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Introduction

Four decades ago, Mikio Sato and John Tate predicted the shape of probability distributions to
which certain “error terms” in number theory conform. Their prediction—known as the Sato-Tate
Conjecture—has been verified for an important class of cases, thanks to the recent work of Laurent
Clozel, Michael Harris, and Richard Taylor [3], and of Michael Harris, Nicholas Shepherd-Barron,
and Richard Taylor [16], combined with Richard Taylor’s most recent [50] which establishes this
advance in our understanding.

Part of the beauty of this breakthrough is how it pulls together progress made over the past
quarter century, and work from significantly different viewpoints—from the theory of automorphic
representations, from algebraic geometry, and from Galois deformation theory—a demonstration,
yet again, of the intense unity of mathematical thought.

My aim is to discuss, in concrete terms, two “sample problems” —one still open, and one settled
by the recent work—-that give rise to error terms, about which the Sato-Tate Conjecture makes
precise predictions.

I thank Andrew Granville, Michael Harris, Nick Katz, Mark Kisin, Phillipe Michel, and Richard
Taylor for much enlightening discussion and for their exceedingly helpful comments. I’m grateful
to William Stein for conversations and advice about the substance and the format of this article
and for the computations and graphs that appear in it, and also to Christopher Swierczewski for
computations, among which are those that produced the q-q plots. All plots were created using
the free software SAGE (http://sagemath.org). For a file containing all figures in this article,
with codes, see http://wstein.org/mazur/sato.tate.figures. I also want to thank Susan Holmes who
explained to me the nature and utility of q-q plots.
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Part I

The general question of error terms.

Our first “sample problem.”

1 Error Terms and the Sato-Tate Conjecture

1.1 Why are there still unsolved problems in Number Theory?

Eratosthenes, to take an example—and other ancient Greek mathematicians—might have imagined
that all they needed were a few powerful insights and then everything about numbers would be as
plain, say, as facts about triangles in the setting of Euclid’s Elements of Geometry. If Eratosthenes
had felt this, and if he now—transported by some time machine—dropped in to visit us, I’m sure
he would be quite surprised to see what has developed.

To be sure, geometry has evolved splendidly but has expanded to higher realms and more profound
structures. Nevertheless, there is hardly a question that Euclid could pose with his vocabulary
about triangles that we can’t answer today. And, in stark contrast, many of the basic naive queries
that Euclid or his contemporaries might have had about primes, perfect numbers, and the like,
would still be open.

Sometimes, but not that often, in number theory, we get a complete answer to a question we have
posed, an answer that finishes the problem off. Often something else happens: we manage to find a
fine, simple, good approximation to the data, or phenomena, that interests us—perhaps after some
major effort—-and then we discover that yet deeper questions lie hidden in the error term, i.e., in
the measure of how badly our approximation misses its mark.

A telling example of this, and of how in the error term lies richness, is the manner in which we
study of π(X) := the number of prime numbers less than X. The function π(X) is shown below,
in various ranges as step functions giving the “staircase” of numbers of primes.

As is well known, Carl Friedrich Gauss, two centuries ago, computed tables of π(X) by hand, for
X up to the millions, and offered us a probabilistic “first” guess for a nice smooth approximating
curve for this data; a certain beautiful curve that, experimentally, seems to be an exceptionally
good fit for the staircase of primes.

The data, as we clearly see, certainly cries out to us to guess a good approximation. If you make
believe that the chances that a number N is a prime is inversely proportional to the number of
digits of N you might well hit upon Gauss’s guess, which produces indeed a very good fit. In a
letter written in 1849 Gauss claimed that as early as 1792 or 1793 he had already observed that
the density of prime numbers over intervals of numbers of a given rough magnitude X seemed to
average 1/log X. (Here log is the natural logarithm; i.e. to the base e.)
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Figure 1.1: The step function π(N) counts the number of primes up to N

The Riemann Hypothesis is equivalent to saying that the integral
∫ X
2 dx/ log x (i.e., the area under

the graph of the function 1/ log x from 2 to X) is essentially square root close to π(X). That is, if
we take the difference between π(X) and

∫ X
2 dx/ log x as the error term in our attempt to estimate

π(X), i.e., if we set

Error(X) = π(X) −
∫ X

2
dx/ log x,

then the Riemann Hypothesis is equivalent1 to saying that for every ε > 0, we have that

|Error(X)| < X
1
2
+ε

for X sufficiently large.

1.2 Much of the depth of the problem is hidden in the structure of the error
term.

In a general context, once we make what we hope to be a good approximation to some numerical
data, we can focus our attention to the error term that has thereby been created, namely:

Error term = Exact Value - Our “good approximation.”

In our attempt to understand π(X), i.e., the placement of primes in the sequence of natural num-
bers, we chose in the previous subsection—with Gauss—our good approximation to be the smooth
function

∫ X
2 dx/ log x, so all the essential prime placement information is still contained in the

piece-wise continuous function: Error(X) = π(X)−
∫ X
2 dx/ log x.

It is Riemann’s analysis of this error term that first showed us the immense world of structure
packaged in it [38]. For Riemann did what is, in effect, a Fourier analysis of π(et) expressing

1The Riemann Hypothesis is also equivalent to a more exacting inequality, namely, the existence of a constant B

such that |Error(X)| < BX
1
2 logX. For Serge Lang’s discussion of this, with a comment from his audience, see the

lecture Prime Numbers in [31].
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Error(x)2 as an exact infinite sum of corrective terms, each of these corrective terms easily described
in terms of the value of a zero of the Remann zeta function; all of these corrective terms are square
root small if and only if “his” hypothesis holds3.

Figure 1.2: The smooth function slithering up the staircase of primes up to 100 is Riemann’s
approximation that uses the “first” 29 zeroes of the Riemann zeta function.

1.3 Strict square-root accuracy

We will be considering a somewhat different class of number theoretic problem than the example
that we have been discussing, and for those problems an even stronger notion of square-root ap-
proximation is relevant. We will be interested in situations where the error term is less than a fixed
constant times the square root of the quantity being approximated; let us say that an approximation
to numerical data has strict square-root accuracy if its error term has this property.

We have witnessed great successes in the last century in obtaining good approximations to impor-
tant problems in Number theory, with error terms demonstrated to be strictly square-root accurate.
Specifically, through the work of Helmut Hasse [17] in the 1930s, André Weil [51] in the 1940s and
Pierre Deligne [6] in the 1970s, a large class of major approximations were proved to have this kind
of accuracy. See [19] for an account of this; and for a general discussion see Joe Silverman’s book
[48].

2To be more precise, Riemann’s ideas provide a Fourier analysis of (the corresponding error term for) the
distribution—in the sense of Schwartz—given by the derivative of the step function ψ(et), where ψ(X) :=

P
n≤X Λ(n)

where Λ(n) is equal to log p if n is a power of the prime p, and is zero otherwise. The function ψ(et) is a close relative
to π(et) and–in the structure of its discontinuities—still packages the same basic information regarding the placement
of primes among all natural numbers that π(et) does.

3William Stein and I are writing a short book entitled What is Riemann’s Hypothesis?—in which there will be few
formulas but lots of graphs and a link to a web-site where people can experiment with parameters displaying data
using Stein’s new computational program SAGE.
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1.4 Some Sample Arithmetic Problems

It has been known since the time of Fermat, and proved by Euler, that a prime p can be written
as a sum of two square numbers if and only if p 6 ≡3 modulo 4 and if it can be written as a sum of
two squares, it can be done so in only one way (not counting the order of the two squares). For
example:

401 = 12 + 202

is the only way (up to changing the order of the two summands) to express the prime number 401
as a sum of two square numbers. The question of determining in how many ways a prime can be
written as a sum of two squares leads, for many reasons, to a much more central and important
inquiry than one might first anticipate. This problem, which seems to mix prime numbers with
geometry (squares of distances to the origin of integral lattice points in the plane) has the virtue
that its answer is equivalent to knowledge of the splitting properties of primes and the validity of
the unique factorization theorem in the ring of gaussian integers.

In how many ways can the prime p be expressed as a sum of the squares of three integers? The
answer for p ≥ 5 —due to Gauss—can be given in terms of the function h(−d) the class number of
the imaginary quadratic field of discriminant −d. The number of ways that p ≥ 5 be expressed as
a sum of the squares of three integers is:

• 12h(−4p) if p ≡ 1, 5 modulo 8;

• 24h(−p) if p ≡ 3 modulo 8;

• 0 if p ≡ 7 modulo 8.

The rules of the game here is that the ordering of the summands, and the signs of the integers
chosen, count in the tally so for p = 2 we have 2 = 02 + (±1)2 + (±1)2 = (±1)2 + 02 + (±1)2 =
(±1)2 + (±1)2 + 02 and therefore we have that 2 can be written “as a sum of three squares” in
3 · 22 = 12 ways.

These two problems are simply the first two of a series of companion questions that have a long
history,

In many ways can the prime p be expressed as a sum of the squares of r integers?

To get some sample problems that drive home a point I want to make in this exposition—and for
no other reason—I’ll restrict consideration to certain select values of r.

For r = 4 we have a simply statable, exact, solution: the prime p can be expressed as a sum of four
squares in 8p + 8 ways.

For r = 8, any odd prime number p can be expressed as a sum of eight squares in 16p3 + 16 ways.

In both of these cases (resolved by Jacobi in the early part of the 19th century) the answer to
our problem (at least for p > 2) is a polynomial in p of degree r/2 − 1 (i.e., of degree 1 and 3,
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respectively). Things, however, don’t remain as simple, for larger values of r—probably for most4

larger values of r. To illustrate how things can change, let us focus on r = 24.

Define, then, N(p) to be the number of ways in which p can be written as a sum of 24 squares of
whole numbers.

Recall that squares of positive numbers, negative numbers and zero are all allowed, and the ordering
of the squares of the numbers that occur in this summation also counts. Thus, the first prime
number, 2, can already be written as a sum of 24 squares of whole numbers in 1, 104 ways. So:
N(2) = 1, 104. What about N(p) for the other prime numbers p = 3, 5, 7, 11, . . . ? Here is some
data.

2 1104
3 16192
5 1362336
7 44981376
11 6631997376
13 41469483552
17 793229226336
19 2697825744960
23 22063059606912
29 282507110257440
31 588326886375936
37 4119646755044256
41 12742799887509216
43 21517654506205632
47 57242599902057216
53 214623041906680992
59 698254765677746880
61 1007558483942335776
67 2827903926520931136
71 5351602023957373056
73 7264293802635839712
79 17319684851070915840
83 29819539398107307072
89 64258709626203556320
97 165626956557080594016

Eyeballing the data, it is already convincingly clear that N(p) is growing less than exponentially,
for otherwise the shadow of figures on the page would probably look triangular. Following the
pattern we’ve seen for the smaller values of r we have considered we might expect that N(p) be
a polynomial in p of degree r/2 − 1 = 11. If we had enough data I imagine we might “curve-fit”
a polynomial approximation. But happily, without having to lean on numerical experimentation,
certain theoretical issues—which I will hint at in subsection 1.9 below—allow us to guess the

4For a discussion of this problem and its history for small values of r, see page 316 of Hardy and Wright’s classic
introductory text [14].
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following good approximation for the values N(p); namely the polynomial in p of degree 11:

Napprox(p) :=
16
691

(p11 + 1).

The difference, then, between the data and our good approximation is:

Error(p) := N(p) − Napprox(p) = N(p) − 16
691

(p11 + 1).

This error term has been proven to be square-root small; and this is hardly an elementary result:
it is a consequence of deep work of Deligne [6]. In fact, using the work of Deligne I am alluding to,
you can show that:

|Error(p)| ≤ 66, 304
691

√
p11.

What with that hefty constant, 66,304
691 , the “smallness” of our error term here may not impress us

for quite a while as we systematically tabulate the values of N(p), but—of course— this result tells
us that as we get into the high prime numbers our data will hug startlingly close to the simple
smooth curve

f(x) =
16
691

(x11 + 1).

1.5 The “next question”

Whenever some element of some theory is settled, or is considered settled, many of us mathe-
maticians propose a subsequent plan of inquiry with that phrase: “So, the next question to ask is
. . . ”

Here too. Given the precise inequality

|Error(p)| ≤ 66, 304
691

√
p11

described in the previous subsection, and given the fact that this represents one consequence of
what has been a great project that has spanned half a century of progress in number theory, some
natural (and related) “next” questions arise. We might—for example—ask

• Is the bound on this error term (e.g., the constant 66,304
691 ) the best possible?

• Is f(x) = 16
691(x11 + 1) the best polynomial approximation to our data?

• Might we, more specifically, find another polynomial g(x) which beats f(x) in the sense that
the absolute values of the corresponding error terms |N(p) − g(p)| are ≤ C

√
p11 with a

constant C that is strictly less than 66,304
691 ?
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• For any given constant C < 66,304
691 is there a positive proportion of prime numbers p for which

|N(p)− f(p)| ≤ C
√

p11.

• We might ask what that proportion is, as a function of C.

• We might ask for the proportion of primes p for which the error term is positive, i.e., where
our good approximation is an undercount.

To be sure, we would want to phrase such questions not only about our specific “sample problem”
but about the full range of problems for which we have—thanks to Deligne et al— such good
square-root close approximations.

It is the Sato-Tate Conjecture that addresses this “next,” more delicate, tier of questions5.

1.6 The distribution of scaled error terms

Given that in our sample problem we know the bound

|Error(p)| ≤ 66, 304
691

√
p11,

let us focus our microscope on the fluctuations here. Namely, consider the scaled error term

Scaled Error(p) :=
Error(p)

66,304
691

√
p11

=
N(p) − 16

691(p11 + 1)
66,304
691

√
p11

so that we have:

−1 ≤ Scaled Error(p) ≤ +1.

About this type of scaled error value distribution, let me recall the words of Susan Holmes, a
mathematician and statistician at Stanford, who—when I sent her some numerical computations
related to a similar number theoretic problem for which I had some statistical questions—exclaimed:
“what beautiful data!”

But what can we say further about this data? How do these scaled error values distribute themselves
on the interval [−1,+1]? That is, what is the function I 7→ P(I) that associates to any subinterval

5As is only to be expected, there are whole books of questions about this sample problem that one could ask, and
mathematicians have asked—some of these questions being structurally important, and some at least traditionally of
great interest. Eg., how often is our approximate value Napprox(p) above exactly equal to the actual value N(p)? A
conjecture of Lehmer would say that this never happens.
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I contained in [−1,+1] the probability P(I) that for a randomly chosen prime number p its scaled
error term Error(p) lies in I?

In 1963, Mikio Sato (by studying numerical data) and John Tate (following a theoretical investiga-
tion) predicted—for a large class of number theoretic questions including many problems of current
interest, of which our example is one—that the values of the scaled error terms for data in these
problems conforms to a specific probability distribution. Usually the Sato-Tate conjecture predicts
that this distribution is no more complicated than the elementary function x 7→ 2

π

√
(1− x2), i.e.,

the thing whose graph is a semi-circle of radius 1 centered at the origin, but squished vertically to
have its integral equal to one. This makes it far from the Gaussian normal distribution! Indeed,
Sato and Tate predict this type of behavior in our example problem, so that their conjecture would
have it that

P(I) =
2
π

∫
I

√
1− x2dx.

This is still an open question, for our sample problem! Nevertheless, we have an impressive amount
of data in support of it (see below).

Figure 1.3: Probability distribution of error terms. The Sato-Tate distribution 2
π

√
1− t2,

the smooth profile curve in this figure, can be compared with the probability distribution of scaled
error terms for the number of ways N(p) in which a prime number p can be written as a sum of
24 squares (p < 106). All the computational data in the illustrations in the article were made by
William Stein.

1.7 Rates of Convergence (first version)

The open problem of whether or not the distribution data as in Figure 1.3 above converges to
the Sato-Tate distribution is, in a sense, the gateway to a number of finer questions (these being
therefore all the more open) such as the following. If our distribution of data “evens out” to yield
the Sato-Tate law in the limit, how fast does it do this? There are various ways of formulating
(and visualizing) rates-of-convergence and we will be revisiting such issues in Part II below.
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For now, consider quantile-quantile plots (as statisticians call them) which offer a slightly different
way of displaying data such as p 7→ Scaled Error(p) as pictured in the above diagram.

Fix an interval (a, b) ⊂ (−1,+1) and for any number T ∈ (a, b) let

X(T ) :=

∫ T
a

√
(1− x2)dx∫ b

a

√
(1− x2)dx

.

Fix a cutoff C and let YC(T ) be the ratio

YC(T ) :=
#{p < C | a < Scaled Error(p) < T}
#{p < C | a < Scaled Error(p) < b}

.

Now plot (X(T ), YC(T )) in the plane as a “curve” lying over the interval (a, b) of the x-axis; this
is the q-q-plot of our data.

Figure 1.4: The q-q-plot for our scaled error terms in the interval (0,+1) for the cutoff C = 100

Figure 1.5: The q-q-plot for our scaled error terms in the interval (0,+1) for the cutoff C = 1000

We want to understand rates of convergence for q-q-plots of our data over an interval (a, b), and
even more importantly, to understand what structural issues need be understood to allow us to
pinpoint these rates of convergence. Specifically, how far off is the curve T 7→ (X(T ), YC(T )) from
a straight line, and how fast (as C goes to ∞) does it approach a straight line?

E.G., a somewhat exacting measure for how far off the curve T 7→ (X(T ), YC(T )) is from a straight
line—called the discrepancy in the literature—-is the L∞-norm of the difference between X(T )
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and YC(T ); explicitly, set:
D(C) := Max|T |≤1|X(T )− YC(T )|.

The Sato-Tate Conjecture is equivalent to saying that D(C) tends to 0 as C goes to ∞. As for rates
of convergence, it is natural to make the conjecture below, following the lead of Shigeki Akiyama
and Yoshio Tanigawa6:

Conjecture 1.1. For any positive ε

D(C) = O(C− 1
2
+ε).

Readers should consult the article of Akiyama and Tanigawa [2] for analogous numerical data about
related problems. Also, William Stein and Christopher Swierczewski are running computations of
the L2-distance between X(T ) and YC(T ) over intervals T ∈ [a, b] for various choices of a < b to
get a further view of such convergence issues. Specifically, consider the integral

∆b
a(C) :=

√∫ b

a
(X(T )− YC(T ))2dT .

Definition 1.2. The L2 Sato-Tate exponent ε(a, b) for our scaled error terms is the lim sup of
all positive numbers e such that

∆b
a(C) < C−e

for C >> 0. (The notation “C >> 0” means for C sufficiently large.)

Preliminary numerical experiments suggest that ε(a, b) is going to be 1/2. (E.g., for a = 0, b = 1,
and C = 5000, Stein and Swierczewski tell me that − log ∆1

0(C)/ log C = 0.482.)

1.8 Error term roulette

The symmetry predicted by Sato and Tate in the data of our problem implies that in the limit our
estimate would undercount the data about as much as it would overcount it. As in roulette where
instead of betting on a precise number you can simply place a bet on whether the ball lands on red
or black, let us—in this subsection—not worry about the size of the error term but just compare
undercounts versus overcounts; specifically we will plot

#{p < C | Error(p) > 0} − #{p < C | Error(p) < 0}

as function of the cutoff C (for any C < 106 this difference never climbs above 150):

6In their article [2] Akiyama and Tanigawa make the analogue of this “rate of Sato-Tate convergence” conjecture
for elliptic curves over Q without CM, and they accumulate numerical evidence for it. They also show that their
conjecture for an elliptic curve E implies the General Riemann Hypothesis for the L-function attached to that elliptic
curve. For more about this see subsection 3.4 below.
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Figure 1.6: The difference between undercounts and overcounts

1.9 Eisenstein series as good approximation and Error term as cusp form

Ever since Euler, we have acquired the instinct of packaging arithmetic functions

a 7→ M(a)

for a = 0, 1, 2, . . . (or at least those arithmetic functions that are of interest to us) as the coefficients
of a power series in an abstract variable, say, q; i.e., to form

M(q) :=
∞∑

a=0

M(a)qa,

and then to hope that formal properties of this power series will saliently express interesting relations
satisfied by the initial a 7→ M(a). The primordial example of this is the packaging of the constant
function a 7→ 1 as a geometric series viewed as a rational function of q with a pole at q = 1. Ever
since Riemann we have acquired the further instinct of applying the full power of complex function
theory to these M(q)’s.

Consider, as a germane example, our running problem—which we now state for all positive integers
a and not just primes p—namely, start with the arithmetic function:

a 7→ N(a) := the number of ways in which a can be expressed as a sum of 24 squares
of whole numbers,

and form the corresponding generating function N (q) :=
∑∞

a=0 N(a)qa. The surprise here is that
N (q) satisfies a “hidden symmetry” that can be easily expressed once one replaces the (abstract)
variable q by e2πiz, and notes that N (e2πiz) converges to yield an analytic function N (e2πiz) = f(z)
on the upper half-plane z = x + iy (y > 0). This “hidden symmetry” is simply

f(−1/4z) = (2z)12f(z).
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For evident reasons, we think of the series N (q) as the Fourier series of f(z), and the original
arithmetic function a 7→ N(a) as the Fourier coefficients of f(z).

As will be discussed at some length in later parts of this article, this hidden symmetry establishes
f(z) (and its Fourier series N (q)) as a modular form of a specific sort (e.g., level 4 and weight 12).
One of the miracles of the theory of modular forms of this type (i.e., of a given level and weight)
is that N (q) admits a canonical expression as a sum of two modular forms of the same level and
weight,

N (q) = NEis(q) + NCusp(q),

where the first of these modular forms,

NEis(q) =
∞∑

a=0

NEis(a)qa,

is—in the parlance of the theory—an Eisenstein series and the second,

NCusp(q) =
∞∑

a=0

NCusp(a)qa,

a cusp form.

Avoiding technical definitions, in our particular case we can pinpoint this decomposition, among
all other decompositions of our N (q) as a sum of two modular forms of the same level 4 and weight
12, in the following curious way:

• The Eisenstein part: The arithmetic function p 7→ NEis(p) for odd primes p is a polynomial
function of p.

• The Cuspidal part: For primes p the absolute value of NCusp(p) is less than a constant
times p11/2 (this following from the deep theorem of Deligne, previously cited).

In a word, the theory of modular forms provides us with a conceptually elegant choice of “good
approximation,” namely

NApprox(p) := NEis(p),

and it provides us with the ability to conceptually understand the ”error term,” i.e.

Error(p) := NCusp(p).

For readers familiar with the theory of modular forms—see Part III for a very brief expository
discussion—here are some particulars about this decomposition. Let

• Θ(q) :=
∑∞

n=0 qn2
,

• ∆(q) := q
∏∞

n=1(1− qn)24 =
∑∞

n=1 τ(n)qn,
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so that Θ(q) is the classical modular form of weight 1/2, and ∆(q) is the unique cuspidal modular
form of level 1, weight 12, normalized so that it is 1 · q + O(q2); its Fourier coefficients, n 7→ τ(n)
are given by Ramanujan’s “tau-function.” Add to this list the modular form E(q), the Eisenstein
series of level 1 and weight 12 normalized so that for any prime number p its p-th Fourier coefficient
is p11 + 1.

We have the equation of formal power series,

N (q) = Θ(q)24,

as can be checked by simply multiplying things out. I thank William Stein for the computation
expressing the modular form Θ(q)24 as a sum of Eisenstein series and cusp forms of weight 12 and
level 4, the answer being:

NEis(q) =
16
691

E(q)− 32
691

E(q2) +
65536
691

E(q4)

and
NCusp(q) =

33152
691

∆(q) +
1525760

691
∆(q2) +

135790592
691

∆(q4).

For an odd prime number p the p-th Fourier coefficient of NEis(q) is then 16
691(p11 + 1), i.e., is our

“Good approximation” to N(p). The p-th Fourier coefficient of NCusp(q), i.e., our “error term” is
Error(p) = 33152

691 τ(p).

A curious phenomenon is that although there exists a cuspidal newform of the same weight (12)
and level (Γ0(4)) as Θ24, this newform does not enter into the eigenform decomposition of Θ24 (i.e.,
Θ24 is “old” in its minimal level).
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Part II

An elliptic curve.

Our new “sample problem.”

2 The number of points of an elliptic curve when reduced mod
p; for varying p

2.1 The elliptic curve that we will be working with

The example we will use is one of the favorites of many number theorists, namely the curve in the
plane, call it E, cut out by the equation

y2 + y = x3 − x2.

This is an elliptic curve that is something of a showcase for number theory, in that it has been
extensively studied—much is known about it—and yet it continues to repay study, for—as with all
other elliptic curves—its deeper features have yet to be understood. A detailed numerical discussion
of the properties of this curve can be found in section 8 part I of [32]; for more recent numerical
information about this as well as all the other elliptic curves of low conductor, see [5].

This curve E : y2 + y = x3 − x2 when extended to the projective plane has exactly one rational
point on the line at infinite, and if you stipulate that that unique point “at infinity” be the origin,
there is a unique algebraic group law on E, allowing us—for any field k of characteristic different
from 11 (i.e., any field where 11 6= 0)—to endow the set consisting of ∞ and the points of E with
values (x, y) = (a, b) ∈ k with the structure of an abelian group. Let k be of characteristic different
from 11 and let us denote by E(k) this group of k-rational points of E. The reason why we have
to exclude 11 is that the polynomial equation above modulo 11 has a singular point.

Every one of these groups E(k) contains the five rational points

{∞, (0, 0), (1, 0), (0,−1), (1,−1))}

and it isn’t difficulty to check that these five points comprise a cyclic subgroup of E(k) of order
five. The data we shall be focussing on, in this problem is the number of rational points that E has
over the prime field containing p elements (excluding, again, p = 11). So, let p be a prime number
(different from 11) and let Fp denote the field of integers modulo p, and define

NE(p) := the number of elements in the finite group E(Fp).

There is much that is surprising in the numerical function p 7−→ NE(p) and here is what it looks
like for small primes p:
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p 2 3 5 7 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
NE(p) 5 5 5 10 10 20 20 25 30 25 35 50 50 40 60 55 50 75 75

Since, from the first of the two definitions, NE(p) is the order of a finite group that contains a cyclic
group of order five, we know, from Lagrange’s theorem of elementary group theory that NE(p) is
divisible by 5, but what more can we say about this data?

This, now, will constitute our second sample problem on which be focussing for the rest of this
article.

For starters, following the format of the previous sections of this article, we should look for a
“good approximation” to NE(p). An old result due to Helmut Hasse [17] tells us that a square-root
accurate approximation to NE(p) is given by the simple expression: p + 1, which is, by the way,
just the number of points on a line in the projective plane over Fp.

It is a deep theorem (proved in the PhD thesis of Noam Elkies; see [10]) that for an infinite number
of primes p, NE(p) is equal to precisely this simple expression p + 1. But it is generally true that
the error term for this approximation is quite small. Explicitly, writing

Error(p) := NE(p) − (p + 1)

Hasse proved the inequality

|Error(p)| = |NE(p) − (p + 1)| ≤ 2
√

p.

Another way of saying this is that there is a conjugate pair of complex numbers eiθp and e−iθp for
which the error term can be written as

Error(p) := NE(p) − (p + 1) =
√

p(eiθp + e−iθp) = 2
√

p cos(θp).

As is often the case in number theory, there are other surprising ways of expressing this same data;
for example, expand the infinite product

q

∞∏
n=1

(1− qn)2(1− q11n)2 =
∑

anqn

and we have that (for prime numbers p 6= 11):

Error(p) = −ap.

Following, again, the format of our example-problem of the previous sections, we might ask for the
distribution of error values, and here we can do this just by asking for the statistics of the rule
that assigns to prime numbers p the conjugate-pair of complex numbers on the unit circle in the
complex plane

p 7−→ e±iθp .
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Here is some pictorial data:

Figure 2.1: For this diagram the unit circle in the complex plane is broken into a union of arcs;
the height above a point corresponds to the percentage of primes p < 50, 000 such that e±iθp has
landed in the arc containing that point; if one believes that this data is converging—as has been
proven—to the Sato-Tate distribution, one can figure out which is the x-axis, which the y-axis. The
diagram—and its shadowing, of course,—is courtesy of William Stein. Please admire the spikes at
θ = ±π/2.

The distribution to which this data converges, as we accumulate larger and larger primes p had
been conjectured over forty years ago by Sato and Tate. It was only very recently that it (and
many other issues of a similar genre) has finally been settled!

2.2 Rates of Convergence (second version)

The recent result due to Taylor et al, gives us that the data

p 7−→ cos(θp) = 1/2(eiθp + e−iθp)

of the previous subsection conforms to the Sato-Tate distribution 2
π

√
1− t2 . That is,

Theorem 2.1. For any continuous function F (t) on the interval [−1,+1] we have that the limit

lim
C→∞

1
π(C)

∑
p≤C

F (cos θp)
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exists and is equal to the integral
2
π

∫ +1

−1
F (t)

√
1− t2dt.

Given this advance in our knowledge, we have the next question—just as in our initial sample
problem in subsection 1.7 of Part I—of how fast the Sato-Tate distribution is achieved. This next
question is already screaming at us, as we gaze at the above diagram and at the hefty spike—i.e.,
tall red column—at ap = 0, which tells us that there are lots of small primes where the error
term vanishes (these coincide in the case of our example with the class of supersingular primes for
the elliptic curve E, the class of primes that —as we mentioned— has been shown to be infinite
[10]). This seeming superfluity of supersingular primes in our diagram will eventually “even out”
and settle into the predicted Sato-Tate distribution as the cutoff C proceeds to infinity. More
specifically, Lang and Trotter conjecture [32] that the number of primes of supersingular primes
< C for our elliptic curve E is asymptotic to a positive constant times C

1
2 / log C as C tends to

infinity, while Elkies showed that it is O(C
3
4 ) in [11]7.

How fast, then, does this distribution even out to yield the Sato-Tate law in the limit?

Akiyama and Tanigawa formulate a conjecture (Conjecture 1 in [2]) that implies

Conjecture 2.2. (Akiyama-Tanigawa) Let F (t) be a real-valued function of bounded variation.
Put

∆F (C) := | 1
π(C)

∑
p≤C

F (cos θp) − 2
π

∫ +1

−1
F (t)

√
1− t2dt|.

For every positive ε we have
∆F (C) < C− 1

2
+ε

for C >> 0.

The >> means, more specifically, that there is a constant C(F, ε) depending only on F and ε such
that we have the stated inequality for all C > C(F, ε). The conjecture of Akiyama and Tanigawa
even predicts a certain strong uniformity feature of this inequality with regard to its dependence
on the function F ; namely, the function (F, ε) 7→ C(F, ε) can be taken to depend only on V (F ),
the total variation of F .

2.3 Overcounts versus undercounts

Again, as in our initial sample problem in subsection 1.7 of Part I, we can ask for statistics in our
current sample problem how often the estimate p + 1 exceeds the number of rational points on E
modulo p and how often it falls short of that number. Explicitly, we will plot

DE(C) := #{p < C | NE(p) < p + 1} − #{p < C | NE(p) > p + 1}.
7Earlier, J.-P. Serre had shown, this same O(C

3
4 ) bound conditional on GRH, by a very different method; see [40].
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Here, in contrast to our initial problem of part I we actually know—since we know the Sato-Tate
conjecture for E—that this number is o(C) (i.e., DE(C)/C tends to zero as C goes to infinity).
But the actual data for C < 106 is a bit more striking than that. It might be fun to make—and to
make plausible—a precise conjecture that accounts for data displayed below. Here is the graph of
DE(C):

Figure 2.2: The race between NE(p) < p + 1 and NE(p) > p + 1

The difference DE(C) is no greater than 300 for any C < 106. At least so far, NE(p) tends to be
a tiny bit more often < p + 1 than it is > p + 1. This is not necessarily the case for other elliptic
curves; the pattern we will see in the data below (for C < 106) seems reminiscent of one of the
very important heuristics in the modern history of the arithmetic of elliptic curves, namely the
idea due to Bryan Birch and Peter Swinnerton-Dyer that if the rank of the group of rational points
of an elliptic curve E is large, one might be able to detect this by discovering that the numbers
NE(p) are—in some statistical sense—larger than expected (given—of course—-that these numbers
are constrained to be smaller that 1 + p + 2

√
p, and that the statistics conforms to the Sato-Tate

law). The elliptic curve E we are working with has rank zero (it has only five rational points) so
it is interesting to choose other elliptic curves E with infinitely many rational points, and compute
comparable data for the race between NE(p) < p + 1 and NE(p) > p + 1 for these curves E and
compare with the graph above. This computation William Stein and Chris Swierczewski do for the
elliptic curves usually denoted 37A, 389A, and 5077A which have ranks 1, 2 and 3, respectively, and
for which the recent work we are reporting in this article also proves that the Sato-Tate conjecture
holds. For these elliptic curves NE(p) tends to be more often > p + 1 than it is < p + 1, at least as
far as the data has been computed, i.e., up to C = 106. Here is the graph of

DE(C) := #{p < C | NE(p) < p + 1} − #{p < C | NE(p) > p + 1}.

for each of these in turn:
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Figure 2.3: E = 37A. The race between NE(p) < p + 1 and NE(p) > p + 1

Figure 2.4: E = 389A. The race between NE(p) < p + 1 and NE(p) > p + 1
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Figure 2.5: E = 5077A. The race between NE(p) < p + 1 and NE(p) > p + 1

2.4 Error Terms modulo m

Our main subject is the statistics governing the position of the real numbers ap

2
√

p in the interval
(−1,+1). But the ap’s are integers and so it is also perfectly reasonable to ask for the statistics
of their congruence classes modulo a given positive integer m. For any α modulo m how often
is ap ≡ α mod m? This is a genuine “companion” to the question that this article is devoted
to; it is an older question, and has long been answered, and even (given the Generalized Riemann
Hypothesis) with precise information about convergence rates. So, let us briefly discuss it.

First, returning to the data of the NE(p)’s given in section 2.1 one suspects (and—as it turns out—
with good reason) that the question of congruences modulo 5 might be idiosyncratic. (This is related
to the fact that our elliptic curve has a rational point of order 5.) Questions of congruences modulo
11 and 2 also have some (minor) peculiarities, 11 because the elliptic curve has bad reduction at
11, and 2 for other more general reasons. So, to get a clean statement let us restrict our attention
to a modulus m that is not divisible by 2, 5, or 11.

Theorem 2.3. Fix m an integer not divisible by 2, 5, or 11, and α a congruence class modulo m.
For any cutoff C, let YC(α;m) denote the proportion of prime numbers p < C such that ap ≡ α
mod m. Let X(α;m) denote the proportion of nonsingular 2 × 2 matrices with coefficients in
Z/mZ that have trace α. Then

lim
C→∞

YC(α;m) = X(α;m).

This is a particular consequence of the classical theorem of Cebotarev, and we have strikingly
effective version of this theorem due to Lagarias and Odlyzko [35] (see also Théorème 2 of section
2.2 in [40]). If we assume the Generalized Riemann Hypothesis (for the Dedekind zeta function of
the splitting field of the group of m-torsion points in our elliptic curve E) we would have that the
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analogue of Conjecture 2.2 holds. That is, for any positive ε,

|YC(α;m)−X(α;m)| < C− 1
2
+ε

for C >> 0 (Théorème 4 of section 2.4 in [40]).

It might be amusing to rephrase the standard proof of the Cebotarev theorem to follow a bit more
closely than it does the scenario for the proof of the Sato-Tate Conjecture discussed in Part III
below.

2.5 Correlations

Having discussed both the statistics governing the position of the ap

2
√

p in the interval (−1,+1) and
statistics of the congruence classes the ap’s modulo m it is natural to ask whether the two kinds of
data we have been discussing are correlated or not. Specifically, fixing a congruence class modulo
an m (not divisible by 2, 5, or 11) and restricting attention only to the primes p for which ap falls
in that congruence class, do we still get the Sato-Tate distribution for the statistics giving the
placement of ap

2
√

p in the interval (−1,+1)? We don’t yet know the answer to this8.

Part III

About the proof of Sato-Tate

for the elliptic curve E.

3 Reducing the problem to a question about analytic continua-
tion of L-functions

3.1 The Sato-Tate distribution

As discussed in subsection 2.2 above we now know that the data

p 7−→ cos(θp) = 1/2(eiθp + e−iθp)

associated to our elliptic curve E : y2+y = x3−x2 conforms to the Sato-Tate distribution 2
π

√
1− t2.

That is, Theorem 2.1 formulated in section 2.2 tells us that for any continuous function F (t) on
the interval [−1,+1], the limit

lim
C→∞

1
π(C)

∑
p≤C

F (cos θp)

8But, quite recently, Michael Harris [15] has made a major stride toward a noncorrelation theorem of another sort
(the error term statistics of two nonisogenous elliptic curves, both of which having multiplicative reduction at some
prime, each follow the Sato-Tate prediction (as has been shown) and are noncorrelated).
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exists and is equal to the integral 2
π

∫ +1
−1 F (t)

√
1− t2dt.

How does one prove such a theorem?

To express our expected distribution in terms of the θp’s, one could make the change of variables
(t 7→ cos θ)

2
π

∫ +1

−1
F (t)

√
1− t2dt =

1
π

∫ +π

−π
F (cos θ) sin2 θdθ,

i.e., expressing things in terms of θ we get a “sine-squared” distribution. Here is what the data
looks like in these terms:

1 2 3

0.2

0.4

0.6

0.8

Figure 3.1: The horiziontal axis is the interval 0 ≤ θ ≤ π, segmented into subintervals. The height
above a subinterval is proportional to the percentage of primes p < 106 that have the property that
θp lies in the given subinterval.

The rest of this article is devoted to saying some things about the proof (see also [49], and Serre’s
letter to Shahidi [41], and comments in [39]). To prove the theorem, it would be enough, thanks to
the Weierstrass approximation theorem, to show Theorem 2.1 true for all real-valued polynomial
functions F (t), and since our task is linear, we could concentrate on proving this for F (t) = all the
powers of the variable t, i.e.,

1, t, t2, t3, . . .

or, for that matter it would suffice to prove it for F (t) = any other R-basis of the ring of real-valued
polynomials9.

9As mentioned in the discussion related to Question 2.2, this luxury—of proving things for a dense basis—is not
yet quite enough if we aim to prove the finer rate-of-convergence result formulated by that question.

For some explicitness in our application of the Weierstrass approximation theorem for the continuous function F
we might make use, for example, of the (S.N.) Bernstein polynomials defined (for n ≥ 0) as

PF,n(t) :=
1

22n

nX
k=−n

F (
n+ k

2n
)

 
2n

n+ k

!
(1 + t)n+k(1− t)n−k,

for this family of degree n polynomials, PF,n tend uniformly to F on the interval [−1,+1].
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3.2 Bases for the ring of polynomials

Write the variable t as a sum α + α−1 so that any polynomial in t (with, e.g., real coefficients)
is a polynomial in α and α−1 invariant under the interchange α ↔ α−1, and conversely: any
polynomial in α and α−1 invariant under the above interchange is a polynomial in t. Consider
then, these polynomials (let’s call them symmetric power polynomials)

s0 = 1
s1 = α + α−1

s2 = α2 + 1 + α−2

s3 = α3 + α1 + α−1 + α−3

s4 = α4 + α2 + 1 + α−2 + α−4

s5 = α5 + α3 + α1 + α−1 + α−3 + α−5

. . . (3.1)

which, when expressed as polynomials in t look like

s0 = 1
s1 = t

s2 = t2 − 1
s3 = t3 − 2t

s4 = t4 − 3t2 + 1
s5 = t5 − 4t3 + 3t

. . . (3.2)

where sn is a monic polynomial in t of degree n (they are the Chebychev polynomials of the second
kind). They form a basis, as do any collection of products

{snsm}(n,m)∈I

where I is a collection of pairs of nonnegative integers such that the sums n + m run through all
nonegative numbers with no repeats.

Here is an elementary calculus exercise:

Proposition 3.1. If F (t) = sn(t)sm(t) with n 6= m then

2
π

∫ +1

−1
F (t)

√
1− t2dt = 0.
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Corollary 3.2. Theorem 2.1 would follow if for every positive integer k there is a pair of distinct
nonnegative integers (n, m) with n + m = k and such that

lim
C→∞

1
π(C)

∑
p≤C

sm(cos θp)sn(cos θp) = 0.

A colloquial way of expressing the existence and vanishing of the above limit is to say: the mean
value of the quantities sm(cos θp)sn(cos θp) is zero.

But how can we show such mean values to exist, and vanish? The standard strategy—in fact, it
seems, the only known strategy—is to invoke L functions 10. So we turn to:

3.3 L-functions

To study
p 7−→ θp

effectively it is a good idea to “package this data” into complex analytic functions (Dirichlet series)
whose behavior will tell us about the limits described in Corollary 3.2.

Let us do this. For any choice of prime number p different from 11 and for any pair of nonnegative
numbers 0 ≤ m ≤ n, define the local factor at p of the L-function Lm,n(s) as follows11

L{p}m,n(s) :=
m∏

j=0

n∏
k=0

(
1− ei(m+n−2j−2k)θpp−s

)−1
.

If m (or n) is zero, the factors in “
∏m

j=0” (or “
∏n

k=0”) don’t amount to much, so, for example:

L
{p}
0,n (s) :=

n∏
k=0

(
1− ei(n−2k)θpp−s

)−1
.

Now form the infinite product over all prime numbers p:

Lm,n(s) :=
∏
p

L{p}m,n(s)

10As mentioned, one can establish the distribution of values of our error terms once we know—for some basis
{Fi(t)}i (i = 1, 2, . . . ) of the vector space of polynomials—the mean values of the quantities Fi(cos θp) for all i. The
basis we chose to work with in Corollary 3.2 has to do with the L-functions that will be available to us. Another
way of dicing the problem as mentioned to me by Andrew Granville, uses the basis of polynomials in t = α + α−1

given by Pν(t) = αν + α−ν , allowing us to conclude that the Sato-Tate conjecture for our data is equivalent to the
statement that, for each ν > 0, the mean values of the quantities apν/p

ν
2 are zero, where the apν are the pν-th Fourier

coefficients of the cuspidal modular form of level 11 and weight two introduced in section 2.1 above.
11This is the Hasse-Weil L-function associated to the symmetricm-th power tensored with the symmetric n-th power

of the fundamental Galois representation ρ of our elliptic curve. If these symmetric powers of ρ are automorphic—an
issue we shall discuss later—then Lm,n(s) would be (up to some elementary factors) the L-function attached to the
pair of corresponding automorphic representations.
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and expand this to get a Dirichlet series

Lm,n(s) =
∞∑

r=0

am,n(r)r−s.

Here we rely on analytic number theory in the form of a classical theorem of Ikehara which gives
us that if we know enough analytic facts about these Dirichlet series

∑
am,n(r)r−s we can control

limits of the form

lim
C→∞

∑
p<C am,n(p)

π(C)
,

i.e., since am,n(p) = sm(cos θp)sn(cos θp), these are exactly the limits we are interested in12.

Proposition 3.3. let m < n. If Lm,n(s) extends to a meromorphic function on the entire complex
plane, holomorphic on the right half-plane <(s) ≥ 1 and nonzero on all points <(s) ≥ 1 other than
s = 1 then

lim
C→∞

1
π(C)

∑
p≤C

sm(cos θp)sn(cos θp) = 0.

If, by the way, Lm,n(s) extended to a meromorphic function on the entire complex plane, holomor-
phic and nonzero on <(s) ≥ 1 except for having a pole of order k at s = 1 (which it does not) the
analytic proposition above13 would tell us that the limit is k, rather than 0.

3.4 Sato-Tate and the Generalized Riemann Hypothesis

It is striking that—upon assuming Lm,n(s) extends to an entire function on the complex plane, sat-
isfying a functional equation as expected—a proof of Conjecture 2.2 for the polynomial Fn,m(t) :=
sm(t)sn(t) would imply the Generalized Riemann Hypothesis for the Dirichlet series Lm,n(s). The
proof of the implication (which is mutatis mutandis the proof of this same statement for L0,1(s) as
given in the article of Akiyama and Tanigawa [2]) is briefly as follows (and we assume below that
n 6= m). Noting that, under our initial hypothesis,

log Lm,n(s) =
∑

p

{
m∑

j=0

n∑
k=0

ei(n+m−2j−2k)θp}p−s + A(s) =
∑

p

Fn,m(cos θp)p−s + A(s),

where A(s) is holomorphic in the right half-plane <(s) > 1
2 , GRH for Lm,n(s) will follow if we show

holomorphicity of
∑

p Fn,m(cos θp)p−s for <(s) > 1
2 . A partial summation argument gives:

Lemma 3.4. If, for any positive ε,
∑

p<C Fn,m(cos θp) is O(C
1
2
+ε) then

∑
p Fn,m(cos θp)p−s con-

verges to yield a holomorphic function in the region <(s) > 1
2 .

12For a related discussion see [37].
13For a concise expository summary of variant hypotheses that might be considered in the above proposition

yielding a similar conclusion, see Nick Katz’s MSRI lecture (available on the MSRI website). Also see [39] IA.2; [37];
and [7] (specifically, Theorem 2.1.4 in Chapter II (“la Méthode de Hadamard-De La Vallée-Poussin”) of Deligne’s
paper) for further material relevant to this discussion. For a general reference on Tauberian Theorems of which these
propositions are examples, see [29].
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Proof. For k = 1, 2, . . . set ak := Fn,m(cos θp) if k = p is a prime number, and otherwise set ak := 0.
So our Dirichlet series is now denoted

∑
k akk

−s and we have (for any positive ε)
∑

k≤N ak =

O(N
1
2
+ε) for any N . Partial summation gives∑

k<N

akk
−s =

∑
k<N

ak ·N−s −
∑
n<N

{
∑
k<n

ak} · {(n + 1)−s − n−s}.

The first term on the right hand side of this equation is bounded by N
1
2
+ε−s which, if <(s) > 1

2 , is
bounded independent of N for an appropriate choice of ε. Moreover, since |(n+1)−s−n−s| ≤ n−s−1

the second term is bounded by
∑

n n
1
2
+ε−s−1 which again, if <(s) > 1

2 , is bounded independent of
N for an appropriate choice of ε.

It remains, then, to show the following.

Proposition 3.5. Let m 6= m. Assume that Lm,n(s) extends to an entire function on the complex
plane, and satisfies the expected functional equation. Assume, furthermore, that Conjecture 2.2
holds for the polynomial Fm,n(t). Then Lm,n(s) satisfies the Generalized Riemann Hypothesis; i.e.,
all its zeroes lie on the line <(s) = 1

2 .

Proof. Assuming Conjecture 2.2 we have

∆Fm,n(C) := | 1
π(C)

∑
p≤C

Fm,n(cos θp) −
2
π

∫ +1

−1
Fm,n(t)

√
1− t2dt| < C− 1

2
+ε

for C >> 0. Since the integral vanishes ((m,n) 6= (0, 0)), and (for any δ > 0) π(C) ≥ C1−δ for
C >> 0, we get that

|
∑
p≤C

Fm,n(cos θp)| < C
1
2
+ε

for C >> 0, and our proposition follows from Lemma 3.4.

3.5 Meromorphic extension of L-functions

But, returning to our discussion of Sato-Tate, how can we get that Dirichlet series such as Lm,n(s)
extend meromorphically to the entire complex plane, and how can we determine the nature of
their poles? A standard strategy—in fact, it seems, the only one of two known strategies—is to
connect these L-functions with automorphic forms. The other strategy is closely related—and is
only nominally different—and relies directly upon Poisson summation. This latter method was
used by Riemann, then extended by a number of mathematicians, including Hecke to deal with
abelian L-functions, and from that, to construct automorphic forms of complex multiplication; and
this method too will play a (key!) role in the proof, only later.

29



4 Replacing the problem of analytic continuation of L-functions
by questions about automorphic forms

4.1 The Reciprocity “Divide”

Consider these two species of mathematical objects:

• Quadratic field extensions of the field of rational numbers, i.e., Q(
√

d)/Q for square-free
integers d, and

• Functions χ : Z → {0,±1} that are multiplicative, i.e. χ(m · n) = χ(m) · χ(n), nontrivial,
and “congruence,” in the sense that there is some positive integer N such that χ(a) depends
only on a mod N (for all a).

To truly understand the first of these structures, the quadratic number fields, surely we should
know the splitting properties of prime numbers in these fields, i.e., we should know, for any prime
number p = 2, 3, 5, 7, 11, . . . , whether

• the ideal generated by p is a prime ideal in the ring of integers of Q(
√

d),

• the ideal generated by p splits into a product of two distinct prime ideals (p) = PP̄ in the
ring of integers of Q(

√
d), or

• the ideal generated by p is the square of a prime ideal (p) = P 2 in the ring of integers of
Q(
√

d),

these being the only three things that can happen to the ideal generated by p in the ring of integers
of Q(

√
d).

Let us say that a quadratic number field Q(
√

d) and a character χ with the properties listed above
are linked if

• χ(p) = −1 if and only if p is a prime ideal in the ring of integers of Q(
√

d),

• χ(p) = +1 if and only if the ideal generated by p splits into a product of two distinct prime
ideals (p) = PP̄ in the ring of integers of Q(

√
d), and

• χ(p) = 0 if and only if the ideal generated by p is the square of a prime ideal (p) = P 2 in the
ring of integers of Q(

√
d).

So, χ is linked to K if χ provides us with complete information about the splitting properties of
primes in the field extension K/Q. Of course, given a quadratic number field K, we can simply
construct a multiplicative function, χK , of Z with the properties listed in the three bullets above,
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and the only serious issue is: does the character χK we have constructed by those rules also have
the congruence property? The answer to this is, in fact, yes, and goes back to Gauss, it being a
consequence of the quadratic reciprocity theorem (whence the title of this subsection).

The χK ’s we have just described are the simplest examples of automorphic representations14. One
of the goals of the Langlands program is to establish a vast generalization of this type of linkage,
where two quite distinct species of mathematical objects are under consideration:

• A number-theoretic structure (such as the quadratic fields of the example just discussed, or
the sample problem in part 1 of this article)

• Automorphic representations

and where the type of linkage one envisions is as follows: each member of either of the two species of
mathematical objects alluded to above provide, in a natural way, certain numerical data (typically:
this data takes the form of a function on primes, such as in the example given above). A specific
number-theoretic structure and a specific automorphic representation are considered linked if they
provide the same numerical data. We will say a bit more about what “number-theoretic structures”
are being considered in this linkage in subsection 4.5 below.

Since we will be packaging this type of “numerical data” into L-functions we might hint at what
is afoot by mentioning that the number-theoretic structure and the automorphic function are con-
sidered linked if they produce (via their respective data) the same L-function. In specific contexts
considered by the Langlands program if one can establish such a link, one sometimes obtains, as
reward, the analytic continuation of the L-function attached to the corresponding number-theoretic
structure alluded to in the bullet above.

4.2 Automorphic Representations, Automorphic forms

Here I will try to write things that are useful to people not in this specific field, so that they might
get a sense—admitting a trail of black boxes—of the thread of ideas that lead to the recent work
on Sato-Tate. For the purposes of this discussion, only the most salient aspects of the type of
automorphic form involved in this story will be discussed below. We will be using the phrase Hecke
operators with no explanation, but hope that for the moment, it is sufficiently evocative, and that
readers for whom this notion is unfamilar will go to the literature to seek out the story that I am
omitting. A good start would be Diamond and Shurman’s text [8].

I want to say why there are two phrases automorphic representations and automorphic forms in
the title of this subsection.

Suppose you are faced with G, some group (a Lie group, perhaps) acting smoothly on M , some
manifold (a homogenous space for the group, perhaps). Then whenever you have a function on
M , or a differential form, ω, on M (or, more generally a section of any vector bundle over M that

14their official technical name being: quadratic Dirichlet characters over Q.
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admits a compatible action of G) you can use ω to construct a representation V of the group G by
simply considering the vector space generated by all translates of ω by elements of the group; you
might also pass to the completion of this vector space with respect to some natural metric if there is
such, and if you want to do that. You, of course, have the option of studying the G-representation
space V “abstractly,” but you also have a “model” for this representation of G (e.g., as a space of
functions, or differential forms, etc.) which may prove to be useful; even better: you have a certain
preferred vector in your representation space; namely the ω that you started with. The groups G
that are relevant for the discussion of the previous subsection will have as connected component, the
Lie group GL+

n+1(R) for n = 1, 2, 3, . . . (where the + means positive determinant) and the manifold
M on which G acts will often have, as connected components, the GL+

n+1(R) homogenous space
GL+

n+1(R)/SOn+1 · R+, this being the space of right cosets with respect to the group generated
by rotations (i.e., elements of SOn+1) and positive homotheties (i.e., positive scalar matrices). Our
automorphic forms will also be required to behave well with respect to the action of a discrete
group on M , often a discrete subgroup of G viewed as acting on the left—via multiplication—on
the right coset space GL+

n+1(R)/SOn+1 ·R+.

We will focus most of our attention on our specific sample problem

p 7→ e±θp

as discussed throughout Part II, and on its “symmetric powers,”

p 7−→ {e−nθp , e−(n−2)θp , e−(n−4)θp , . . . , e(n−4)θp , e(n−2)θp , enθp},

and we shall be treating each (small value of) n separately, and discussing—very briefly—the
relationship between the data and automorphy.

• When n = 0, the data above just boils down to

p 7→ 1

and this data indeed corresponds to an automorphic form on GL1, but it plays quite a special
role in our proceedings since its L-function is none other than the Riemann zeta-function.

• When n = 1, we view the complex upper half-plane H = {z = x+iy | y > 0} as a homogeneous
space under the action of the group GL(2,R) via the usual formulas:(

a b
c d

)
z =

az + b

cz + d
.

The symmetric 1-st power of our data (i.e., our data) is cuspidal automorphic since there is
a holomorphic differential form ω = ω(z) on H—linked to our data in a way that we shall
mention below— having the following properties: for some positive number N the differential
form ω is invariant15 under the action of the group, usually denoted Γ1(N), of all matrices of
determinant one of the form (

a b
Nc d

)
15This “invariance property” is analogous to the congruence property that the quadratic characters χK possess, as

discussed in subsection 4.1.
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with a, b, c, d rational integers, and a ≡ d ≡ 1 modulo N . The way in which ω is “linked
to our data” is that ω is an eigenvector under the action of the p-th Hecke operator with
eigenvalue (e−θp + eθp)

√
p = s1(e−θp + eθp)

√
p for all but finitely many primes p.

We can take N = 11 and there is such an ω invariant even under the slightly larger group
Γ0(11) (defined as above but where one does not require a ≡ d ≡ 1 modulo 11). In fact, as a
function on the upper half plane z = x + iy (y > 0)

ω = 2πi
∏
ν≥1

(1− e2πiνz)2(1− e22πiνz)2dz = 2πi
∞∑

n=1

ane2πinzdz,

this being a Fourier series that we have already fleetingly referred to in subsection 2.116. The
requirement of cuspidality is that the differential form ω has sufficiently good behavior as one
goes to the points at infinity in the quotient Riemann surface H/Γ1(11) so that it extends to
a regular differential form on the natural compactification of that Riemann surface.

• When n = 2, the symmetric 2-nd power of our data is cuspidal automorphic since there is a
real analytic differential 2-form ω2 on the homogeneous space GL3(R)/SO3 ·R+ enjoying, as
in the previous case, an appropriate (“in”)variance property with respect to an appropriate
discrete group; moreover the differential 2-form exhibits good behavior as one goes to infinity
in the symmetric space. Again the link to our data is that for all but finitely many primes p,
the differential form ω is an eigenvector under the action of certain correspondences (Hecke
operators related to p) and with prescribed eigenvalues related to (e−2θp + 1 + e−2θp) · p =
s2(e−θp + eθp) · p (see [13]).

• Similarly for n = 3 (see [24]17).

• Similarly for n = 4 (see [23]).

What happens for n ≥ 5? One has, at the present moment, a somewhat weaker automorphy result
(potential automorphy for even n; see subsection 4.6) which is sufficient to establish the Sato-Tate
result that this article is discussing (see Corollary 4.2).

The connection between cuspidal automorphy and the desired behavior of the L-functions we care
about is:

Proposition 4.1. If, for two unequal nonnegative integers n and m, the symmetric n-th power
of our data and the symmetric m-th power of our data are both cuspidal automorphic then Ln,m

extends to a holomorphic function on the entire complex plane, nonzero on the line <(s) = 1 (for
z 6= 1).

16We rigged our sample problem to be given by the elliptic curve that is the quotient of the upper half plane under
the action of Γ1(11). Thanks to the work on modularity due to Wiles, Taylor-Wiles, et al, we could have chosen any
elliptic curve over Q as well, and still enjoy the fact that the symmetric 1-st power of the corresponding data (in
short, the “data” itself) be automorphic.

17Some of the relevant history of this, and part of the history of Proposition 4.1 below, is recorded in the introduction
of [24], where it is explained that the automorphy of the symmetric cube of a GL2 representation, a project of Shahidi’s
since 1978, following upon Langlands’ work on Eisenstein series ([33], [34]), led Shahidi to develop a machinery [43],
[44], [46] all of which is used to prove a (Langlands) functoriality result for GL2 × GL3, and from this to deduce
automorphy of the symmetric cube of automorphic forms on GL2.
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In particular, taking m = 0 and n > 0, one has that if the symmetric n-th power of our data is
cuspidal automorphic then Ln extends to a holomorphic function on the entire complex plane. See
[42], [45] for proof of holomorphicity and meromorphicity of various symmetric powers.

This proposition in itself is a great piece of mathematics, which when n and m are nonzero involve
either

• a method of Langlands and Shahidi (see [42], [25]) where one uses Langlands’ theory of
Eisenstein series 18, or

• a method of Rankin and Selberg (developed in the context of pairs of automorphic forms
for GLn and GLm by Jacquet, Piatetski-Shapiro, and Shalika [18], and completed by the
publication of [4]).

To see how automorphy might help one to control L-functions, consider the special case of (n, m) =
(0, 1) of our sample problem and recall the integral expression for the L -function L0,1 valid for
<(s) large enough; namely:

Γ(s)
(2π)s

L0,1(s) =
∫ y=∞

y=0
ys−1ω(iy) =

∫ y=∞

y=
√
−11

ys−1ω(iy) +
∫ y=

√
−11

y=0
ys−1ω(iy)

where ω is the differential 1-form discussed previously.

Here the first integral on the right side, i.e.,
∫ y=∞
y=
√
−11

ys−1ω(iy), has an integrand

ys−1ω(iy) = 2πi

∞∑
n=1

ane−2πnyysdy/y,

which goes to zero essentially exponentially as y tends to ∞. Therefore this integral converges to
an entire function of s. The second integral is the troublemaker, for naive estimates will not work
to show convergence. Nevertheless, since (miracle!) the differential form ω is an eigenform for the
transformation z 7→ −1

11z , i.e., for the action of the matrix(
0 −1
11 0

)
on the upper half plane H, it follows that the second integral is easily expressible in terms of the
first integral, so the sum of the two integrals on the right hand side—that is, the L-function L0,1(s)
decorated by Γ(s)

(2π)s —converges to an entire function. The essence of this type of proof goes all the
way back to Riemann’s famous 1859 article [38].

An example, then, of what would suffice to achieve the Sato-Tate Conjecture for our data, is the
following corollary of the past work cited, and of Proposition 4.1:

18To be a bit more specific, one views GLn × GLm as a Levi component in a parabolic subgroup of GLn+m, and
relates Ln,m, initially defined only in some right half-plane, to the constant term of certain Eisenstein series on
GLn+m. See the three lectures of the Langlands-Shahidi method in [47]. The nonvanishing on <(s) = 1 is shown in
[42].

34



Corollary 4.2. If for every odd value of m greater than or equal to 7, the symmetric m-th power
of our data is cuspidal automorphic, then the Sato-Tate conjecture holds for our data.

As readers will see in subsection 4.6 below, somewhat weaker hypotheses will also suffice19, and
this is a lucky thing.

Proof. We would then have that Ln,m(s) is entire for

(n, m) = (0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4),

and for (0,m) and (1,m) ranging through all positive odd integers m ≥ 7 (here we depend on the
earlier work cited to cover m < 7). The theorem then follows from the previous propositions and
Corollary 3.2.

To show the cuspidal automorphy of all the symmetric m-th powers of our data that are required
by Corollary 4.2 it seems that we must, at least at present, connect this data with Galois represen-
tations. So we now turn to:

4.3 Galois Representations associated to the symmetric m-th powers of our
data

Our elliptic curve E, which we’ve focussed on to provide us with our “sample problem,” whose
equation in the finite plane is given by

y2 + y = x3 − x2,

is a commutative algebraic group (the point at infinity playing the role of origin). Therefore, for
any positive integer N we may consider the kernel of multiplication by N in E, and this subgroup
of E we will denote E[N ].

Working with the points of E whose coordinates lie in an algebraic closure of Q, the subgroup
E[N ] consists of those points on the algebraic group E of order dividing N . This group is, on the
one hand, a product of two cyclic groups of order N , and on the other hand, if we adjoin to the
rational field Q all the dehomogenized coordinates of the (finitely many) points of E[N ] we obtain a
finite Galois field extension of Q—denote it KN/Q—but we also get, along with the field extension
itself, a natural injection of Gal(KN/Q) into the automorphism group of E[N ] (via the natural
action of the Galois group on the coordinates of the points in E[N ]. Since the automorphism group
of a product of two cyclic groups of order N is isomorphic to GL2(Z/NZ), we emerge from this
discussion with quite a beautiful structure. Namely, given our elliptic curve E we get for every
positive integer N a Galois field extension KN/Q and a two-dimensional representation of its Galois
group over the ring Z/NZ. Viewing that Galois group as a quotient of the full profinite Galois
group G of the algebraic closure of Q over Q, we may consider this information to be equivalent
to having representation

19Potentially cuspidal automorphic is also enough.
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ρE,N : G → GL2(Z/NZ)

the kernel of which restricts to the identity on KN . Since these ρE,N ’s compile well, in the sense
that if N divides M the representation ρE,N is equivalent to the composition of ρE,M and the
natural projection GL2(Z/MZ) → GL2(Z/NZ) we may pass to limits, so that, for example, for
any prime number ` taking the projective limit of the ρE,N ’s for the sequence N = `ν (ν tending to
∞) gives us a representation to GL2(Z`) where Z` denotes the `-adic integers, and passing, then,
to Q` we get representations

ρE,`∞ : G → GL2(Q`).

Let VE,` denote the two-dimensional Q`-vector space Q2
` equipped with a continuous Q`-linear

action of G (via ρE,`∞).

The connection between these representation spaces VE,` and our “data,:” i.e., the data

p 7→ e±iθp

we have been discussing in the previous sections of this article, is quite neat:

For all but finitely many primes p (in fact, in this case, for p 6= 11, `) there is a well defined class of
elements in G (called Frobenius elements at p) that have the property that the action any of these
Frobenius elements at p on the G-representation space VE,` have the same characteristic polynomial,
and the roots of this common characteristic polynomial are the quadratic irrationalites: e±iθp

√
p.

The set of these Frobenius elements at p are dense in G and so, since the G-representation VE,` is
irreducible, knowledge of the traces of representation of the action of the Frobenius elements at p,
i.e., the integer-valued function

p 7−→ eiθp
√

p + e−iθp
√

p = NE(p)− (p + 1)

for all but finitely many primes p determines the representation.

It should also not escape our notice that we have here a somewhat extraordinary structure: for
every prime number ` we get a two-dimensional G representation space VE,` for which the Frobenius
elements at p (for p 6= 11, `) all have the same eigenvalues: the quadratic irrationalities e±iθp

√
p.

We will refer to such a family, W`, of Q`-vector space representations of G (` running through
all prime numbers) possessing the property that the traces of Frobenius elements at p for all but
finitely many p are integers independent of `, as a compatible family of Galois representations.

Of course, for any nonnegative integer n, if we take the n-th symmetric power of the vector space
VE,`, denote it Symmn(VE,`), endow it with its induced G-action, then the Frobenius elements at
p (for p 6= 11, `) will act on Symmn(VE,`) with eigenvalues

eniθppn/2, e(n−2)iθppn/2, . . . e−(n−2)iθppn/2, e−niθppn/2,

i.e. with eigenvalues (up to normalization) equal to what we’ve been referring to as the n-th
symmetric power of our data. In particular, for every positive integer n the Symmn(VE,`) (with `
running through all prime numbers) is also a compatible family of Galois representations.
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4.4 Digression on Compatible Families and Galois characters

The general notion we have just been considering, of compatible families of Galois representations,
is as surprising and elegantly intricate a mathematical concept as—luckily for us—it is ubiquitous.
We were working, in the previous subsection, with representations of G = GQ, the Galois group
of the algebraic closure of Q over the rational field Q, but we might equally well study—for any
number field K—the analogous structure, pinned down by “data” that one might call a Galois
character over K with values in a number field. The étale cohomology groups of algebraic varieties
over number fields give plentiful examples of this kind of mathematical object, so let us briefly
discuss it.

Let K, F be number fields, and for K̄ an algebraic closure of K, put GK := Gal(K̄/K). Let S
be a finite collection of places of K containing all archimedean places, and T , similarly, a finite
collection of places of F containing all archimedean places.

By a Galois character of degree d on K with values in F (relative to the sets of places S and
T ) let us mean a function χ on the places of K not in S with values in F that has the property
that for every place v of F not in T there exists a d-dimensional vector space Wv over Fv (where
Fv = the completion of F at v) endowed with a continuous Fv-linear (semisimple) action of GK

that is unramified for all places w of K that are neither in S nor of the same residual characteristic
as that of v. For each such place w we require that

• the characteristic polynomial det(1− Frobw|Wvx) of a Frobenius element Frobw at w (which
is, a priori, only a polynomial in Fv[x]) actually have coefficients in the subfield F ⊂ Fv, and
moreover, that

• the polynomial

det(1− Frobw|Wvx) = 1− TraceFv(Frobw|Wv) · x + · · ·+ (−1)dDetFv(Frobw|Wv) · xd ∈ F [x]

be independent of v /∈ T , and finally,

• χ(w) = TraceFv(Frobw) ∈ F ⊂ Fv for all v /∈ T , and for w /∈ S and w not of the same residual
characteristic as that of v.

Since these Frobenius elements Frobw are dense in the image of GK in Aut(Wv), knowledge of
their traces pins down the character of the representation of GK on Wv, which determines up to
isomorphism the representation itself, since we have assumed it to be semisimple. In summary, then,
the Galois character χ over K with values in F determines, and is determined by, the compatible
family of GK-representations {Wv}v/∈T (taken up to isomorphism)20. One can try to deal with
these Galois characters with values in number fields in a manner as close to the way we deal with

20This definition of Galois character with values in a number field is just a mild generalization of the concept of
strictly compatible family of rational `-adic representations as defined in 1968 in Chapter I of Serre’s treatise [39]. See
also (in loc. cit.) Serre’s list of Open Questions regarding these families of representations.
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characters in any other aspect of representation theory as possible21. For example, the collection
of Galois characters over K with values in number fields in Q̄ forms a λ-ring in the usual sense of
representation theory.

Say that a Galois character with values in a number field corresponding to the compatible family
{Wv}v/∈T is irreducible if every Wv is irreducible as GK-representation (v /∈ T ).

Galois characters of small degree with values in number fields have an immensely rich history. The
study of Galois characters of degree 1 are treated by Class Field Theory (and cf. [39]). The χK

already encountered in the exposition above (subsection 4.1) are, in fact, Galois characters of degree
1 over Q with values in Q, where the associated compatible family {W`}` of GQ representations
is somewhat atypical in that the entire family comes from a single 1-dimensional Q-vector space
W with nontrivial GQ-action trivialized when restricted to GK , and where for any prime `, W` :=
W ×Q Q`. The Galois character attached to the simplest data p 7→ 1, discussed in the previous
subsection is an even more basic example (“basic,” but not elementary, since its associated L-
function is the Riemann zeta-function; one should have great respect for it).

Galois characters of degree 2 with values in number fields are related to much of the classical theory
of modular forms. This brings us to:

4.5 Langlands Reciprocity

The goal is to manage to link, as far as possible, these two species of mathematical structures,

• Irreducible Galois characters χ of degree d of K with values in a number field F ,

• Cuspidal automorphic forms ω for GL(d) over K that are eigenforms for the appropriate
Hecke operators, with eigenvalues in F ,

where a given Galois character χ would be said to be linked to a cuspidal automorphic form ω if
for every place w /∈ S of K the value χ(w) is equal to the eigenvalue of an appropriate (“Hecke”)
operator attached to w acting on the form ω.

When such a thing happens for an irreducible Galois character χ with values in a number field
we will say that the character χ itself and also the corresponding compatible family {Wv}v are
cuspidal automorphic.

In this language, going back to our data as discussed in the previous subsection, we have been
asking whether

Symmn(V ) := {Symmn(V`); for all primes `}
21Note that if χ1 and χ2 are both Galois characters over K with values in F relative to S (and T ) and if they agree

as functions on the complement of any finite set of places S′ containing S, they agree on S. As a result, for any χ
we can always take S and T to be the minimal set of places for which χ is a Galois character over K with values in
E relative to S and T . In a word, one can ignore the extra clause “(relative to S and T )” except when we wish to
make those sets of places precise for a given character.
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and, equivalently, its corresponding Galois character, be linked in this way to a cuspidal automor-
phic eigenform for GL(n + 1) over Q; i.e., that they be cuspidal automorphic.

But, as already hinted, one can get away with a slightly more malleable notion of automorphy to
establish the conjecture of Sato and Tate. Since this is crucial for the recent work we will now say
a few words.

4.6 Potential Automorphy

Given any compatible family of Galois representations over Q, i.e., representations of the group
GQ = Gal(Q̄/Q) and given any finite extension F/Q we can restrict our compatible family of
representations to GF := Gal(K̄/F ) ⊂ GQ to get a compatible family of Galois representations
over F . We might call this lifting compatible families of Galois representations from Q to F but
there is no cause for such a high-sounding name for this evident operation, which is nothing more
than “restriction.” There is a “corresponding” operation for automorphic forms that is, in contrast,
far from evident. Our automorphic forms have been described as “functions with certain properties”
on the symmetric spaces attached to the algebraic groups GLn+1, these being algebraic groups over
the rational field Q. For every finite extension F/Q, we may think of GLn+1 as an algebraic
group over F , and this algebraic group has a corresponding symmetric space associated to it, and
which—in general—is larger in dimension than the symmetric space attached to GLn+1 over Q. A
good deal of work—over decades—have been devoted to proving aspects of what is called Langlands
lifting (of automorphic forms from one number field to a larger one) and every step of progress here
has been hard won.

Let us say that a compatible family of Galois representations over Q is strongly potentially
cuspidal automorphic if there is some totally real number field K, Galois over Q, such that its
lifting to a compatible family of Galois representations over F is cuspidal automorphic over K.
(Here the adverb “strongly” reminds one that the field extension K/Q over which the family of
Galois representations achieves automorphy is required to be Galois, and K is required to be totally
real.)

To show the Sato-Tate conjecture for our data, we wish to make use of Proposition 3.3. We would
be more than happy, for example, if we knew that for every odd integer n (≥ 7) the n-th symmet-
ric power of our data were cuspidal automorphic; for the corresponding L-functions would then be
known to be entire, and the other requisite hypotheses of Proposition 3.3 would also hold. However,
Proposition 3.3 does not require analyticity, but merely meromorphicity (and the appropriate be-
havior on the right half plane <(s) ≥ 1). To achieve this, (strong) potential automorphicity—rather
than straight automorphicity over Q—is enough, using a fundamental result of Langlands (insuring
descent of automorphicity for appropriate solvable field extensions) coupled with a classical ar-
gument of Brauer22—an argument first employed in showing meromorphicity of the nonabelian L
functions of Artin—would gain for us sufficient meromorphic (although not necessarily holomorphic)
continuation of the relevant L-functions—sufficient, that is, to deduce the Sato-Tate conjecture.

22Any character of a finite group G is a linear combination with integer (possibly negative, however) coefficients of
characters induced from characters of elementary subgroups.
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There is yet another brand of malleability that is critical in the method:

4.7 Galois Deformation Theorems and the pivotal role played by residual rep-
resentations

We have discussed how the issue of Sato-Tate is connected to the condition of certain compatible
families of Galois representations (of degree n + 1, for various n and over some totally real number
field K, Galois over Q) being cuspidal automorphic.

Now we will change gears and consider single representations rather than compatible families of
them. So, let K be a number field as before, ` a prime number, Q̄` an algebraic closure of Q`,
with O` its ring of integers, and F̄` the residue field (an algebraic closure of the prime field of
characteristic `). Let W̃ be a d-dimensional Q̄`-vector space with an irreducible Q̄`-linear GK-
action represented by a homomorphism

ρ : GK −→ GLd(O`) ⊂ GLd(Q̄`) ∼= AutQ̄`
W̃ ,

the isomorphism on the right given by an appropriate choice of Q̄`-basis of W̃ .

Pass from O` to its residue field, F̄`, to get the the associated residual representation:

ρ̄v : GK −→ GLd(F̄`),

the semisimplification of which is uniquely determined (up to equivalence) by the equivalence class
of the GK-representation W̃ .

If, for a number field F , there is a (strongly) potentially automorphic compatible family, {Wv}v∈T ,
of Galois representations over K with values in F and a prime v of F of residual characteristic `
such that for some imbedding ι : Fv ↪→ Q̄` the base change of the representation Wv to Q̄` via
ι is equivalent to W̃ , then we’ll say that the GK -representation W̃ itself is (strongly) potentially
automorphic23.

It pays to consider the “inverse problem.” That is, fix a prime number ` and a specific (irreducible,
say) representation

r̄ : GK → GLd(F̄`)

and consider the collection V(r̄) of liftings to characteristic 0 of r̄. That is, V(r̄) := the set of
equivalence classes of Galois representations over K into d-dimensional vector spaces W̃ over Q̄`

such that their residual representations ρ̄` : GK → GLd(F̄`) are equivalent to r̄ 24.
23So, for a “single” representation to be potentially automorphic, it must be (the base change to Q̄` of) a member of

a compatible family of representations. This might seem like a big restriction on W̃ for it is indeed a rare occurrence
for irreducible GK-representations to be the base change of a representation fitting into a compatible family of
representations. Nevertheless, there are conjectures [12] that suggest that the main obstruction to this happening
consist in (local) conditions that the representation must satisfy when restricted to the decomposition groups of K
at primes dividing `.

24One of the great advances during the past few years—in our understanding of this structure—is in the special
case where d = 2, K = Q (say ` 6= 2, and r̄ absolutely irreducible) and where complex conjugation does not act as a
scalar in the representation r̄. It is in this context that Serre had conjectured that V(r̄) contains a compatible family
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By a residual condition [RC] we mean a condition imposed on r̄ : GK → GLd(F̄`). (For example:
irreducible, surjective, etc.)

By a global condition [GC] we mean a condition, or a number of conditions, of the following sort
imposed on the global representation r : GK → GLd(Q̄`): we might ask that the determinant of the
representation be equal to a specified character, and/or that the Galois representation be isomorphic
to its dual, or to the twist of its dual by a specified character, or that it be skew-symmetric, or
that the Galois action preserve some specified tensor.

If w is a place of K, by a local condition (at w) [LC(w)] we mean a condition imposed on the
restriction of a representation r : GK → GLd(Q̄`) to the decomposition group GKw of w. (For
example: we might ask that the restriction of r to GKw be unramified, etc.)

A number of theorems have been proved of the following shape, and they therefore might deserve
a collective name.

Definition 4.3. “A” Galois deformation theorem is a theorem with specific hypotheses of the
following form:

[RC], [GC], and [LC(w)] for all places w of K

and with a conclusion of the following form:

For any residual representation r̄ satisfying the specified condition [RC], if there is some lifting of
r̄ to characteristic zero—i.e. element of V(r̄)—that

(1) satisfies [GC], and [LC(w)] for all places w of K, and
(2) is strongly potentially automorphic in the sense alluded to at the beginning of this subsection,
with possible further conditions on the field K ′ that realizes the ’potentiality’ of automorphy25,

then every lifting of r̄ to characteristic zero—i.e. element of V(r̄)—that satisfies (1) also satisfies
(2), i.e, is strongly potentially automorphic.

The most powerful such Galois deformation theorems recently proved, with the most flexible and
useful conditions [RC], [GC], and [LC(v)], are due to Mark Kisin26, and to Richard Taylor [50].

of Galois representations that is cuspidal automorphic (for GL2). Of course, a simple consequence of this is that V(r̄)
is nonempty if r̄ is of the form described above. This conjecture of Serre has been settled by recent work of Khare and
Wintenberger [22]. For more material consult Khare’s web page (http://www.math.utah.edu/∼shekhar/papers.html)
and cf. [9]; also the proceedings of the summer school on Serre’s Conjecture held at Luminy in July 2007 will provide—
when they appear—background prerequisites for appreciation of these results, as well as an exposition of the proof
of Serre’s Conjecture.

25Some Galois deformation theorems require, for example, that K′/Q be Galois with the prime p split. Some
variants hypothesize that the automorphic form invoked in this hypothesis satisfy certain local conditions, and then
obtain that the automorphic form invoked in the conclusion will satisfy the analogous local conditions.

26See [26] where the [LC(v)] condition for v|p > 2 is that the local representation is Barsotti-Tate; [27] deals with
p = 2; and [28] covers the case where the local representations for v|p become semi-stable over an abelian extension
of Qp; consult Kisin’s web-page for more: http://www.math.uchicago.edu/∼kisin/preprints.html.
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When such a Galois deformation theorem can be applied, we often get—at our disposal—large
quantities of strongly potentially automorphic Galois representations, all liftings the same residual
representation, and each–of course–fitting into their own family of compatible Galois representa-
tions. This allows us to move from residual characteristic to residual characteristic, as we shall now
describe.

4.8 Hopping from one prime to another

The Galois deformation theorems discuss in the previous subsection can be applied in one stage;
or—at times—they can be applied iteratively, in multiple stages allowing us to hop from residual
representations relative to algebraic closures of finite fields F̄` of different characteristics, obtaining
—as corollary—strong potential automorphy for more and more Galois representations. This was
already done—a single hop—moving from characteristic 3 to 5 in Wiles’ and Taylor-Wiles’ proof of
Fermat’s Last Theorem. Multiple such hops (an inductive argument being in play) were at work
in Khare’s orginal work [21] on Serre’s Conjecture for level 1, and also in the full proof of Serre’s
Conjecture by Khare and Wintenberger. Moreover a very elegant such hop plays a role in the recent
work on the Sato-Tate Conjecture. Here is the general idea of how a “prime hop” works:

Stage one: You might start with r̄ : GK → GLd(F̄`), for which you know that V(r̄) contains one
lifting of r̄ that is strongly potentially automorphic, and then deduce that many other liftings—
i.e., those satisfying the specified conditions [GC], and [LC(v)]—lift to a strongly potentially
automorphic (characteristic zero) representation

ρ′ : GK′ → GLd(Q̄`),

for K ′/K some totally real finite extension of K such that K ′/Q is Galois. Since ρ′ is then
potentially automorphic, after passing to a possibly larger totally real field K ′′ over K ′, Galois over
Q, one gets a compatible family of associated Galois representations,

ρ′′˜̀ : GK′′ → GLd(Q̄˜̀),

for all primes ˜̀. This alone is a powerful enough application.

Stage two: But for many purposes, the fact that we now have a compatible family of represen-
tations ρ′′˜̀ allows us to pass to a residual representation of ρ′′ with respect to a prime number ˜̀,
different from `, i.e.,

ρ′′˜̀ : GK′′ → GLd(F̄˜̀),

which, if ρ′′˜̀ satisfies [RC], would again be a candidate for a further application of the Galois
deformation theorems, since it lifts to a potentially automorphic Galois representation.

4.9 A rich source of potentially automorphic Galois representations

To summarize our discussion up to this point, we have that the error term of our sample problem

p 7−→ e±iθp
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will be shown to satisfy the Sato-Tate distribution if the compatible family of Galois representations
attached to the n-th symmetric power of V is shown to be potentially automorphic, for all odd
values of n. This, in turn, could be demonstrated if the following list of requirements are met:

• if we have a good Galois deformation theorem requiring residual, local and determinantal
conditions, appropriate for what will be required of it below, and

• if, for each odd positive integer n, we can find a prime number ` for which the residual repre-
sentation attached to Symmn(V`) can be shown to satisfy the residual condition, the Galois
representations themselves; and the characteristic zero Galois representations Symmn(V`)
satisfy the local and determinantal conditions, and

• if, for each of the residual representations in the previous bullet, we can find a lifting to
characteristic zero satisfying the local and determinantal conditions that is potentially auto-
morphic.

It is at this point that the important family of hypersurfaces

Yt : Xn+1
0 + Xn+1

0 + · · ·+ Xn+1
0 = (n + 1)tX0X1 . . . Xn

(n even) comes to play its role ([16]). This family has the property that for appropriate values to of
t in totally real number fields Fo, Galois over Q, there is a compatible family of n + 1 dimensional
representations

W
(n)
to = {W (n)

to,`} (for all primes `)

of GFo occurring as subquotients of the compatible family of Galois representations attached to the
middle dimensional cohomology of Yto such that there is a choice of primes `1 and `2, and a Galois
deformation theorem, with these properties:

• the representations W
(n)
to,`1

, W
(n)
to,`2

and Symmn(VE,`1) (the latter when restricted to GFo) all
satisfy the determinantal and local conditions of the Galois deformation theorem,

• the residual GFo Galois representations attached to W
(n)
to,`1

and W
(n)
to,`2

satisfy the residual
conditions of the Galois deformation theorem,

• the residual GFo Galois representations attached to W
(n)
to,`1

is equivalent to the residual GFo

Galois representation obtained from Symmn(VE,`1),

• the residual GFo Galois representation attached to W
(n)
to,`2

has a lifting to characteristic zero
that is potentially automorphic and that satisfies the local and determinantal conditions of
the Galois deformation theorem.

One cannot get something for nothing (or at least, for absolutely nothing) in mathematics, and it is
the last bullet above that reminds us that although the output of our theorem may give us a wealth
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of Galois representations that are potentially automorphic, the input requires that we prime the
pump with some small supply, at least, of Galois representations that we know to be potentially
automorphic. This small supply consists of certain representations induced from one dimensional
characters (see Theorem 4.4.4 of [3] and Theorem 4.2 of [1]).

The conclusion of this scenario is that for n an even positive integer both W
(n)
to and Symmn(VE)

are potentially automorphic.

4.10 Concluding the theorem

The direct consequence of the previous subsection is that for all even n the Galois representations
Symmn(VE) are potentially automorphic. We also know (see section 4.2) that the Galois rep-
resentations Symmm(VE) are automorphic—and hence, of course, potentially automorphic—for
m ≤ 4. It follows that we have the desired meromorphicity (and nonvanishing) behavior for the
L-functions Lm,n(s) for m ≤ 4 and even positive integers n 6= m. Using merely the pairs (0, n) and
(1, n) for even n we get, as consequence, that for every positive integer k there is a pair of distinct
nonnegative integers (n, m) with n + m = k and such that

lim
C→∞

1
π(C)

∑
p≤C

sm(cos θp)sn(cos θp) = 0.

Corollary 3.2 then tells us that the sought-for Theorem 2.1 follows.

The theorem proved in the articles I have been reporting on, is established—of course—much more
generally than only for our sample problem, the elliptic curve E : y2 + y = x3 − x2 which has
conductor 11. What is proved is that if E is any elliptic curve over Q for which there is (at least)
one prime number ` dividing its conductor and such that `2 doesn’t divide its conductor, its error
terms (i.e., p 7→ (1 + p) − #E(Fp)) conform to the Sato-Tate distribution; moreover, there is a
corresponding result for elliptic curves over totally real number fields.

Can one establish potentially automorphicity for the Galois representations Symmn(VE) for all n,
even or odd and all elliptic curves E over Q?

If one has an affirmative answer to this, one will get the further corollary that the error term
statistics for any two such elliptic curves that are non-isogenous are also noncorrelated. Recently
Michael Harris has made significant progress towards that goal (see his [15]).

A major sticking point to generalize this result to other problems (for example: to the “sample
problem” in Part I) is that the rich source of potentially automorphic Galois representations, i.e.,
the family Yt of the previous subsection has a Hodge structure that parallels the Hodge structure
of symmetric powers of Galois representations associated to weight two modular forms, while our
first sample problem is of weight 12 and so is not approachable in this manner. Nor would there be
an easy replacement for Yt that is suitable to tackle weights greater than 2, given the restrictions
placed on variation of Hodge structure imposed by Griffiths transversality. We await progress here!
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4.11 Interpreting Sato-Tate as a statement about equidistribution

We have not yet said a word about why we might expect the Sato-Tate distribution to be the
distribution that accounts for, say, the error term in the elliptic curve data

p 7→ NE(p) = 1 + p−√p{eiθp + e−iθp}

attached to our elliptic curve E. The relevant word here is equidistribution as modeled by the Ceb-
otarev Theorem for a finite Galois extension of number fields K/Q—for example27—that guarantees
equidistribution of

p 7→ {conjugacy class of Frobp} ⊂ Gal(K/Q),

where the finite Galois group Gal(K/Q) is given its natural (e.g. “Haar”) measure. In concrete
terms this means that the probability that a fixed conjugacy class C ⊂ Gal(K/Q) occurs as the
conjugacy class of Frobp is

#C
[K : Q]

.

The specific example of the Sato-Tate Conjecture (now a theorem) that we have been dealing with
can be expressed in a vocabulary analogous to the above formulation of the Cebotarev Theorem as
follows. Recall that USP (2) is the unitary symplectic group of genus 1, i.e. the group of complex
matrices (

a b
c d

)
of determinant 1 and such that ac̄ + bd̄ = 0 and |a|2 + |b|2 = |c|2 + |d|2 = 1.

Definition 4.4. The unitarized Frobenius conjugacy class at p of E, denoted C(p) ⊂ USP (2)
is the (unique) conjugacy class of elements in the Lie group USP (2) with eigenvalues eiθp and e−iθp .

The Sato-Tate Conjecture for our elliptic curve E guarantees equidistribution of

p 7→ C(p) ⊂ USP (2)

where the Lie group USP (2) is given its natural (e.g. Haar) measure. Since the trace of an element
in USP (2) determines its conjugacy class, this “natural measure” on conjugacy classes can—more
concretely—by viewed simply as the direct image of Haar measure on USP (2) under the trace
mapping from USP (2) to the interval [−2,+2]. To follow up on this thread, and on a discussion of
equidistributional properties of a host of other number theoretic problems, see page 7 of [20] (and,
indeed, the entire volume [20]).

I find—and I imagine that many people find—the definition we have just given as raising more
questions than it answers.

About a century ago, Hensel and others formulated the analogy between
27and even more germane would be the field extensions that split the Galois representations over Q acting on

groups of n-torsion points of E
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• arithmetic (related to a finite prime `) in the field of `-adic numbers, the completion of Q
with respect to `-adic topology, and

• arithmetic (related to the so-called infinite prime) in the field of real numbers, i.e., the
completion of Q with respect to usual topology.

But number theorists have been acquainted with an unsettling oddness in that analogy, ever since.
In the above definition we see an example of this “oddness” as I’ll try to explain below.

Our elliptic curve E provides us with an elegant compatible family of `-adic Galois representations
for all finite primes `. Fix such an ` and for any prime number p different from 11 and `, the
natural Galois action on `-power torsion points allows us to “naturally” associate to p a conjugacy
class of elements in the `-adic Lie group GL2(Z`) simply by choosing a Frobenius element at p and
allowing it to act naturally on the `-adic vector space VE,`. Call that conjugacy class CE,`(p).

Now—as would seem to follow the format of the above analogy—we do obtain a similar structure
relative to the infinite prime. Namely, for every finite p—we can pinpoint a conjugacy class,
CE,∞(p) = C(p), of elements in a real Lie group. But to get these conjugacy classes, on the one
hand, we must invoke Hasse’s theorem; and on the other hand, (at least at the present time) we
get them only by executing a peculiarly formal gesture: we simply pick out the unique class with
just the right eigenvalues; this is quite different from what we do when we work `-adically for `
a finite prime, where we actually find the relevant conjugacy classes selected in some natural way
given the structure at hand. All this seems to cry out for some better understanding.

4.12 Expository accounts of this recent work

Different audiences benefit from different shapes of exposition. I wrote a brief article in the journal
Nature article (NATURE Vol 443, 7 September 2006) meant to give a hint of the nature of the
Sato-Tate Conjecture and some related mathematical problems to scientists who are not necessarily
familiar with much modern mathematics. For professional mathematicians, a number of excellent
articles and videos—requiring different levels of prerequisites of their audiences—are devoted to
exposing this material:

1. Available through the MSRI website (http://www.msri.org/):

(a) An introductory one hour lecture by Nicholas Katz emphasizing the background and the
historical perspective of the work,

(b) A series of lectures for a number theory workshop, by Richard Taylor where an exposition
of the proof itself is given,

(c) Two lectures by Michael Harris, one on some of the material in [3], and one on [16],

2. Two hours of expository lectures by Laurent Clozel on this topic, aimed at a general math-
ematical audience in the conference on Current Developments in Mathematics, at Harvard
University. The notes for these should soon be available as well,
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3. An expository article by Michael Harris: “The Sato-Tate Conjecture: introduction to the
proof,”

4. A talk by Henri Carayol given in the Bourbaki seminar (June 17, 2007): “La conjecture de
Sato-Tate [d’après Clozel, Harris, Shepherd-Barron, Taylor],”

5. The three articles by the principal authors, [3], [16], and [50], which can be obtained from
Richard Taylor’s web-site (http://www.math.harvard.edu/∼rtaylor/).
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