[Γ−]]-module,
(ii) for every finite extension F of K in K −, Sp(E,F ) has a submodule iso-

morphic to Zp[Gal(F/K)], and in particular rankZp
(Sp(E,F )) ≥ [F : K].

4. Aside on root numbers

Although we will not need it, the following proposition on root numbers explains
why Theorem 3.1 and Corollary 3.6 are consistent with standard conjectures.

Proposition 4.1. (i) Suppose that the hypotheses of Theorem 3.1 are satis-
fied. Then for every character ψ ∈ Homcont(Gal(K −/K),C×), the induced
representation IndK

k ψ is real valued and the root number of the L-function
L(E/K,ψ, s) is independent of ψ.

(ii) Suppose that the hypotheses of Corollary 3.6(a)-(c) are satisfied. Then for
every character ψ ∈ Homcont(Gal(K −/K),C×), the induced representation
IndK

Qψ is real valued and the root number of the L-function L(E/K,ψ, s)
is −1.

Proposition 4.1 is essentially proved in [MR1] §2.2. We will recall the proof in
§12.

Remark 4.2. If F is a finite Galois extension of K and ψ is a complex character
of Gal(F/K), then a suitably general version of the Birch and Swinnerton-Dyer
conjecture would predict that the multiplicity of ψ in the representation E(F )⊗C
is the order of vanishing of L(E/K,ψ, s) at s = 1. When IndK

k ψ is real valued,
there is a conjectured functional equation that implies that this order of vanishing
is even if the root number is +1, and odd if the root number is −1. Thus (using
Proposition 4.1) under the hypotheses of Theorem 3.1 and Corollary 3.6 one expects
that for every finite extension F of K in K − and every character ψ of Gal(F/K),
ψ occurs in E(F )⊗C. Theorem 3.1 and Corollary 3.6 show that this expectation
is correct, at least if we replace E(F ) by Sp(E,F ) (or assume that X(E,F )[p∞] is
finite for all such F ).

Remark 4.3. There is a partial converse to Proposition 4.1. Namely, suppose that
ψ is a character of finite order of Γ := Gal(K /K). Suppose further that ψ is generic,
in the sense that ψ is not the restriction to K of a character of a Zp-extension of a
proper subfield of K. Then the induced representation IndK

Qψ is real-valued if and
only if there is an involution σ of K such that ψσ = ψ−1 (see Proposition 2.5 of
[MR1]).

Now suppose in addition that E is defined over Q, the discriminant of K is
relatively prime to the conductor E, and K is Galois over Q. Then the root
number of L(IndK

Qψ, s) is −1 if and only if hypotheses (b) and (c) of Corollary 3.6
are satisfied (this is Theorem 2.8 and Proposition 2.9 of [MR1]).

When K is not Galois over Q the situation is more complicated. We plan to
discuss this, and the further implication for p-Selmer growth related to odd parity
functional equations, in a future paper.

5. Examples

Example 5.1. Let K be an abelian extension of Q containing a unique quadratic
field (i.e., ∆ := Gal(K/Q) is an abelian group with cyclic 2-part). Then ∆ satisfies
the hypothesis of Corollary 3.6(b). Let σ be the unique element of order 2 in ∆,
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and k the fixed field of σ. We will assume that K is imaginary, for if K is real
then the cyclotomic Zp-extension is the only Zp-extension of K. Thus σ is complex
conjugation and k is the real subfield of K. Let χ be the quadratic character of ∆.

Since Leopoldt’s conjecture holds for K, we have K + = KQ∞, so d+ = 1, and
K −/K is a Zd−

p -extension with d− = r2(K) = [K : Q]/2.
Let E be an elliptic curve over Q with good ordinary reduction at p, satisfying

(2.2) and (2.3), with conductor NE prime to the discriminant of K, and such that
χ(−NE) = −1. By work of Kato [K], the Torsion conjecture holds for E/K.

By Corollary 3.6, if the p-primary Shafarevich-Tate conjecture holds, then the
Selmer module Sp(E,K −) is a non-torsion Zp[[Γ−]]-module and rankZ(E(F )) ≥
[F : K] for all finite extensions F of K in K −.

If K is an imaginary quadratic field, then K − is the anticyclotomic Zp-extension
of K and the conclusions of Corollary 3.6 were already known by work of Vatsal
[V] and Cornut [C].

If p has even order in (Z/`Z)× for every odd prime ` dividing [K : Q], and
either p ≡ 3 (mod 4) or 4 does not divide [K : Q], then we can apply Corollary
3.7 instead of Corollary 3.6 and hence remove the assumption that the p-primary
Shafarevich-Tate conjecture holds.

Example 5.2. Suppose K is a complex Galois extension of Q with

∆ := Gal(K/Q) ∼= S3.

Note that ∆ satisfies the hypothesis of Corollary 3.7(b). Let M denote the (imag-
inary) quadratic extension of Q in K, and χ the Dirichlet character correspond-
ing to M/Q. Leopoldt’s conjecture holds for K (for group-theoretic reasons), so
Γ := Gal(K /K) ∼= Z4

p.
Let σ ∈ ∆ be one of the elements of order 2 and kσ its fixed field. The (non-

Galois) cubic field kσ has one pair of complex embeddings, so d− = r2(K)−r2(kσ) =
2. Hence for each such σ there is a (unique) Z2

p-extension K −
σ of K, each containing

the anticyclotomic Zp-extension of M .
Let E be an elliptic curve over Q with good ordinary reduction at p, satisfying

(2.2) and (2.3), with conductor NE prime to the discriminant of K, and such that
χ(−NE) = −1. Suppose further that the Torsion conjecture holds for E/K (which
in practice would be very difficult to verify).

We conclude by Corollary 3.7 that for each of the three elements σ ∈ ∆ of order
2, the Selmer module Sp(E,K −

σ ) is not Zp[[Gal(K −
σ /K)]]-torsion, and for every

finite extension F of K in K −
σ we have rankZp(Sp(E,F )) ≥ [F : K]. (Note that

the three Z2
p-extensions K −

σ are isomorphic over K, and hence the three Selmer
modules Sp(E,K −

σ ) are isomorphic as well.)

Example 5.3. Suppose K ′ is a complex Galois extension of Q with

∆ := Gal(K ′/Q) ∼= S4.

Note that ∆ does not satisfy Corollary 3.6(b). Let H be a subgroup of order 2 in
∆, generated by a 2-cycle (so H 6⊂ A4) and let K be the fixed field of H in K ′.
Let σ ∈ ∆ − H be an element in the normalizer of H, so σ is an automorphism
of K of order 2, and let k be the fixed field of σ. One can check that K has 5
pairs of complex embeddings if the complex conjugations in ∆ are 2-cycles, and 6
otherwise; k has 2 pairs of complex embeddings in either case.
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Assume that Leopoldt’s conjecture holds for K. The discussion above shows
that Γ := Gal(K /K) ∼= Zn

p where n is 6 or 7, and Γ− := Gal(K −/K) has Zp-rank
3 or 4.

Let E be an elliptic curve over Q, with good ordinary reduction at p, satisfying
(2.2) and (2.3), with conductor NE prime to the discriminant of K, and suppose
that the Torsion conjecture holds as well. It follows from Theorem 2.8 of [MR1] (or
see the proof of Proposition 4.1) that the root number of L(E/K, s) is χ(−NE),
where χ is the quadratic Dirichlet character corresponding to the fixed field of A4

in K.
Assume now that χ(−NE) = −1. Then conjecturally rankZp

(Sp(E,K)) is odd,
and if so we can use Theorem 3.1 to conclude that the Selmer module Sp(E,K −)
is not Zp[[Γ−]]-torsion, and that for every finite extension F of K in K − we have
rankZp(Sp(E,F )) ≥ [F : K].

Unfortunately, unlike the situation of Corollary 3.6, we have no general way to
show that rankZp

(Sp(E,K)) is odd. We do know (using Nekovár̆’s parity theorem
[N1]) that rankZp(Sp(E,M)) is odd, where M is the (quadratic) fixed field of A4 in
K, but M 6⊂ K so there is no apparent way to relate the parity of rankZp(Sp(E,K))
to that of rankZp(Sp(E,M)).

6. The control theorem

Define the Iwasawa algebra
Λ := Zp[[Γ]].

If K ⊂ F ⊂ K we let ΓF := Gal(F/K) and ΛF := Zp[[ΓF ]] denote the correspond-
ing quotients of Γ and Λ, and IF ⊂ Λ the corresponding augmentation ideal:

0 −→ IF −→ Λ −→ ΛF −→ 0.

Thus IF is generated by {γ − 1 : γ ∈ Gal(K /F )}.
Suppose that either

(i) F is a Zd
p-extension of K in K and R = ΛF , or

(ii) F is an arbitrary extension of K in K and R = ΛF ⊗Qp.
In case (i) R is an integrally closed noetherian domain, and in case (ii) R is a direct
sum of integrally closed noetherian domains. If M is a finitely generated torsion
R-module we let charR(M) denote the characteristic ideal of M , called the divisor
of M in [B] Chapter VII, §4.5. (In case (ii) we make this definition component-by-
component.) If (some component of) M is not torsion, we set (that component of)
charR(M) equal to zero. Then M has a submodule isomorphic to R if and only if
charR(M) = 0.

The following “control theorem” is due to Greenberg ([G2] Theorem 2).

Theorem 6.1. Suppose that K ⊂ F ⊂ L ⊂ K , and F/K is finite. Then the
natural map

Sp(E,L)⊗ΛL
ΛF −→ Sp(E,F )

(induced by the restriction map Selp(E,F ) → Selp(E,L)Gal(L/F )) has finite kernel
and cokernel. In particular

rankZp
(Sp(E,F )) = rankZp

(Sp(E,K )⊗Λ ΛF ).

Corollary 6.2. The Λ-module Sp(E,K ) is finitely generated.
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Proof. This is immediate from Theorem 6.1 and Nakayama’s Lemma. �

Lemma 6.3. Suppose that K ⊂ F ⊂ L ⊂ K , and M is a finitely generated ΛL-
module. Let MF = M ⊗ΛL

ΛF . Then

(i) MF is a finitely generated ΛF -module,
(ii) charΛF⊗Qp(MF ⊗Qp) ⊂ charΛL

(M)(ΛF ⊗Qp),

Proof. The first assertion is clear.
For (ii), since charΛL⊗Qp

(M ⊗Qp) = charΛL
(M)⊗Qp, we can reduce by induc-

tion to the case that L/F is either finite or a Zp-extension. If [L : F ] is finite then
ΛF ⊗Qp is a direct summand of ΛL ⊗Qp and we have equality in (ii). If L/F is a
Zp-extension then (ii) follows from Lemmas 2 and 4 of §I.1 of [PR1]. �

Lemma 6.4. Suppose that K ⊂ F ⊂ L ⊂ K , L/K is a Zp-power extension, and
M is a finitely generated ΛL-module. If charΛL

(M) ⊂ IF ΛL then M ⊗ΛL
ΛF has a

submodule isomorphic to ΛF .

Proof. Let MF = M ⊗ΛL
ΛF . If charΛL

(M) ⊂ IF ΛL then by Lemma 6.3(ii),
charΛF⊗Qp(MF⊗Qp) = 0. HenceMF⊗Qp has a submodule isomorphic to ΛF⊗Qp,
and the lemma follows. �

Proposition 6.5. Suppose that K ⊂ F ⊂ L ⊂ K , L/K is a Zp-power extension,
and charΛL

(Sp(E,L)) ⊂ IF ΛL.

(i) If F/K is finite then Sp(E,F ) has a submodule isomorphic to ΛF .
(ii) If F/K is a Zp-power extension, then Sp(E,F ) is not a torsion ΛF -module.

Proof. Suppose first that F/K is finite. By Lemma 6.4 applied with M = Sp(E,L),
the ΛF -module Sp(E,L)⊗ΛL

ΛF has a submodule isomorphic to ΛF . Now (i) follows
from Theorem 6.1.

Now suppose F is a Zp-power extension of K and charΛ(Sp(E,L)) ⊂ IF ΛL. If F ′

is a finite extension of K in F , then IF ⊂ IF ′ so assertion (i) shows that Sp(E,F ′)
has a submodule isomorphic to ΛF ′ . Thus by Theorem 6.1, Sp(E,F ) ⊗ ΛF ′ has a
submodule isomorphic to ΛF ′ . Since this holds for every finite extension F ′ of K
in F , it follows that Sp(E,F ) cannot be a torsion ΛF -module. �

Corollary 6.6. If the Torsion conjecture holds, then Sp(E,K ) is a torsion Λ-
module and Sp(E,K +) is a torsion ΛK +-module.

Proof. If Sp(E,K ) is not a torsion Λ-module, then charΛ(Sp(E,K )) = 0, and so
Proposition 6.5(ii) (with L = K and F = KQ∞) would contradict the Torsion
conjecture.

The proof for K + is the same. �
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7. Involutions and functional equations

Suppose that τ is a Zp-linear involution of Γ. Then τ induces an involution of
Λ (which we will also denote simply by τ , or by λ 7→ λτ ). If M is a Λ-module we
let Mτ be the Λ-module with the same underlying abelian group as M , but with
Λ-module structure obtained from that of M by composition with τ .

For example, an automorphism σ of order 2 of K with fixed field k as in §2 gives
an involution of Γ (which we will also denote simply by σ), and we always have the
involutions ±1.

Lemma 7.1. Suppose that T is a (commutative) group of involutions of Γ. Then
the natural inclusion {±1} ↪→ Λ× induces an isomorphism

Hom(T, {±1}) ∼−→ H1(T,Λ×).

Proof. We have a direct sum decomposition Λ× ∼= F×p ⊕Λ′ where Λ′ is the kernel of
the reduction map Λ× → F×p . Since Λ′ is a pro-p group and p > 2, H1(T,Λ′) = 0
and so

H1(T,Λ×) = H1(T,F×p ) = Hom(T,F×p ) = Hom(T, {±1}). �

Proposition 7.2. Suppose that T is a (commutative) group of involutions of Γ,
and A ⊂ Λ is a principal ideal that is stable under every involution in T . Then
there is a homomorphism ε : T → {±1} and a generator L of A such that

Lτ = ε(τ)L for every τ ∈ T .

Further, for each τ ∈ T , ε(τ) is uniquely determined by τ and A, and does not
depend on T or L.

Proof. Let α be a generator of A. Since A is stable under involutions in T , the map
c(τ) = ατ/α is a 1-cocycle from T to Λ×. By Lemma 7.1 there is a homomorphism
ε : T → {±1} that is equivalent in H1(T,Λ×) to c. In other words, there is a
u ∈ Λ× such that (uτ/u)c(τ) = ε(τ) for every τ ∈ T . Put L = uα. Then L is a
generator of A and Lτ = ε(τ)L for every τ ∈ T .

Now fix τ , and suppose that there is another generator L0 of A such that Lτ
0 =

wL0 with w = ±1. Then if v = L0/L we have v ∈ Λ× and vτ/v = wε(τ). But τ
induces the identity map on ΛK

∼= Zp, and the image of v in ΛK is nonzero, so we
cannot have vτ = −v. Hence ε(τ) = w is uniquely determined by A and τ . �

If τ is an involution of Γ, we let Γ±τ be the submodule of Γ on which τ acts
via ±1, and K ±

τ the fixed field of Γ∓τ . (If τ is the nontrivial automorphism of a
quadratic extension K/k, then K ±

τ is what we previously called simply K ±.)

Proposition 7.3. Suppose that τ is an involution of Γ, and L ∈ Λ satisfies Lτ =
−L. Then L lies in the augmentation ideal IK +

τ
.

Proof. In the exact sequence

0 −→ IK +
τ
−→ Λ −→ ΛK +

τ
−→ 0,

IK +
τ

is stable under τ , and τ induces the identity map on ΛK +
τ
. Since Lτ = −L,

the image of L in ΛK +
τ

must be zero, and the proposition follows. �
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8. The inversion involution

Let ι be the inversion involution on Γ, i.e., ι(γ) = γ−1. Under our hypotheses
(2.1)-(2.3) we have the following result from [MR2] (Theorem 7.5).

Theorem 8.1. Suppose that Sp(E,K ) is a torsion Λ-module. Then there is a free
Λ-module Φ of finite rank with a nondegenerate skew-Hermitian pairing

Φ⊗ Φι −→ Λ

such that Sp(E,K ) is the cokernel of the induced injection

Φ ↪→ Hom(Φι,Λ).

Here a skew-Hermitian pairing means a Λ-homomorphism h : Φ⊗ Φι → Λ such
that h(a⊗ b) = −h(b⊗ a)ι.

Proposition 8.2. With Φ as in Theorem 8.1, we have

rankΛ(Φ) ≡ rankZp
(Sp(E,K)) (mod 2).

Proof. Let I := IK denote the augmentation ideal of Λ, so Λ/I = ΛK
∼= Zp.

Theorem 8.1 gives an exact sequence

0 −→ Φ −→ Hom(Φι,Λ) −→ Sp(E,K ) −→ 0,

and tensoring with Λ/I gives

Φ/IΦ h̄−→ Hom(Φι/IΦι,Zp) −→ Sp(E,K )⊗Λ Zp −→ 0.

Since ι acts trivially on Λ/I, the map h̄ is represented by a skew symmetric matrix
with entries in Zp. Such a matrix has even rank (that is, the nondegeneracy rank
of the matrix, which is the Zp-rank of the image), and it follows that

rankZp(Sp(E,K )⊗Λ Zp) ≡ rankZp(Φ/IΦ) = rankΛ(Φ) (mod 2).

On the other hand, Theorem 6.1 shows that

rankZp(Sp(E,K)) = rankZp(Sp(E,K )⊗Λ Zp),

and the proposition follows. �

Corollary 8.3. Suppose that Sp(E,K ) is a torsion Λ-module. Let H be the matrix
giving the skew-Hermitian pairing of Theorem 8.1 with respect to some Λ-basis of Φ,
and L := det(H) ∈ Λ. Then L is a generator of char(Sp(E,K )) and Lι = (−1)rL,
where r := rankZp(Sp(E,K)).

Proof. By Theorem 8.1, det(H) is a generator of char(Sp(E,K )). On the other
hand, H is a skew-Hermitian matrix (i.e., the transpose of H is −Hι) so

det(H)ι = det(Hι) = det(−H) = (−1)rankΛ(Φ) det(H) = (−1)r det(H)

the final equality by Proposition 8.2. �
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9. The involution σ

Let σ be the nontrivial automorphism of K/k as in §2, and let σ also denote the
corresponding involutions of Γ and Λ.

Lemma 9.1. Every lifting of σ to Gal(K /k) induces an isomorphism Sp(E,K )σ ∼=
Sp(E,K ).

Proof. This is clear. �

Corollary 9.2. Suppose that Sp(E,K ) is a torsion Λ-module. Then there is a
generator L of char(Sp(E,K )) such that

Lι = (−1)rL, Lσ = ±L
where r := rankZp(Sp(E,K)).

Proof. Let T be the group generated by the (commuting) involutions ι and σ of Γ.
By Corollary 8.3 and Lemma 9.1, the ideal char(Sp(E,K )) is stable under every
element of T . Now the corollary follows from Proposition 7.2 and Corollary 8.3. �

10. Proof of Theorem 3.1

Proof of Theorem 3.1. If Sp(E,K ) is not a torsion Λ-module, then Theorem 3.1
holds with both ε = “+” and “−” by Proposition 6.5 (with L = K and F ⊂ K + or
F ⊂ K −). So we may assume that Sp(E,K ) is a torsion Λ-module.

Let L be a generator of charΛ(Sp(E,K )) satisfying Corollary 9.2. We consider
two cases.

Case 1: Lσ = −L. By Proposition 7.3 we have L ∈ IK +, so by Proposition 6.5
(with L = K and F ⊂ K +) Theorem 3.1 holds with ε = “+”.

Case 2: Lσ = L. In this case we use the involution ισ instead of σ. Note that
Γ±ισ = Γ∓ and K ±

ισ = K ∓. Since we assume that rankZp(Sp(E,K)) is odd, we have
Lισ = −L by Corollary 9.2. Proposition 7.3 now shows that L ∈ IK +

ισ
= IK −, so by

Proposition 6.5 (with L = K and F ⊂ K −) Theorem 3.1 holds with ε = “−”. �

11. Proof of Corollaries 3.6 and 3.7

Corollaries 3.6 and 3.7 will follow immediately from Corollary 3.5 once we show
that (under the hypotheses of Corollary 3.6 or 3.7) rankZp(Sp(E,K)) is odd. We
will deduce this from Nekovár̆’s parity theorem [N1] for Selmer groups over Q.

Lemma 11.1. Suppose G is a finite group of odd order. If V is a nontrivial
irreducible representation of R[G], then dimR(V ) is even.

Proof. We will prove this by induction on the order of G. If G is cyclic, then the
lemma is clear. If not, then by the Feit-Thompson theorem G has a proper normal
subgroup H. If H acts trivially on V then we are done by induction (applied to
G/H), so we may assume that H acts nontrivially on V .

Decompose V = ⊕iVi where each Vi is an irreducible representation of R[H]. If
some Vj is the trivial representation then (since H is normal) H acts trivially on
the G-span of Vj . But the G-span of Vj is nonzero and G-stable, hence equal to V .
This contradicts our assumption that H acts nontrivially on V .

Thus by induction each dimR(Vi) is even, and so dimR(V ) is even. �
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Lemma 11.2. Suppose ∆ satisfies Corollary 3.6(b). If ρ is an irreducible represen-
tation of R[∆], not equal to either the trivial representation or the unique quadratic
one-dimensional character, then dim(ρ) is even.

Proof. Let H denote the (normal) odd-order subgroup of ∆ with cyclic 2-power
quotient. If ρ is trivial on H then the proposition is clear.

Decompose ρ|H = ⊕iρi into irreducible representations of R[H]. Arguing exactly
as in the proof of Lemma 11.1 we conclude that each ρi is nontrivial, and then by
Lemma 11.1 each dim(ρi) is even. �

Proposition 11.3. (i) If K satisfies Corollary 3.6(b), and M is the quadratic
field contained in K, then rankZ(E(K)) ≡ rankZ(E(M)) (mod 2).

(ii) If K satisfies Corollary 3.7(b), and M is the quadratic field contained in
K, then rankZp

(Sp(E,K)) ≡ rankZp
(Sp(E,M)) (mod 2).

Proof. Let V := (E(K)⊗R)/(E(M)⊗R). Then

rankZ(E(K))− rankZ(E(M)) = dimR(V ).

The R[∆]-module V contains no copies of either of the two one-dimensional real
representations of ∆, so in case (i) Lemma 11.2 shows that dimR(V ) is even.

Similarly in case (ii), the hypothesis of Corollary 3.7(b) shows that the Qp-
dimension of (Sp(E,K)⊗Qp)/(Sp(E,M)⊗Qp) is even. �

Theorem 11.4. Suppose that either
(i) the hypotheses of Corollary 3.6(a)-(c) are satisfied and X(E,K)[p∞] is

finite, or
(ii) the hypotheses of Corollary 3.7(a)-(c) are satisfied.

Then rankZp(Sp(E,K)) is odd.

Proof. Let M denote the quadratic extension of Q inside K, and let E′ denote
the quadratic twist of E by M . Then L(E/M, s) = L(E/Q, s)L(E′/Q, s) and
Sp(E,M) ∼= Sp(E,Q)⊕ Sp(E′,Q). Nekovár̆ [N1] proved that rankZp(Sp(E,Q)) ≡
ords=1L(E/Q, s) (mod 2) and similarly for E′. We deduce that

rankZp(Sp(E,M)) ≡ ords=1L(E/M, s) (mod 2).

By (for example) Proposition 4.1(ii) applied with K replaced by M , the root
number of L(E/M, s) is −1, so ords=1L(E/M, s) is odd and we conclude that
rankZp(Sp(E,M)) is odd.

In case (ii), it follows from Proposition 11.3(ii) that rankZpSp(E,K) is odd. In
case (i), since X(E,K)[p∞] is finite we have that X(E,M)[p∞] is finite as well,
so rankZ(E(M)) = rankZpSp(E,M) and rankZ(E(K)) = rankZpSp(E,K). Then
rankZ(E(M)) is odd, so by Proposition 11.3(i) rankZ(E(K)) is odd, and finally
rankZpSp(E,K) is odd. �

Proof of Corollaries 3.6 and 3.7. Corollaries 3.6 and 3.7 follow immediately from
Corollary 3.5, using Theorem 11.4. �
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12. Proof of Proposition 4.1

Proposition 4.1 is essentially proved in [MR1] §2.2. For completeness we sketch
the proof here.

Proof of Proposition 4.1. Suppose ψ ∈ Homcont(Gal(K −/K),C×). Since σ acts as
−1 on Gal(K −/K), we have ψσ = ψ−1 = ψ̄. Therefore IndK

k ψ = IndK
k ψ̄ so IndK

k ψ

is real valued in part (i), and similarly for IndK
Qψ in part (ii).

In Proposition 10 of [Ro], Rohrlich gives a formula for the root number of
L(E/K,ψ, s) = L(E/k, IndK

k ψ, s) that depends only on E and det(IndK
k ψ), and

does not otherwise depend on ψ. To complete the proof of (i) we need only show
that det(IndK

k ψ) does not depend on ψ.
Let p be a prime of Q̄ above p. Since ψ has p-power order, ψ ≡ 1 (mod p) where

1 is the trivial character, and so

det(IndK
k ψ) ≡ det(IndK

k 1) (mod p).

Since p is odd and both sides of this congruence are characters taking only the
values ±1, it follows that the congruence must be an equality. This proves (i).

For (ii), we use Rohrlich’s Proposition 10 [Ro] again to conclude that the root
number of L(E/K,ψ, s) = L(E/Q, IndK

Qψ, s) is χ(−NE) where χ = det(IndK
Qψ).

Exactly as above we see that det(IndK
Qψ) = det(IndK

Q1), and by Proposition 2.9
of [MR1], the condition of Corollary 3.6(b) ensures that det(IndK

Q1) is the unique
quadratic character of Gal(K/Q). Now the condition of Corollary 3.6(c) completes
the proof of (ii). �
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