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EVA BRANN HAS TAUGHT ME many things, among which is the importance of
cherishing something that can be called “the long conversation.” This “long
conversation” has a time-splicing seamlessness: it can be picked up at any
time, even after long absences, and its themes are as fresh and vital as ever,
and more resonant, more weighty. I have come to think of some of the great
communal intellectual projects, mathematics, for example, as a long conver-
sation that humanity has had, is having, and will continue to have.

I feel blessed for having—for still having—some long specific conver-
sations with Eva. One of these has to do with the idea of “appreciation,” that
important word which characterizes many of Eva’s writings, e.g. about Jane
Austen, or Homer, for these are appreciations in the profoundest sense of
that word.

Surely the art of appreciation is a great gift of the spirit. The ex-wife of
a great contemporary mathematician once said to me, with equal measures
of exasperation and dearly paid-for admiration, that her ex-spouse was
somehow overcome with appreciative joy every time he proved the
Pythagorean theorem. This, to me, is high praise.

Others would have a different view. André Weil, in discussing the pas-
sage from “intuition to certitude” in mathematics, writes

as the Gita teaches us, knowledge and indifference are attained at the same
moment. Metaphysics has become mathematics, ready to form the mate-
rial for a treatise whose icy beauty no longer has the power to move us.

In its fullest sense, appreciation means continuing to get pleasure, and
acknowledging that pleasure, from the things we think we already under-
stand, and getting yet more pleasure facing the things we don’t yet under-
stand.

How thankful we should be—about numbers—that the first few of
them, 1, 2, 3, are so immediate to our understanding, or at least seem that
way, and are so ubiquitously useful to us. Beyond these numerical compan-
ions lies more and yet more, trailing into the bittersweet landscape of the
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Kantian mathematical sublime with its infinities and profundities. Happily,
the “sweet” comes after the “bitter,” in that, first, we bitterly face this infi-
nite prospect: we try to grasp that ungraspable infinite with our finite minds.
Only by so trying are we prepared for the sweet afterthought, that we, with
our merely finite minds, can miraculously manage to comprehend the
impossibility of this infinite enterprise. We each emerge from this experience
with our personal consolation prize: a “starry sky within,” as Kant calls it.

What isn’t acknowledged in the picture painted in the previous para-
graph is the abundance of insights, and sheer joy, to be had en route. Why
is there so much to understand about 1, 2, 3 . . . ? Why are so many step-
ping stones in the path of this understanding so often joyous to the soul?

1 THREE ANCIENT THEOREMS ABOUT NUMBERS

I want to discuss three mathematical gems of number theory—sources
of joy, in my opinion—all three of them magnificently formulated in ancient
Greek texts that have come down to us, and each of them pointing the way
to far greater depths. I said magnificently formulated rather than magnificently
proved but, in fact, two out of the three are both formulated and proved in
Euclid’s Elements. The third of these, Theaetetus’s Theorem, alluded to in the
title of this article, is formulated elegantly as Propositions 24, 25 of Euclid’s
Book VIII. But we will later be commenting on the proofs of these proposi-
tions as given in Book VIII.

The three gems are:

• Euclid’s proof of the infinitude of prime numbers, as in Proposition 20 of
Book IX of the Elements.

• The “Euclidean algorithm,” as in Propositions 1, 2, and 34 of Book VII of
the Elements.

• Theaetetus’ theorem that—when put in modern terms—says that the
square root of a whole number A is rational (i.e., is a fraction or a whole
number) if and only if A is a perfect square. [So, ÷2, ÷3, ÷5, ÷6, ÷7, ÷8,
÷10, ÷11, ÷12, ÷13, ÷14, ÷15, ÷17, ÷18, . . . are irrational.]

2 THEOREMS THAT PROVE THEMSELVES

All three of these theorems are wonderfully stated in the ancient liter-
ature. But I want to make a mild reformulation of the first two, to advertise
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a principle that I feel helps to clarify things, whenever it is applicable. I’ll call
it the self-proving theorem principle. In effect, if you can restate a theorem,
without complicating it, so that its proof, or the essence of its proof, is
already contained in the statement of the theorem, then you invariably have

• a more comprehensible theorem,
• a stronger theorem, and
• a shorter and more comprehensible proof!

The first two theorems have “self-proving” formulations. Here they are:

3 EUCLID’S PROOF OF THE INFINITUDE OF PRIMES

“Infinite” is a word with a built-in negative polarity. It is not something,
i.e., not finite. There is a vast ancient conversation about this, centering 
on the shades of intention behind the word apeiron meaning—variously
—unbounded, unlimited, indefinite, . . . all of these translations having 
a telltale negative prefix. All the more remarkable, then, is Dedekind’s
positive-sounding definition of infinite set as a Hilbert hotel, so to speak;
that is, as set S for which there is a one-one correspondence of S with a
proper subset of itself.

Whenever we say we have proven a negative something, we have usu-
ally actually proven a positive something else. The see-saw aspect of Kant’s an-
tinomies in the Critique of Pure Reason has that quality, where you shift polarity
(negative-to-positive, positive-to-negative) as you change viewpoint. But
proofs and demonstrations by their very nature “accentuate the positive.”

Often, perhaps always, when we translate a positive statement to a neg-
ative one, there is information—sometimes subtle, sometimes gross—that
is lost in this translation. One sees this most poignantly in some important
theorems that are actually packaged as “negative results” and “limits of rea-
son,” and yet, what they are directly providing—before being recast as
negative—is some extraordinary affirmation of reason. One example of this
is Matjasevic’s famous proof that there is no algorithm to determine whether
a polynomial equation in many variables with whole number coefficients has
or doesn’t have a solution in whole numbers. I’ve just stated it in negative
terms, but what is actually proven is the richness of diophantine expression:
roughly speaking, that any collection of whole numbers that can be algorith-
mically listed by a computer can also be described by diophantine means.
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All this is preamble to my stating Euclid’s theorem in a positive way,
essentially as it is given in the Elements, i.e., as a self-proving theorem. It is
helpful to put the theorem in an “exchange of gifts” mode; that is, a “You
give me an X and I’ll give you a Y” format.

If you give me any finite (non-empty, of course!) collection of prime numbers,
I will form the number N that is 1 more than the product of all the primes
in the collection, so that every prime in your collection has the property that
when N is divided by it, there is a remainder of 1. There exists at least one
prime number dividing this number N and any prime number dividing N is
new in the sense that it is not in your initial collection.

The proof of this is essentially contained in its statement. My number
N is contrived to have the property that all the primes of your collection can-
not be prime divisors of N, for they each leave a remainder of 1 when one
tries to divide my N by them. But N, being bigger than 1, has some prime
dividing it.

For example, if you gave me the “collection” consisting only of the
prime 2, the N that I would form would be 2+1 or N= 3, which is itself
a “new” prime not on your list. If then, you gave me as list the primes 2 and
3, the N that I would form would be 2†3+1, or N= 7, again itself a
“new” prime not on your list. If you gave me as list 2, 3 and 7, my N would
be 2†3†7+1=43, and yet again it would be itself a “new” prime not
on your list. If you enriched your list with this newly found prime, and give
me 2, 3, 7, 43, I would form as “my” N, the number N=2†3†7†43 +
1=1807. Now my N is not prime—as it had been in the previous cases—
for it factors: 1807=13¥139. Both factors, 13 and 139, are primes. At
this point we have a bonanza, in that both of these primes, 13 and 139—
as we would have known, from Euclid’s proof even without looking back at
our list—are “new,” i.e., not on our list.

The general consequence, then, is that no finite list that you could give
me will exhaust the totality of all prime numbers: I have shown you a way
of finding new prime numbers that are not on any finite list. What a mix-
ture we have here of simplicity and depth!

4 THE EUCLIDEAN ALGORITHM

When I talk of “number” I will mean positive whole number. A divisor
of a number N is a number d that divides N evenly, meaning that it divides
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N with no remainder; in other words, the number d is a divisor of N if, and
only if, the fraction N § d is a whole number.

So, for example, 4 is a divisor of 12, for 12 divided by 4 is 3. But 5, for
example, is not a divisor of 12: if you try to divide 12 by 5 you get a remain-
der of 2. In fact the only divisors of 12 are

1, 2, 3, 4, 6, and 12 itself.

We need only two other pieces of official vocabulary, common divisors
and greatest common divisor, and they each have the meanings that you might
expect: If you have a pair of numbers, a common divisor of them is just a
number that is a divisor of each of them. For example, the common divi-
sors of the pair 12 and 18 are 1, 2, 3, and 6. The greatest common divi-
sor of a pair of numbers is the largest of their common divisors. So, the
greatest common divisor of the pair 12 and 18 is 6.

This notion of greatest common divisor is pivotal in any dealings one has
with numbers, and a major insight in Euclid’s number theory—that is, his
Book VII—is the recognition of the key role played by greatest common
divisor, which is, nowadays, lovingly given the acronym GCD.

In our example, above, we easily worked out that the greatest common
divisor of 12 and 18 is 6. But when the pair of numbers gets large, it is 
not immediately apparent how to compute their greatest common divisor. 
This is where the Euclidean Algorithm comes in. I’ll state it in its splendid
simplicity:

Suppose you are given a pair of numbers A and B with A greater than B.
Any common divisor of A and B is a common divisor of B and A – B; and
conversely, any common divisor of B and A – B is a common divisor of A
and B.

That’s it! In the above modest sentence you have the working innards
of the single most used algorithm in the history of algorithms. Not only is
it, when spiffed up the tiniest bit, a fast-working process, but it is the very
model of a fast-working process; its rate of operation sets the standard by
which the speed of other algorithms is judged. And the proof of the Euclid-
ean Algorithm? It depends on nothing more than knowing that if a number
divides A and B then it divides A-B and B; and conversely. In a sense, the
Euclidean Algorithm is simply stating its own proof.

Now its proof may be immediate, but its use is far-reaching. The beauty
is that you can run this little machine first forward, and then backward,
and in each of these runs you will get (different) important information.
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Here is a brief “Manual for Use” of this Euclidean Algorithm (cast in a
slightly more modern idiom than you will find in Euclid).

To get the greatest common divisor of any two numbers, A and B, you
run the algorithm forward. I mentioned above that to get it to be speedy
you should spiff it up a bit. Here’s how. If A is greater than B, you may as
well subtract B as many times from A as you can, all at once, to arrive at a
number, A-nB, that is less than or equal to B. Then the numbers B and
A-nB have the same GCD as A and B do. Repeated application of this
Euclidean Algorithm will successively reduce the size of the pair of num-
bers whose greatest common divisor you are seeking.

This reduction of size of the numbers we are dealing with is a crucial
point. Any process that has to do with (positive whole) numbers and whose
application either reduces the size of the numbers being dealt with, or else
terminates, must terminate.

This is the case with our Euclidean Algorithm. Moreover, the chain of
iterated application of this algorithm can only no longer be repeated—indeed
will terminate—when the pair of numbers (whose greatest common divisor
you are reduced to finding) are equal numbers, for then no further subtrac-
tion of a B from an A is permitted. At this point, however, the answer stares
us in the face, for the greatest common divisor of a pair of equal positive
whole numbers is indeed that common number.

Try it on any pair of numbers you want; say A=2975 and B=221.

• (First application of the Euclidean algorithm) We can subtract B=221 thir-
teen times from A=2975 to get that the GCD of 2975 and 221 is the same
as the GCD of 221 and 2975-(13¥221)=102. So think of 221 as our
new A and 102 as our new B, and to find their GCD, repeat:

• (Second application of the Euclidean algorithm) We can subtract B=102
twice from A=221 to get that the GCD of 221 and 102 is the same as the
GCD of 102 and 221-(2¥102)=17. So think of 102 as our new “A”
and 17 as our new “B,” and repeat again:

• (Third application of the Euclidean algorithm) We can subtract 17 five times
from 102 to get that the GCD of 102 and 17 is the same as the GCD of 17
and 102-(5¥17)=17. And now, we’re done, for the GCD of 17 and
17 is, of course, 17.

Conclusion: The GCD of the pair A=2975 and B=221 is 17.

But let us not turn this little machine off yet, for the even deeper appli-
cation is to be had when we run it backwards: Looking at the “second appli-
cation” above, we see that our GCD, namely 17, is 221-(2¥102), which
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I want to think of as (1¥221)-(2¥102); the second application above is
telling us that 17 is a multiple of 221 minus a multiple of 102. Now look-
ing at the “first application,’ we see that 102 is 2975-(13¥221), which
I want to think of as (1¥2975)-(13¥221); similarly, the first applica-
tion above is telling us that 102 is a multiple of 2975 minus a multiple of
221. Putting these together, we get that 17, our GCD of our initial pair of
numbers 2975 and 221, is expressible as a difference of multiples of these
two numbers; specifically:

17=(1¥221)-(2¥102)=(1¥221)-2¥(2975-13¥221)
=(27¥221)-(2¥2975).

This, then, is what the Euclidean algorithm does for us: it computes the
greatest common divisor of a pair of numbers elegantly for us, and then—
when run backward—it expresses that GCD as a difference of multiples of
those two numbers. This is precious information, for it is the key to some
of the deep foundational results about numbers, as we shall see in section
10 below.

5 THE EUCLIDEAN ALGORITHM, IN EUCLID

The account just given of Euclid’s algorithm was reasonably faithful, I
feel, to the spirit of Euclid’s Book VII. But I did take liberties to make some
shifts and changes. To appreciate the nature of Euclid’s text, it pays to dis-
cuss these changes. You might wonder why when I gave a reference in
Euclid to the Euclidean algorithm, I listed not one proposition, but rather
three of them (Propositions 1, 2, and 34). Why did it take Euclid three
propositions, two of them coming at the beginning of Book VII and one
coming at the end of the book, to express his algorithm?

First, since Euclid makes a sharp distinction between “the unit” (i.e.,
what we would call the number 1) and numbers that actually denote a plu-
rality (i.e., numbers≥2), he is drawn to provide separate but similar
accounts of his algorithm depending upon whether the result it gives, as
greatest common divisor, is a unit (this is discussed in Proposition 1) or is
what Euclid would consider to be a bona fide number—i.e., is 2 or greater
(this is discussed in Proposition 2).

Second, in the discussion I gave in the previous section, the “Manual for
Use” that was offered came immediately after the basic statement of the
algorithm. This is not what happens in Euclid’s Book VII. In rough terms,
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it is Proposition 34—only coming towards the end of the book—that tells
us how to effectively use Euclid’s algorithm.

That the explanation of how to make use of this marvelous algorithm
ambles in so late in this little volume implies something quite curious about
what occurs in the middle of Book VII, as we will see later.

Related to this, and altogether astonishing, is the strange fact that not
even a single specific numeral makes its appearance in all of Book VII, the
earliest profound treatise on numbers that we have. Much scholarly debate
concerns itself with whether diagrams did or did not occur in early manu-
scripts of Euclid’s volumes on geometry, and what role they played in the
constructions and demonstrations in geometry. It might also be worthwhile
to ponder the lack of numerical examples—or any specific numbers at all—
in Euclid’s foundational text on number theory, and to ask what this implies
about the way in which the text was studied, or was meant to be studied.

6 THEAETETUS

A friend1 once pointed out to me that the Platonic dialogue, Theaetetus,
is framed in such a way that one might take its central text to be something
of a legal deposition—fastidiously preserved and presented only thirty years
or so after the trial of Socrates—giving evidence that Socrates had indeed not
perverted Athenian youth. For we are given two intensely vivid portraits in
the dialogue: of young Theaetetus, in focussed conversation with Socrates
about the nature of knowledge; and of older Theaetetus, now an Athenian
general, mortally wounded in carrying out his duties for Athens. The gen-
eral refuses to take time to rest in Megara, for he is in a hurry to get home
to Athens, desiring to die in his native city. The dialogue, then, is itself a tes-
timonial to the commitment of philosophy to long conversation unrestricted
by the time exigencies of the water-clock in Athenian law courts.

Here is the statement of young Theaetetus’ theorem, as described in the
dialogue (147, 148; Loeb transl.):

THEAET. We divided all numbers into two classes. The one, the numbers
which can be formed by multiplying equal factors, we represented by the
shape of the square and called square or equilateral numbers.

SOC. Well done!

THEAET. The numbers between these, such as 3 and 5 and all numbers
which cannot be formed by multiplying equal factors, but only by multi-
plying a greater by a less or a less by a greater, and are therefore always

–234–

HOW DID THEAETETUS PROVE HIS THEOREM?

BrannFest-Pass1.qxd  5/7/07  8:22 PM  Page 234



contained in unequal sides, we represented by the shape of the oblong
rectangle and called oblong numbers.

SOC. Very good; and what next?

THEAET. All the lines which form the four sides of the equilateral or square
numbers we called lengths, and those which form the oblong numbers we
called surds, because they are not commensurable with the others in length,
but only in the areas of the planes which they have the power to form. And
similarly in the case of solids.

In modern language:

The Theorem of Theaetetus. The square root of any (whole) number
that is not a perfect square (of whole numbers) is irrational. The cube
root of any (whole) number that is not a perfect cube (of whole num-
bers) is irrational.

As I have already mentioned, we will be discussing the proof of this
theorem, as it appears in the extant ancient literature. What is strange,
though, is that a popular delusion seems to be lurking in the secondary lit-
erature on this topic. Specifically, you will find—in various places—the
claim that Theaetetus’ theorem is proven in Proposition 9 of Book X of Eu-
clid’s Elements. It doesn’t serve any purpose here to list the places where
you find this incorrect assertion, except to say that it is incorrect, and it
remains a thriving delusion since at least one important article published as
late as 2005 repeats it. It is an especially strange delusion since nothing
subtle is going on here. Even a cursory glance at Proposition 9 of Book X will
convince you that what is being demonstrated there—if you take it in a
modern perspective—is an utter triviality. Proposition 9 of Book X stands,
though, for an important issue in ancient thought if taken on its own terms,
but it won’t prove irrationality of anything for us, let alone irrationality of
all the numbers that Theaetetus proves. One might imagine that Heath’s
commentary on this—which is perfectly clear, and says exactly what is
indeed proved in Proposition 9—would dispel the misconception that
Theaetetus’ theorem about the irrationality of surds is contained in this
proposition, but it seems that this has held on with some tenacity. I would
guess that the source of this error is quite early, as early as the commentaries
of Pappus, but I offer this guess timidly because that would seem to imply
that poor Proposition 9 of Book X has been often cited but far less often read
with attention since the fourth century AD.
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7 PAPPUS

Here, then, are some curious statements of Pappus2 on the subject; I
hope some historian of mathematics will elucidate them for us.

[Theaetetus] divided all numbers into two classes, such as are the prod-
uct of equal sides (i.e., factors) on the one hand, and on the other, such
as are contained by a greater side (factor) and a less; and he represented
the first [class] by a square figure and the second by an oblong . . .

Euclid, on the other hand, after he examined this treatise (or theorem)
carefully for some time and had determined the lines which are commen-
surable in length and square; those, namely, whose squares have to one
another the ratio of a square number to a square number, proved that all
lines of this kind are always commensurable in length . . .

[T]he difference between Euclid’s proposition and that of Theaetetus
which precedes it, has not escaped us . . .

Is Pappus referring to some proposition of Euclid not available to us?
Is Pappus, in contrasting Euclid with Theaetetus, suggesting that Theaete-
tus has proven the deeper theorem, or that Euclid has? Or is the statement
that “the difference between Euclid’s proposition and that of Theaetetus
which precedes it, has not escaped us” making no comment on the relative
merits of the two results, but only that Pappus sees them as different? I
know of no modern commentary on this sentence in Pappus beyond the
remarks in the volume cited, which indeed refer to Proposition 9 of Book
X; it is an especially confusing matter, because there are hints in loc. cit. sec-
tion 11 (page 74) that Pappus believes that it is Euclid’s result that is the
deeper: Pappus notices there that the r and s of Euclid, being lengths, can
themselves be irrational (relative to some unnamed, but stipulated unit
measure, of course) and Euclid’s proposition covers this, whereas Theaete-
tus’ language, which is in effect about ratios of “numbers to numbers,” pre-
cludes thinking about such a situation. To a modern, however, introducing
an irrelevant extra unit—which is what Pappus claims Euclid is doing—is
a red herring and not a whit more general. Pappus seems insensitive to this,
but is focussed, rather, on the (important to him, of course) issue of trans-
ference, or translatability, of the notion of ratio from the context of lengths
to that of numbers.

However one interprets this text, one has to admire the intensity of
Pappus’s convictions about the subject matter. Pappus writes that he holds
ignorance of the fact that incommensurables exist to be

–236–

HOW DID THEAETETUS PROVE HIS THEOREM?

BrannFest-Pass1.qxd  5/7/07  8:22 PM  Page 236



a brutish and not a human state, and I am verily ashamed, not for myself
only, but for all Greeks, of the opinion of those men who prefer to believe
what this whole generation believes, [namely], that commensurability is
necessarily a quality of all magnitudes.

8 INCOMMENSURABILITY OF ÷2:1 AND
THE “EVEN AND THE ODD”

There are two well-known proofs of the irrationality of ÷2 that turn on
the distinction of even and odd. So if the Pythagoreans were—as they are
reputed to have been—involved in these matters, it is fair enough that Aris-
totle at one place refers to the Pythagoreans as (my rough paraphrase) “the
folks of the even and the odd.”

I will rapidly review both of these proofs; what may be worth bearing
in mind is that the even/odd distinction in the first of these proofs has to do
with the actual numbers involved, while in the second proof it has to do
with the exponents of the factors involved.

(1) To prove: that the equation ÷2=n §m is impossible with n
and m (positive) whole numbers.

First assume that the fraction n / m is in “lowest terms,” so that
either the numerator or the denominator (n or m) is odd.

Next, by squaring (both sides of) that putative equation ÷2=n /m,
you get the equation

2m2=n2

which tells us that n2 is even; since the square of an odd number can
be seen to be odd, we get that n itself is even; so m must be odd.

Now use the even-ness of n, to know that you may write n as twice
a whole number; say, n=2k. Then substitute 2k for n in the displayed
equation, to get:

2m2=(2k)2=4k2.

The coup de grace comes when you simplify this displayed equa-
tion by dividing by 2, and get m2=2k2 telling you that m2, and hence
m itself, must be even.

This is an absurdity because we know that both m and n are even,
which contradicts the initial reduction of the fraction n / m to “lowest
terms.” The only conclusion one can make is that the initial supposi-
tion that there is an equation of the form ÷2=n / m is wrong.

The second proof will give us the same kind of conclusion.
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(2) To prove: that the equation ÷2=n § m is impossible with n
and m (positive) whole numbers.

As in the first proof, we come to the same equation, 2m2=n2. But
now we argue

• that the “number of prime factors” of the number on the right-
hand side of this equation is even, for it is a perfect square,
and the number of prime factors of a perfect square is even,
while

• the number on the left-hand side of the equation is odd for it
is the product of the prime number 2 by a perfect square.

This would be a contradiction if we knew also that any number can be
written as a product of prime numbers uniquely where the only possible
variation is in the order of the prime factors. We would even get our con-
tradiction if we only knew that you cannot write a given number as a prod-
uct of an even number of prime factors, and also as a product of an odd
number of prime factors. But we have to know something along those lines.

That initial if is a big if. It is in fact true that any number can be uniquely
written as a product of prime numbers: this theorem is variously called the
unique factorization theorem, or the fundamental theorem of arithmetic. Indeed,
it is very decidedly fundamental, for much theoretical work about numbers
depends critically on its truth. This fundamental theorem of arithmetic has a
peculiar history. It is not trivial, and any of its proofs take work, and, indeed,
are interesting in themselves. But it is nowhere stated in the ancient lit-
erature. It was used, implicitly, by the early modern mathematicians, Euler
included, without anyone noticing that it actually required some verifi-
cation, until Gauss finally realized the need for stating it explicitly, and
proving it.

The relevance of proof (2) to our story is twofold. First, there is a proof
of irrationality of ÷2 in Book X, (Proposition 117) that is close in spirit to
proof (2). This Proposition 117, a probable late addition, is not included in
Heath’s translation. Second, some of the known proofs of Theaetetus’ theo-
rem follow the general lines of proof (2). Here is a modern proof.

(3) To prove (Theaetetus’ Theorem): that the equation ÷d=n /m
is impossible with n and m (positive) whole numbers if d is a
whole number not a perfect square.

As in the previous two proofs, we contemplate the putative
equation

dm2=n2,

and wish to show that it leads to a contradiction.
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Find a prime number p dividing d with the property that the expo-
nent e of the maximal power of the prime p that divides d is odd. This
means that we are looking for a prime p such that pe is a divisor of d
but pe+1 is not, and e is an odd number. So, if d were, say, 250, we
could take p to be 5, because 53 divides 250 but 54 does not; so the
(odd number) 3 is the exponent of the maximal power of the prime 5
that divides 250. It is important to us that we can, in fact, find such a
prime number (i.e., whose maximal power dividing d is odd) exactly
when d is not a perfect square.

We are now going to try to compute the exponent of the maximal
power of p that divides the right-hand side of the displayed equation,
and the exponent of the maximal power of p that divides the left-hand
side of the equation. As you might guess, the first of these is even, and
the second is odd.

We will be able to perform our computation (of the exponent of
the maximal power of p that divides each side of the displayed equa-
tion) if we knew, for example, how these “exponents of maximal pow-
ers of p dividing numbers” behave when you multiply two numbers.
It seems reasonable to hope, for example, that the following rule
applies:

The additive rule: If p is a prime number, and A and B are numbers, the
exponent of the maximal power of p that divides the product A†B is the
sum of the exponent of the maximal power of p that divides A, and the expo-
nent of the maximal power of p that divides B.

If we use this additive rule, we can compute handily:

• If n is the exponent of the largest power of p that divides n,
then (by the additive rule) 2n is the exponent of the maximal
power of p that divides n2, so the exponent of the maximal
power of p dividing the right-hand-side of our putative equa-
tion is

2n,

which, of course, is even.

• If m is the exponent of the largest power of p that divides m,
then (by the additive rule) 2m is the exponent of the maximal
power of p that divides m2, so the exponent of the maximal
power of p dividing the left-hand-side of our putative equa-
tion, i.e., dm2, is (by the additive rule, again)

2m+ e,

which is odd, because e is odd.
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To conclude our argument, we note the contradiction that we have
one and the same number—the left-hand-side and the right-hand-side
of an equation—such that the exponent of the maximal power of p
dividing it is both even and odd. The culprit here is our initial assump-
tion that we can find m and n (positive, whole) numbers forming an
equation

÷d=n / m

when d is a number that is not a perfect square. Such an equation is
therefore impossible.

The same format will give us the addendum that Theaetetus, in the dia-
logue of the same name, muttered under his breath, at the end of his
description of his theorem; namely, the cube root of a number is irrational
if the number in question is not a perfect cube. Theaetetus could continue
and prove a similar theorem for fourth roots, fifth roots, etc., if he wished
to do so, and if he developed the vocabulary to discuss higher roots.

9 THE ENGINES OF PROOFS

I wrote earlier about theorems that prove themselves; but, strictly speaking,
no theorem proves itself. Any demonstration that is interesting tends to
have some engine in it, so it can proceed. I like the mechanical analogy here:
an automobile must have lots of “stuff” to render it usable, but at its heart,
there is its engine, a prime moving part, that gets it actually rolling.

I grant that it may be something of a subjective judgment, but I think
of it often as an exercise helpful in appreciating the flavor of a specific the-
orem to decide what you think its engine is.

Sometimes the engine is pretty close to the theorem itself, as with the
Euclidean algorithm, where there are two engines, to my way of reckoning.
The first is a basic distributive law telling us that if a number, d, is a divisor
of two numbers, it is also a divisor of their sum and difference. The second
is that we are reducing a problem about two numbers to a problem about
two “smaller” numbers, and such a process must terminate after only finitely
many iterations, and we bank on this general fact.

With Euclid’s theorem on the infinitude of primes, there are also at least
two little engines at work: the concept of “remainder after division” and the
fact that any number greater than one is divisible by some prime number.

I view the additive rule as the crucial engine in the proof (3) that we have
just sketched. The additive rule, in turn, can be reconstructed from a cru-
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cial piece of information that I will refer to by the phrase when a prime divides
a product.

When a prime divides a product: If a prime p divides a product of two
numbers, A · B, then p divides A or it divides B.

This then is the basic “moving part” in the demonstration of proof (3).
Its statement is essentially3 Euclid’s Proposition 24 of Book VII. What is 
its proof?

10 WHEN A PRIME DIVIDES A PRODUCT
OF TWO NUMBERS

We teach this, in some form or other, in any beginning course in number
theory or algebra:

If a prime p divides A†B then p divides A or it divides B.

and we have our choice of various strategies for its proof. The engine behind
its most standard proof is nothing more than the Euclidean algorithm—a
tool perfectly at Euclid’s disposal. Here is a sketch of this standard strategy.

If the prime p divides A we can go home, so suppose it does not. Since
p is a prime number not dividing A, we can conclude that the greatest
common divisor, i.e., the GCD, of the numbers p and A is 1. Now
recall that by running the Euclidean algorithm backwards you can
always express the GCD of two numbers as a difference between a
multiple of one of the numbers and a multiple of the other. In this
case, then, we would be able to express 1—the GCD of p and A—as
the difference between multiples of one and multiples of the other.
Allow me, then, to do this by writing

1=s†p+r†A

where s, r are whole numbers (of which one and only one is negative).
Multiply this equation by B to get

B=spB+rAB.

Now our prime number p divides the first summand on the right,
spB, because p itself occurs as a factor in that number. The prime p
also divides the second summand rAB because, by our hypothesis, it
divides AB. Therefore it divides the sum; that is, p divides B.

For proofs (1) and (2) in section 8 above all you would need is this dis-
played theorem for the prime number p=2, which is of a lesser order of dif-
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ficulty: it is simply saying that the product of two numbers is even only if
one of those two numbers is even. This fact, which is just telling us that the
product of two odd numbers is odd, can be demonstrated by expressing the
two odd numbers as 2a-1 and 2b-1 where a and b are numbers, per-
forming the multiplication, and noting that the product is again odd, being
of the form 2(2ab-a-b)+1.

11 WHEN A PRIME DIVIDES A PRODUCT
OF TWO NUMBERS, IN EUCLID

As I have mentioned, the statement that if a prime divides a product of
two numbers, it divides (at least) one of them, is essentially Euclid’s Propo-
sition 24 of Book VII.

The engine driving Euclid’s demonstration of Proposition 24, however,
is Proposition 20 of Book VII. Our agenda then is

• first to review the statement of Proposition 20,
• then to show how it establishes Proposition 24,
• and then to focus our attention on how to establish Proposition 20.

Proposition 20 of Book VII says (my mild paraphrase):

If a / b is a fraction, i.e., a ratio of two whole numbers a and b, and if c /d is
a fraction such that

a / b=c /d,

and such that among all fractions equal to a / b the fraction c /d has the small-
est numerator c, then c divides a (and d divides b).

Accept this Proposition, and the essence of the proof in Euclid’s
Proposition 24 is easy enough to sketch:

If the prime number p divides the product AB, we write AB as a
multiple of p, getting an equation of the form

AB=mp

where m is a number. Now form the ratios:

B / m=p /A
and let r be the rational number that is their common value. By Propo-
sition 20, if c /d is the fraction equal to r where c, d are whole numbers
and c is the smallest numerator of any fraction equal to r, then c divides
all numerators of fractions equal to r. Therefore c divides p. But since
p is a prime number we have only two possibilities. Either c=1, giv-
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ing us that p divides A, which would make us happy; or else, c=p,
but since, as the displayed equation shows, B is also a numerator of a
fraction equal to r, we would then have that c=p divides B, which
would also make us happy. That is, depending upon the two possibil-
ities, c=1 or c=p, we would have that p divides A, or B, as was to
be proved.

The final item on our little agenda, then, is Proposition 20.

12 PROPOSITION 20 OF BOOK VII

Here, again, is the statement of that proposition.

Proposition 20: Let r be a (positive) rational number. The smallest numer-
ator of all fractions equal to r divides the numerator of any fraction equal
to r.

Now I don’t quite follow Euclid’s proof of this pivotal proposition, and
I worry that there may be a tinge of circularity in the brief argument given
in his text.4 It is peculiar, though, that Euclid’s commentarists, very often
quite loquacious about other issues, seem to be strangely silent about Prop-
osition 20 and its opaque proof, for it is an important piece of Euclid’s
number theory; even Heath, who is usually magnificently generous in his
comments at problematic moments in the Euclidean text, seems not to
flinch as he restates, in modern language, the step in Euclid’s demonstration
of Proposition 20 that is difficult for me to understand. A recent article,5

however, discusses the logical insufficiency of the proof of Euclid’s Propo-
sition 20; Pengelley and Richman offer an elegant way of interpreting
Euclid’s text so as to, on the one hand, patch up Euclid’s logic, and on the
other hand, explain why so few commentators seem to have discerned the
need for a patch.6

I too—with Euclid’s permission—want to offer a way of “patching
Euclid’s Proposition 20” making use of the preparatory material Proposi-
tions 5 and 6 Book VII, and guided by the assumption that we have here a
“laconic text” but not an inherently illogical one. I hope that what I will re-
count does not vastly violate the tradition of Euclid’s mathematical thinking.

To prove Proposition 20, then, let a / b be the initial fraction and c /d be
the fraction such that a / b=c /d and such that the numerator c is the small-
est numerator of any fraction equal to a / b.
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Of course, if a=c we are done, so c is strictly less than a. Find the
largest multiple of c, m†c, that is strictly less than a. Then we have that a-
m†c is less than or equal to c, for if it were strictly greater than c, then the
next multiple in line, namely (m + 1)†c, would be strictly less than a.

For example, if a were 7 and c were 3, then twice 3, which is 6, is the
largest multiple of 3 strictly less than 7; and a-m†c=7-6=1 is
indeed strictly less than c=3.

At this point we shall make use of the information in Propositions 5 and
6 of Book VII—put in modern terms they are some of the standard algebraic
rules for manipulation of fractions. To paraphrase their statements:

If we have an equality of two fractions

S § T=U § V
with S larger than U then the fraction whose numerator is the difference 
of the numerators of S § T and U § V, and whose denominator is the difference
of the denominators of S § T and U § V, is also equal to the common value of
S § T=U § V. In symbols:

S § T=(S-U) § (T-V).

Since

a § b=(m†c) § (m†d)

and a is larger than m†c we can conclude that the fraction whose nu-
merator is the difference of the numerators of a § b and (m†c) § (m†d),
and whose denominator is the difference of the denominators of a § b
and (m†c) § (m†d), is also equal to a § b. In symbols:

a § b=(a-mc) § (b-md).

But a – mc, which is now exhibited as a numerator of a fraction equal
to a § b, is also, by construction, less than or equal to c. Since c is the
smallest such numerator, we had better have a-mc=c, or, in other
words, a=(m + 1)†c, i.e., a is a multiple of c, as was to be demon-
strated.7

13 MAKING TWO PROOFS TALK TO EACH OTHER

It is time to take stock of what we have done so far:

• We contemplated the statement of Proposition 24 of Book VII if a prime
divides a product it divides one of the factors as an important engine.
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• We gave one of the standard modern proofs of this statement. This proof
makes essential use of the Euclidean algorithm, so I’ll refer to it as the
Euclidean algorithm proof.

• We reviewed the route that Euclid offers us, as a strategy for the proof of
his Proposition 24; namely via his Proposition 20.

• We gave a sketch of a correct proof of Proposition 20, culling material from
earlier in Book VII (specifically, Propositions 5 and 6), in hopes that we
have remained within the compass of Euclid’s vision of number. I’ll refer to
this proof as the “smallest numerator” proof.

Although the Euclidean algorithm is surely one of the strategies palpa-
bly available to Euclid, the very structure of his Book VII would keep Euclid
from employing the Euclidean algorithm proof. For Proposition 24 is comfort-
ably in the middle of his text, and although the text begins straightaway
with a formulation of the Euclidean algorithm (Props. 1, 2), information crit-
ical for the use of this algorithm is kept to the very end (Proposition 34).

As a result, we now have two quite different demonstrations of the state-
ment if a prime divides a product it divides one of the factors; namely, via the
Euclidean algorithm, and via the proposition regarding the smallest numer-
ator, as we described above.

Whenever we have two proofs of the same thing, we have three ques-
tions in front of us:

• Are they “really” different proofs?
• Do they “really” prove the same thing?
• Is there a way of synthesizing them, forming something larger, more clar-

ifying than either of them?

A preliminary chore sometimes needs to be done, to be able to compare
the two proofs at all. Sometimes we must rephrase one, or both of them, in
slightly different language, so that they are capable of “speaking to each
other.” This is necessary here, so let me refashion, and sharpen, the state-
ment of the smallest numerator proof ever so slightly, to prepare it for its
encounter with the Euclidean algorithm proof.

The Smallest Numerator Proposition, recast. If a positive rational
number r is expressed as a fraction in two ways r=A § B=C § D then it can
also be expressed as a fraction r=E § F where the numerator E is the great-
est common divisor of the numerators A and C .

The reason why the recast proposition implies the fact that the smallest
numerator divides all numerators of fractions equal to a given rational num-
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ber is that (using the notation we have at our disposal) the greatest common
divisor E divides A and C; now if C were the smallest numerator, it would be
necessarily the case that C=E, and therefore C divides A, and A could have
been taken to be any numerator of a fraction equal to r. This latter statement
is just our old version of the “smallest numerator proposition.”

The recast version of the smallest numerator proposition has a more
concrete aspect than the original formulation, and no wonder: it has en-
gaged as a resource the mighty Euclidean algorithm, thereby moving a step
closer to the Euclidean algorithm proof. If we were to follow this further, we
would find our two proofs merging into one unified understanding of when
a prime divides a product. But, of course, we would not, even then, be done.

14 TURNING THINGS AROUND

Sometimes, when we have defined a concept P and then have proven,
by a proposition, that P is equivalent to Q—that Q characterizes P—we find
that we have a remarkable option open to us. We can turn the tables on the
definition and the proposition by “starting over again,” so to speak, and
redefining that same concept as Q, and then regarding the proposition as
affirming that Q is indeed equivalent to P.

We see shades of this turn-around strategy in other disciplines: we wish
to define the almost ungraspable notion of intelligence, for example, and we
have a sense that, whatever it is, it is—if not equivalent to—at least some-
how related to performance on a certain curious test. We then, it seems, for-
mulate a definition in terms of performance on that test, refashioning the
name of what we’re after as Intelligence Quotient. We don’t do this capri-
ciously, of course: we are not, after all, hellbent on confusing ourselves. 
We would not, I imagine, do such a strange thing—put the responsibility
of earmarking such an extraordinary concept as intelligence onto the shoul-
ders of a single number—if we had a more straightforward definition—or
measure—of intelligence. Perhaps we shouldn’t do this, with any confi-
dence, in any case.

The “turn-around tactic” in mathematics has quite a different flavor.
There, we assume that we have a perfectly clear definition of the concept P
to begin with. We only turn around and redefine the same concept as Q if
doing so sheds light—a new light—on the concept that is already grasped.
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One of the most striking “turn-arounds” in modern mathematics is in the
very definition of prime number. The property satisfied by primes, for which
we have given two proofs, namely when a prime divides a product it divides one
of the factors is a characterization of prime numbers: A prime number p has
this property, as we have seen. A composite number N does not have this
property (factor N as N=A†B with both A and B less than N, and here we
have a case where N divides, and in fact is equal to, a product, but doesn’t
divide either factor).

Not only is this property a characterization of prime number, but it
reflects a fundamental feature of prime numbers; in fact, such an important
characterizing feature of primality that there is much to be gained in our
understanding if we simply turn the tables on the the way we introduce
primes into our discussion, and make the following new

Turn-Around Definition: A prime number is a number that has the
property that whenever it divides a product of two numbers, it divides one
(or both) of the numbers.

What we have done in the preceding sections, from this vantage, is,
effectively, to have shown two proofs of the fact that this table-turned defi-
nition of prime number coincides with our usual definition.

This new definition, expressed in the language of the modern notion of
ideals, is the gateway to the modern conception of algebra, and the pro-
found link between geometry and algebra. But that is another story, and
will only deepen our appreciation of when a prime divides a product as the
somewhat laconically addressed glorious center of Euclid’s Book VII, and as
a possible engine to Theaetetus’ demonstration of his theorem.

15 READING EUCLID

In a prior section we forced one aspect of Euclid—his algorithm that
frames Book VII like a pair of book-ends—to talk with another aspect of
Euclid—the somewhat terse middle of Book VII. It seemed to me that this
glorious text deserves to have such a face-to-face internal encounter. Of
course, all reading is a more external encounter between at least two sub-
jects, reader and writer, as aided by a speechless and speechful messenger,
namely the material book. Most of the time, when we refer to our reading,
we may quote the author at length, discuss chapters, sections, and page
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numbers, but we rarely refer to the physical presence of the book itself, ever
in front of us as we contemplate its contents.

In my case, I have a copy of Sir Thomas Heath’s three-volume paper-
back series that translates and comments on the thirteen books of Euclid’s
Elements, published by Dover in 1956, but now lacking some of its front
covers. This set was originally used as a school text by my young sister-in-
law Ali, Alexandra Dane Dor-Ner, when she studied Euclid at St. John’s Col-
lege in Santa Fe in the mid-1960s, and the books were passed to me when
she died some fifteen years ago. My copy of Book VII is especially invigor-
ated by Ali’s marginal notes, recording her extraordinarily vivid encounter
with Euclid. I’m intrigued to see that it is around Propositions 5 and 6 that
Ali’s pencil notes have reached a crescendo. So, when I read, the three of us
are in “the room” together: Euclid, Ali, me. Her questioning of Euclid has
its intense moments, and when this happens, I find that I can sit back and
imagine Euclid—distracted from gazing upon beauty bare—responding.

“Unproved”—Ali writes at one point, and on reading this I’m taken, at
the same time, with a sense of pride for my (then teen-age) relative, and a
sense of admiration for the accomplishment of Euclid, who had instilled
such a high level of scrutinizing question-asking and question-answering
that halfway through his thirteen books, a reader will have learned this inti-
mately so as to demand it, vigorously, of Euclid himself.

Eva Brann, in her essay “The Second Power of Questions,” talks of the
different kinds of questions, problems, dilemmas and mysteries. The lesser cat-
egories of problems, dilemmas and mysteries, Eva says, “belong to a type of
question that calls for the answer to do away with the question.” Eva pin-
points the distinction between mysteries and problems by quoting a fourth-
grader who, in Thinking: The Journal of Philosophy for Children, says: “ If I
were to find myself on the moon, it’d be a mystery how I got there but it’d
be a problem how to get back.”

The title question of this article, for example, lives somewhere in these
lesser categories. But there exist also the “true” questions, about which Eva
writes:

These are never resolved nor do they lapse, but they collect about them-
selves an ever-live complex of reflective results.

Euclid’s inquiry about numbers deftly points us to some of the most
abiding questions in mathematics:

• Euclid has convinced us of the important role that prime numbers and the
notion of relative primality play in our understanding of arithmetic, and yet
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we are still only at the beginning of our understanding of the laws govern-
ing prime numbers, and even more specifically, governing the placement
of prime numbers among all natural numbers.

• Euclid has introduced us to “his” algorithm, and now—especially with the
advent of electronic computing—algorithmic thinking is ubiquitous in our
theoretical and our practical studies.

• Euclid has inspired us to organize our sciences as discursive, rational, struc-
tures—with articulated definitions, axioms, and propositions, so that when we
come to our conclusions we can truly hold them “beyond a shadow of a
doubt.”

These are examples of the “true” questions that Eva is celebrating: ques-
tions that provide nourishment for long conversations, inviting anyone to
enter, to think afresh, to converse.

NOTES

1 Robert Kaplan.

2 Section 10, page 73 in “The Commentary of Pappus on Book X of Euclid’s Ele-
ments,” Arabic text and translation by William Thomson, Harvard University
Press, Cambridge Mass, 1930.

3 Euclid phrases this slightly differently, but the essence of the statement hasn’t
been significantly modified by our recasting of it. He formulates the property
as saying that if a number is relatively prime to A and divides A†B then it
divides B.

4 This problematic Proposition 20 of Book VII is cited, for example, in the proofs
of Propositions 20, 21 of Book VIII, these being cited, respectively, in the proofs
of Propositions 22, 23 of Book VIII, which, in turn are cited in the proofs of
Propositions 24, and 25 of Book VIII. These latter propositions are a formula-
tion of Theaetetus’s Result.

5 David Pengelley and Fred Richman, “Did Euclid Need the Euclidean Algorithm
to Prove Unique Factorization?” American Mathematical Monthly 113 (March
2006): 196–205.

6 Pengelley and Richman formulate two concepts; the first they call Eudoxian
proportionality, which is the elementary proposition that says that a:b=c:d
if and only if ad=bc; the second they call Pythagorean proportionality, which 
is the significantly deeper statement about whole numbers that says that
a:b=c:d if and only if there are whole numbers x, y, m, and n such that

a=mx, b=nx, c=my, d=ny.

It is this deeper statement that contains the essence of Proposition 20. Their
argument is that ellipsis in Euclid’s text leads us to misread a reference to

–249–

Barry Mazur

BrannFest-Pass1.qxd  5/7/07  8:22 PM  Page 249



Pythagorean proportionality as a reference to the more elementary statement.
The bibliography of Pengelley and Richman’s paper contains references to much
of the modern commentary on these issues, and the text of their article contains
some interesting reflections on this commentary. I am thankful to them and to
David Mumford for conversations regarding issues in this article.

7 I am thankful to Mark Schiefsky, from whom I learned that Wilbur Knorr, in
his The Evolution of the Euclidean Elements, D. Reidel, Dordrecht, Holland, 1975
(pp. 225–233), proposes that Theaetetus’ Theorem might have been proved in
antiquity via Euclid’s Proposition 27 Book VII. This indeed is plausible, since
Proposition 27 asserts that for a and b whole numbers, their squares, a2 and b2,
are relatively prime if and only if a and b are relatively prime, from which
Theaetetus’ Theorem follows directly. The proof of Proposition 27 in Euclid’s
text, however, threads its way through Propositions 24 and 20, and therefore
leads us to the same problematic Proposition 20.
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