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Galois Deformations and Hecke Curves

B. Mazur

Following Andrew Wiles' announcement of his work, in
June 1993, and in view of the immense interest it met
with, I felt it reasonable to give a two semester graduate

course 1 covering topics that might be helpful to people

who want to understand, and possibly pursue, the
~ . / subject.

In the Fall semester I covered the basic deformation

theory of Galois representations (in detail) and Fontaine's

theory (very briefly), all the material covered having

been already available in published papers.

The Spring semester was entirely devoted to a study

the methods of Flach's article2 in some depth, these
methods following on the work of Kolyvagin.

The pages below comprise a (still very rough) draft
of a compilation of course notes for the Spring semester.

I would like to extend these notes in future drafts,

writing the unwritten sections, completing the unfinished

sections3, and adding a good deal more material

(including a certain amount of numerical data).

Nevertheless, incomplete as these notes are at present,

I'm distributing them in the hope that they may be
useful. Please let me know if you spot any errors, regret

any omissions, or want any clarifications to be included

in later drafts. I am thankful to Henri Darmon and

1 Math 257z in the Fall and Math 257y in the Spring, at Harvard, 1993

2 Flach,M.: A finiteness theorem fo. the symmetric square of an elliptic

curve, Inv. Math. 109 (1992) 307-327.
3 e.g., proofs for Lemmas 1 and 2 of §6 of Chapter 8 have not yet been

written...
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Alexander Beilinson for extensive comments on my first
draft.

The first part of these notes is an "axiomatic" preview of
the type of structures dealt with in Flach's article. The
basic structure we call a "Flach System" and a stricter
version of this type of structure we refer to as a
"Cohesive Flach System". The mere existence of a
"Cohesive Flach System" has rather extraordinary
consequences which are examined in Part I.

In the second part of the course we study Flach's
construction in some detail, and show that it does
produce "Cohesive Flach Systems". We focus, in Chapter
9, on the context of modular curves and explicitly
extract some of the direct consequences of the existence
of Cohesive Flach Systems for the Galois representations
attached to modular forms.

In the third part of the course we return to "axiomatics".
We observe that Flach's construction yields something
still stronger than a "Cohesive Flach System". We try to
capture more fully the precise structure that his
construction yields, by formulating a notion which we
call a "Bilateral Flach Derivation".

Table of Contents

Part I: Axiomatics

Chapter one: Local Preliminaries

§ i. Conventions.

§2. Finite fields.

§3. Local fields.

§4. Tate Local Duality.

§5. The "finite part" of i-dimensional cohomology.

§ 6. Passage to the limit.

§7. Suppose ~ ~ p and M is allowed to be ramified.
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§8. Some notation, and the category :JTl(W).

§9. Clean ramification.

§10. Formal pedantries.
§11. The case ~ = p (minimalist version).

Chapter two: Global Preliminaries

§ 1. Global cohomology. \

§ 2. Basic exact sequences.

§3. Recalling Global Class Field Theory, and Global Tate Duality.

§4. A lifting problem.

§5. The Bockstein pairing.

§6. Definition of H1(X -S,M) "in general".

Chapter three: The Symmetric Square of a rank two

Galois representation

§ 1. Our basic set-up for this Chapter.

§ 2. Principal polarizations.

§3. The symmetric square of H.

§4. The singular depth at primes of type L.

§5. Systems of Flach type.

§ 6. Annihilation of cohomology.

§7. Left nondegeneracy in the Bockstein pairing.

§8. Gorenstein rings and congruence elements (minimalist

version).

§ 9. Cohesive Flach Systems.

Chapter four: The deformation theory of rank two Galois

representations

§ 1. Our basic set-up for this Chapter.

§2. The deformation theory for p.
§3. The deformation-theoretic interpretation of the cohomology

0
of End A (H)@ Qp.

7Lp
§4. Beginning the proof of Theorem 2.

*§5. The case ~=p.

Chapter five. Deformation-theoretic implications of the
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existence of Flach Systems, and of Cohesive Flach Systems

§ 1. Our basic set-up for this Chapter.

§2. Consequences of the existence of a Flach System.

§ 3. Preliminary consequences of the existence of a Cohesive

Flach System.
* §4. Evolutions.

§ 5. Criteria for universality.

Appendices.

A. Schur's lemma for complete local noetherian rings

*B. When is Sym2 p absolutely irreducible?

*C. When does the "6-vanishing hypothesis" hold?
* D. When is R -- A surjective?

Part II : Constructions

Chapter six: Cohornological Preliminaries

§1. Cohomological purity and its immediate consequences.

§2. The fundamental class.

§3. "Extension obstructions" for the three-dimensional

cohomology of smooth surfaces.

§4. Three-dimensional cohomology of proper smooth surfaces

over fields.

§5. Smooth curves in surfaces.

§6. Properties of cr(f;Z/U).

§7. Calculating the extension obstruction.

§8. Measuring ramification.
§ 9. Commentary about the resolutions of Gersten, and of Bloch-

Ogus.

Chapter seven: Correspondences

§1. "Marked curves" and "marked correspondences".
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§2. Composition of correspondences

§3. The Liebniz property.

§4. Galois cohomology classes coming from correspondences.

§5. Bilateral derivations: first visit.

§ 6. Self-correspondences.

§7. Divisibility of 1> by T).

Chapter eight: Hecke axiomatics

§ 1. Hecke Curves.

§2. Admissible w-markings on Hecke curves.

§3. The Hecke rings. ~

§4. The Flach Classes.

§5. Cohesive Flach Systems attached to Hecke curves.

)( § 6. "Finiteness" of the Flach classes.

Chapter nine: Modular curves.

§1. A quick review of the basic geometry of modular curves of

square-free level.

§2. The j's and w's acting on the set of cusps.

§3. Modular units.

Appendix.

M A. Tables of numerical examples

Part III: Bilateral axiomatics

Chapter ten: Bilateral algebra

§1. Bilateral derivations.

§ 2. "Counter-algebras" and congruence ideals:

§ 3. Annihilating ideals.

§4. The module of bilateral differentials.

§5. The projection to "plain old" differentials.

§6. The canonical homomorphism E.
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Chapter eleven: Bilateral Flach Derivations

§1. The basic set-up for this Chapter.

§2. The A@Z A-module H@Z H and its cohomology.
p p

§3. (Bilateral) Flach Derivations connected to Galois

represen ta tions.

}( §4. Are the Bilateral Flach Derivations that we have

constructed

"canonical" ?

§5. The bilateral derivation of A associated to a

Bilateral Flach Derivation.

}( Glossary of notation

}( References

Note: }( means "not written, or not completely written".

)
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Part I: Axiomatics

Chapter one: Local preliminaries

A general reference: [Milne] Milne, J.S.:
Aritruretic D.lalitv TheoreTlS AcadEmic Press 1986. W.
1-45.

§1. Conventions. All our rings will be assumed to have
identity elements. If M is a module over a commutative
ring A, and I c A is an ideal, the notation M[I] will mean
the "kernel of I in M", that is,

M[I] = n ker { 15':M ~ M }.

15'EI

If A is a J\-algebra, if M is an A-module and B a J\-
module, the J\-module HomJ\ (M,B) is given a natural A-

module structure compatible with its J\-module structure
by the rule: a.tp(m) = tp(a'm) for a E A, tp E HomJ\ (M,B),

and m E M.

Pairings: If J\ is a commutative ring, B a J\-module,
and M, N are two modules over a J\-algebra A, and if we

are given a J\-bilinear pairing

(,): MxN~ B

we will say that A is self-dual (or synonymously:

Hermitian 1) with respect to the pairing if we have

7
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(aom,n) = (m,aon) for all aEA, mEM, nEN. If so, then the
pairing factors through a homomorphism of f\-modules

M (8)A N -+ B,

which we may also refer to as. "the pairing" ( , ). The
action of A is Hermitian if and only if the mappings
N-+Homf\(M,B) and M-+Homf\(N,B) induced from the

pairing are homomorphisms of A-modules. We say that
the pairing is perfect if these mappings are

isomorphisms.

Given pairings

( , ) j : M j x N j -+ Q III

of finite A-modules indexed by j in IN (or more
generally, in a directed set of indices) with
homomorphisms of A-modules <p:M j-+ M j+1 and

) l!J:N j+1-+ N j for j in IN we will say that the pairings ( , ) j ,

jEIN, are compatible if for all j and mEMj, nENj+1 we

have
(m, l!Jn) j = «pm,n) j+1.

In such a case, the pairings ( ,) j for j E IN "compile" in an

evident way to provide a bilinear pairing,

( , ): limo indo ( M j) x limo proj. (N j) -+ QllL

jEIN jEIN

with respect to which the action of A is Hermitian if it is
so for all of the pairings ( , ) j. If the ( ,,) j are perfect

1 anticipating the moment, which will not in fact come in these notes,

when we have rings A with an anti-involution a~a* and pairings which
are Hermitian in the standard sense, i.e., (aom,n) = (m,a * on); in these notes

our rings A are commutative and our anti-involution a ~ a* is the identity.
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pairings in the sense of Pontr jagin duality, then the
compiled pairing ( , ) is also a perfect pairing in the
category of topological abelian groups if the inductive
limit of the M j'S and the projective limit of the N j'S are

given their natural topologies; in particular, lim.ind. ( M j)

is discrete, and lim.proj. (N j) is profinite.

Group cohomology: Let G be a profinite group, and M a
torsion G-module, the action of G on M being continuous.

Then Hl(G,M) will stand for i-dimensional group
cohomology computed via continuous cocycles where M is
given the discrete topology; equivalently it is the
inductive limit of the i-dimensional cohomology over the
inductive system of finite sub modules of M.

§2. Finite fields. Let k be a finite field of characteristic
Q, with q :; Qf elements. Let Gk be its Galois group, so: Gk

A

:; Gal(k/k) == lL with [<p: x~ xq] E Gk identified with 1 E
A

lL. Let M be a torsion Gk-module. Then:

Hl(Gk,M) :; 0 for i ~ 1,2

HO(Gk,M) :; MGk :; M[1-<p]

H1(Gk M) :; M :; M/(1-(n)M, Gk 't"

wi th the correspondence between 1-cocycles representing

classes in H1(Gk,M) and elements of M/(1-<p)M being

given by

[c:Gk ~ M] ~ c«p) mod (1-<p)M.

If M has trivial Gk-action, we have the canonical

identifications HO(Gk,M):; H1(Gk,M):; M, and taking M:;

(Q/lL with trivial Gk-action, let us record the canonical

9
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iden tif ica tion

H1(Gk,(Q/lL) = (Q/lL.

Now let M be finite, and denote its Pontr Jagin dual

M A:= Horn (M,(Q/lL).

A
The perfect pairing M x M ~ (Q/lL induces perfect

paIrIngs

MGk x (M A) ~ (Q/lL and M x (M A )Gk~ (Q/lL,

Gk Gk

and these are simply the pairings induced by cup-product
on the cohomology groups

(1) Hi(Gk,M) x H1-i(Gk,M A) ~ H1(Gk,(Q/lL) = /Q/lL,

for i = 0, 1 respectively. So (1) is a perfect duality for all i
E lL.

§3. Local fields. Let K be a finite extension of /Q~ with

residue field k. We have the basic facts of life of such K's:

val

0 ~ crK* ~ K* ~ lL ~ 0

.= 1 1 1

ab0 ~ CU ~ GK ~ Gk ~ 0

T T T =

0 ~ IK ~ GK ~ Gk ~ 0

10
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where the downward arrows are given by local class field

theory, the two unlabelled ones being injections which
induce isomorphisms from the profinite completion of

their respective domains to their respective ranges, and
the right-most one inducing the isomorphism ~ == Gk
described previously (1 ~ ~).

§4. Tate Local Duality. Let ~ denote the torsion
subgroup of all roots of unity in K. By Local Class Field

Theory we have the canonical identification H2(GK' ~) ==

(Q/7L. Define the "Cartier" dual of a torsion GK-module M

to be M*:= Hom7L(M,~) with GK-action given in the

natural way, namely: if f E Hom7L(M,~) and g E GK' then

(gof)(gom) = go(f(m)). Now suppose that M is finite. Cup-

product induces a pairing,

(2) Hi(GK,M) xH2-i(GK,M*) -+ H2(GK'~) = Q/7L,

and by "Tate Local Duality" let us mean the assertion that

the groups Hl(GK,M) are finite, and that (2) is a perfect

pairing for all i E 7L (cf. [Milne] Chapter I, Cor. 2.3 for a

slightly more general formulation). It follows that

Hl(GK,M) vanishes if i ~ 0,1,2, and we have the following

information about these intermediate dimensions:

HO(GK,M) = MGK, H2(GK,M) " == (M*)GK =HomGK(M,~),

and there is a perfect pairing,

(3) H1(GK,M) x H1(GK,M*) -+ H2(GK'~) = Q/7L.

Example. Let M = 7L/N7L with trivial GK-action. Then:

11
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H1(GK,M) = Hom (GK' lL/NlL) .= Hom(K*, lL/NlL),

where the isomorphsim is given by local Class Field
Theory, and

H1(GK,M*) = H1(GK'~N) .= K*/K*N,

where the isomorphism is given by Kummer Theory.

In this situation, (3) is a perfect pairing

(4) Hom(K*,lL/NlL) x K*/K*N -+ Q/lL,

and we should make our sign conventions so that (4)
comes out to be the natural pairing, not the negative of it.

§5. The "finite part" of 1-dimensional cohomology.

Keep M a finite GK-module. The Hochschild-Serre

Spectral Sequence (cf. [Milne] Ch. I, 0.7 ) for the normal
subgroup I K c GK reads:

HP(Gk(Hq(IK,M)) ~ HP+q(GK,M)

and gives an exact sequence

(5) 0 -+ H1(Gk' MIK) -+ H1(GK,M) -+ H1(IK,M)Gk -+ 0,

the zero on the right because H2(Gk' MIK) vanishes.

Suppose M is unramified. By this we mean that IK

acts trivially on M and therefore M may be viewed, in a
natural way, as a Gk-module. Then (5) reads:

12
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(6) 0 -+ H1(Gk' M) -+ H1(GK,M) -+ HomGk «IK)ab,M) -+ O.

Suppose M is unramified, and of cardinality a
power of a prime number p ~ ~. Then two further

things happen. First, M* is also unramified. Second, any
homomorphism (IK)ab -+ M factors through the p-

primary component of the tame inertia group, i.e.,

HomGk«IK)ab,M) = HomGk(7Lp(1),M) = M(-1)Gk ,

so we may evaluate the exact sequence (6) for M and M*
as follows:

(7) 0 -+ H1(Gk, M) -+ H1(GK,M) -+ M( -1)Gk -+ 0

(8) 0 -+ H1(Gk' M*) -+ H1(GK,M*) -+ (M A )Gk -+ 0,

where we have used the identification of M* (-1) with M ".

Proposition 1: Tate Local Duality "respects" the exact

sequences (7) and (8) in that H1(Gk' M) and H1(Gk' M*)

are orthogonal complements with respect to the Tate
paIrIng,

H1(GK,M) x H1(GK,M*) -+ (Q/7L

and the induced pairing

(9) H1(Gk' M) x (M" )Gk -+ (Q/7L

is the perfect pairing coming from Pontr Jagin duality.

Note: The phrase "coming from Pontr Jagin duality" in
the statement of the Proposition is ambiguous perhaps, in

13
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that there are two ways to think of (9) as coming "from
Pontr Jagin duality: Identifying (M A )Gk with HO(Gk' M A)

we may pass from the left-hand side of (9) via cup-

product to H1(Gk' QIlL) = Hom(Gk, QIlL), and this latter

group we identify with QllL by associating to a
homomorphism h EHom(Gk' cr:)/1L) the image of the

Frobenius element in Gk under h. Alternatively, we may

view the left factor, H1(Gk' M), of (9) as isomorphic to the

module, MGk' of co-invariants of the action of Gk on M,

via the identification of a class h in H1(Gk' M) with the

image in MGk of the Frobenius element in Gk under a 1-

cocycle representing h. The pairing (9) then becomes a

pairIng,

MGk x (M A )Gk ~ cr:)11L

which is obtained directly from the Pontr Jagin duality

pairing

M x M A ~ cr:)/lL,

by restricting to (M A )Gk on the right, and passing to the

quotient MGk on the left. These two descriptions of the

pairing (9) are the same.

Proof of Proposition 1: See [Milne] Chapter I, Thm. 2.6.

Briefly, the argument is as follows: that H1(Gk' M) and

H1(Gk' M*) are orthogonal can be seen by noting that the

Tate pairing restricted to H1(Gk' M) xH1(Gk' M*) factors

through the cup-product mapping to H2(Gk' ~) which

vanishes. To finish, one must identify the induced pairing

14
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(9). But if one is content not to actually identify (9) as the
Pontr jagin pairing, but merely to see that it is a perfect
pairing, this is easy: it follows from a simple argument
using only that the Tate pairing is perfect, and the two

groups H1(Gk' M) and (M" )Gk have the same (finite)

order.
0

Let us call the subgroup H1(Gk' M) c H1(GK' M) the

finite part of the cohomology, and the quotient group

H1(GK,M) -+ M(-l)Gk the singular "part". So, a

necessary and sufficient condition for a class in H1(GK' M)

to lie in the "finite part" is for it to project to zero in the
singular part, and if it does so, then a necessary and
sufficient condition for it to vanish is for it to "cup"
trivially with every element in the singular part of

1 *
H (GK, M ).

§6. Passage to the limit. For a moment, let G be any

profinite group and M* any (continuous) G-module whose
underlying abelian group is a free lLp-modules of finite

rank. The cohomology of M* is then defined as the
projective limit of cohomology,

Hi (G, M*) = proj. limo Hi(G , M*/p1JM*)

1J-+00

viewed as lLp-module. If M is a GK-module whose

underlying abelian group is a p-divisible group of finite

corank, then M* is as above, and we have cohomology of

both M and M* defined. The entire discussion above goes i

through for the cohomology groups of M and M *.
Specifically, the exact sequences and dualities listed in (1)
-(3) and (5), (6) all hold.

15

Lc""""'j_~



Suppose M is unramified, and of cardinality a power of
p ~ ~ Then (7)- (9) also hold. In particular, revisiting (7)
and (8) in this new context, we have that the singular

part of H1(GK,M*), i.e.: (M" )Gk, is a free 7Lp-module of

finite rank (since it is a submodule of such) and the

finite part of H1(GK,M), i.e.: H1(Gk,M), is p-divisible.

§ 7. Suppose ~ ~ p and M is allowed to be ramified.

If IK,~ C IK is the (unique) pro-~-Sylow subgroup of IK'

then the quotient group IK/IK,~, called the tame

quotient of IK' is abelian, of (pro-) order prime to ~, and

there is a canonical isomorphism

8: IK/IK,~ -+ TT 7Lr(1)

r ~ ~

where the product on the right is taken over all prime
numbers r ~ ~, and where 7Lr(1) = Tate (~ 00)' the Tate

r
module of ~ 00' There are natural actions of Gk on

r
domain and range, , the action on the tame quotient

being induced from the action of Gk on IKab via

conjugation by liftings of elements of Gk to GK' and the

isomorphism 8 is Gk-equivariant. For a concise description

of this structure theory for tame inertia, see pp. 262-265
of Serre's Proprietes galoisiennes des points d'ordre fini
des courbes elliptiques, Inv. Math 15 (1972) 259-331.

Projecting IK to the factor 7Lp(1) of the tame quotient, we

get an exact sequence of profinite groups with GK-actions,

(10) 0 -+ rK -+ IK -+7Lp(1) -+ 0

16 r-
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where rK is the kernel of the projection IK ~ lLp(1).

From now on, M will be a p-torsion GK-module such that

M[p] is finite.

Suppose that rK acts trivially on M. Then M, M*,
and M A have lLp(1)-actions induced from their IK-

module structures. Since rK is a projective limit of finite

groups prime to p, the exact sequence (10) gives us a
degenerating Hochschild-Serre Spectral Sequence for the

calculation of group cohomology of M. Thus HI (IK' M) =

Hi(lLp(1), M) for all i, so Hi (IK, M) vanishes for i ~ 1,2,

and we have canonical isomorphisms:

HO (IK' M) == MIK = MlLp(1) and

H1 (IK, M*) == H1(lLp(1), M*).

This latter group is canonically isomorphic to the module

of lLp(1)-co-invariants of HomlL (lLp(1),M*) = M*(-1)= MA,

p

I.e.,
(11) H1 (IK' M*) == (M A)lL (1) = (M A )/('6-1)(M A),

P

where ~ is any choice of topological generator of lLp(1),

and this isomorphism is "equivariant" for the natural
action of Gk on each side.

Let us return to (5), written for both M and M*,

(12) 0 ~ H1(Gk' MIK) ~ H1(GK,M) ~ H1(IK,M)Gk ~ 0

17
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(13) ° -+ H1(Gk' M*IK) -+H1(GK,M*) -+H1(IK,M*)~k -+ 0.

Note that we have a natural Pontr jagin duality pairing,

IK "M x (M )IK -+ (Q/lL,

from which the isomorphism of (11) gives the perfect
paIrIng

MIK x H1 (IK, M*) -+ (Q/lL,

which, in turn, induces a perfect pairing:

(14) H1(Gk' MIK) x HO(Gk, H1 (IK, M*)) -+ (Q/lL.

The "same" proof of Proposition 1 in § 5 above gives:

Proposition 2: Tate Local Duality "respects" (12) and

(13) in that H1(Gk, MIK) and H1(Gk' M* IK) are

orthogonal complements with respect to the Tate pairing,

H1(GK,M) x H1(GK,M*) -+ (Q/lL

and Tate Duality induces the pairing (14) on the
respective subgroup and quotient group.

Proof: This follows precisely the pattern of the proof of

Proposition 1: one checks that the two groups H1(Gk' MIK)

and H1(Gk, M* IK) are orthogonal because the Tate pairing,

. IK IKrestrIcted to H1(Gk, M ) x H1(Gk' M* ) factors through

the cup-product mapping to H2(Gk'~) which vanishes,

and then a counting argument will give that they are
orthogonal complements, while a more detailed

18
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calculation identifies the pairing (14).

Exercise and comment: Correctly worded, essentially
the same Proposition and its proof work in complete
generality... i.e., not assuming that rK act trivially. As an

exercise, work this out. But note that the hypothesis that
"rK acts trivially" is satisfied, for example, by the semi-

stable Galois representations (we discussed last term) of
GK into GLN(A) where A is a complete noetherian local

ring with finite residue field of characteristic p.

Terminology: We import, in this context, the same
terminology as in the unramified case, i.e., the subgroup

H1(Gk' MIK) of H1(GK,M) will be called the finite part of

H1(GK,M) and the quotient group H1(IK,M)Gk will be called

the singular part, and similarly for M*.

§8. Some notation, and the category 'In(W). The
letter A will stand for a complete local commutative finite
faithfully flat 7Lp-algebra. For the definitions below we let

~~p, or ~=p. Let W* be a free A-module of finite rank,
with an A-linear continuous GK-action. So W, the

Cartier dual to W *, is naturally endowed with the
structure of p-divisible A[GK]-module of finite corank.

Define the category m(W), a subcategory of the category
of A[GK]-modules, as follows. The objects M of m(W) are

the A[GK]-submodules of W. The set of morphisms

Homm(W)(M1 ,M2 ) C Hom A[GK](M1 ,M2 )) are those

morphisms of A[GK]-submodules obtainable by

multiplication by elements a of A in W:

M1-+ M2

1 1
W -+W.

19

, t



a

We want to specify the notion of short exact sequence
in IJTl(W) in the following rather restricted way: A ("short")
sequence in IJTl(W) is exact if and only if it is isomorphic to
a sequence of the form

1., cx
(*) 0 -') W[CX] -') W[CX'~] -') W[~] -') 0

where cx,~ E A, cx is a unit in A<8)7L (fJp, and 1., is the
p

natural inclusion. These are short exact sequences in the
category of A[GK]-modules because W is p-divisible. We

will say that a morphism in IJTl(W) is injective or
surjective if it is isomorphic to a morphism labelled 1., or
cx respectively in some short exact sequence (*).

Define the category IJTl(W*), which we will call the
"Cartier dual category" to IJTl(W) to be formally just the
opposite category to IJTl(W). If M is an object of IJTl(W)

then its corresponding object in IJTl(W*) we will denote

M*. Of course, we can also think of IJTl(W*) as a category

whose objects are quotient A[GK]-modules of W *, where

M* is indeed the Cartier dual of M, and its exact
sequences are the Cartier duals of (*).

§9. Clean ramification. Let Wand IJTl(W) be as in §8,
and suppose that ~ +'p and that rK acts trivially on W.

Lemma: The following are equivalent conditions:

1) WIK is p-divisible.

2) The functor M ~ MIK is "exact" on the category
IJTl(W).

20
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3) Hl(I K' W '*) is free as a 7Lp-module.

Proof: 1) ~ 3) because WIK and Hl(IK'W'*) are dual;

while 2) applied to the exact sequences

pn
0 -+ W[pn] -+ W -+ W -+ 0

for arbitrary n, yields 1). To see that 1) implies 2)
consider the commutative diagram of exact sequences of
A[GK]-modules below,

<X
0 -+ W[<x] -+ W[<x.~] -+ W[~] -+ 0

= 1 1 1
<X

0 -+ W[<x] -+ W -+ W -+ 0,

and note that if w E W[~] then the full inverse image,

Wwc W of the element w under multiplication by <X is

contained in W[<x~~]. By 1) if w is IK-invariant, there is

an IK-invariant element in Ww' and hence there is one in

W[<x. ~], i.e., W[<x. ~]I K -+ W[~]I K is surjective, giving 2).

Definition: If the equivalent properties of the lemma
above hold, say that W is cleanly ramified.

§ 10. Formal pedantries. As a formal summary of
what we have done so far, let us say that we have a
finite/singular structure on 1-dimensional Galois
cohomology over K for m(W) if to each object M of m(W)

we are given an A-submodule, call it Hfl(GK,M) in

Hl(GK,M) and refer to it as the "finite part" in Hl(GK,M),

this data being functorial on m(W) and satisfying these
two further properties.
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1) Hf1(GK' W) is p-divisible.

2) If M1 ~M2 is injective in 'JTl(W), then the following

diagram is Cartesian:

Hf1(GK,Ml) ~ Hfl(GK,M2)

1 1

H1(GK,M1) ~ Hl(GK,M2).

To give such a structure, it suffices to stipulate Hf1(GK'W):

Lemma: Given any p-divisible A-submodule

Xc Hl(GK' W) there is a unique finite/singular structure on

'JTl(W) with Hf1(GK' W) = X.

Proof: For M c W any sub A[G(Q~]-module, define

Hfl(GK,M) to be the sub-module of Hl(GK,M) making

Hf1(GK,M) ~ Hl(GK,M)

1 1
X ~ Hl(GK' W)

Cartesian. Axiom 1 is immediate, and Axiom 2 is directly
verifiable.

0

Example: The most "stringent" finite/singular structure
on 'JTl(W) is given by stipulating Hfl(GK' W) = O. For the

finite/singular structure determined by this stipulation
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one has Hf1(GK,W[a]) = HO(GK,W)/aoHO(GK'W) for any a
I

in A. The "loosest" finite/singular structure is given by

stipulating that Hf1(GK' W) be the subgroup of divisible

elements in H1(GK' W).

Now let a finite/singular structure M ~ Hf1(GK,M) on 1-

dimensional Galois cohomology over K for m (W) be given.
For this finite/singular structure, and for any M in m(W),

we define the singular quotient Hs1(GK,M) to be the

quotient of H1(GK,M) by Hf1(GK,M) so that we have a

functorial exact sequence of A-modules

(15) 0 --." Hf1(GK,M) --." H1(GK,M) --." Hs1(GK,M) --." o.

Proposi tion 3: Given an exact sequence in m (W),
'L a

0 --." W[a] --." W[a~] --." W[~] --." 0

the finite/singular structure "cleaves" the nine-term long
exact sequence for GK-cohomology into two six-term

exact sequences, as follows, where the cohomology groups
recorded in (16), (17) below are all understood to be "with
respect to" GK:

(16) 0 --." HO(W[a]) --." HO(W[a~]) --." HO(W[~]) --."

--." Hf1(W[a]) --." Hf1(W[a~]) --." Hf1(W[~]) --." 0,

and

(17) 0 --." Hs1(W[a]) --." Hs1(W[a~]) --." Hs1(W[~]) --."

--." H2(W[a]) --." H2(W[a~]) --." H2(W[~]) --." o.

Proof: This is a straightforward diagram-chase, and
uses only the tV'(o axioms for finite/singular structure.
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Given a finite/singular structure on <JTl(W) we also define
functorial exact sequences of A-modules for objects of the

Cartier dual category <JTl(W*) to <JTl(W),

(18) 0 -+Hf1(GK,M*) -+H1(GK,M*) -+Hs1(GK,M*)-+O.

by the requirement that Hf1(GK,M) and Hf1(G, M*) be

orthogonal complements under Tate Duality, thereby

putting the pairs Hf1(GK,M) & Hs1(GK,M*) and

Hf1(GK,M*) & Hs1(GK,M) in perfect duality, one with

another. From 1) it follows that then Hs1(GK'W*) is also

free over lLp. The "exact sequences" of <JTl(W*) are simply

the the dual exact sequences to those of <JTl(W), i.e.,

(19) 0 -+ W*/~W* -+ W*/cx~W* -+ W*/cxW* -+ 0

for cx,~ E A, with cx a non-zero divisor. We have the
statement "dual" to Proposition 3:

Proposition 4: Given an exact sequence (19) in 'JTl(W*)
the finite/singular structure "cleaves" the nine-term long
exact sequence for GK-cohomology into two six-term

exact sequences, as follows, where the cohomology groups
recorded in (20), (21) below are all understood to be "with
~espect to" GK:

(20)
0-+ HO(W*/~W*) -+ HO(W*/cx~W*) -+ HO(W*/cxW*) -+

-+Hf1(W*/~W*) -+ Hf1(W*/cx~W*) -+ Hf1(W*/cxW*) -+0,

and
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(21)

0-+ Hs1(W*/~W*) -+Hs1(W*/a~W*) -+Hs1(W*/aW*)-+

-+H2(W*/~W*) -+ H2(W*/a~W*) -+ H2(W*/aW*) -+0.

Proposition 5. When Q ;z!: p, we have produced in the
previous paragraphs a finite/singular structure on m(W).

Proof: Axiom 1) for finite/singular structures on m(W)
follows immediately from the hypothesis that W is

cleanly ramified. As for Axiom 2), we must show that

H1(Gk' W[a]IK) -+ H1(Gk' W[a.~]IK)

1 1

H1(GK' W[a]) -+ H1(GK' W[a.~])

is Cartesian. But by the Lemma of § 9, we have the
following commutative diagram of short exact sequences

of A[GK]-modules,

0 -+ W[a]IK -+ W[a.~]IK -+ W[~]IK -+ 0
1 1 1

0 -+ W[a] -+ W[a.~] -+ W[~] -+ 0,

and writing the long exact sequence of Gk-cohomology for

the top line, and of GK-cohomology for the bottom line, a

simple diagram-chase does it.

This finite/singular structure on m(W) for W cleanly

ramified (Q ;z!:p) can be defined "cohomologically" :

Proposition 6: The inclusion Hf1(GK,M) -+ H1(GK,M) is

isomorphic to the natural injection
,
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H1et( Spec ~K' j*M) ~ H1et( Spec K, M)

where the GK-module M is viewed as sheaf for the etale
topology over Spec K, and j: Spec K ~ Spec ~K is the

natural morphism.

Hints for the proof: Perhaps the most down-to-earth
way of seeing this is to use the explicit description of j*
(for the open immersion j: Spec K ~ Spec ~K ) given, e.g.,

in Example 3.15 of Chapter II of Milne's Etale Cohomolog~
Princeton Univ. Press (1980); also, for a brief expository
account, see my Notes on etale cohomology of number
fields, Annales Sci. de l'E.N.S. 6 (1973) 521-556.

§11. The case Q = p (minimalist version). Now let W

be a p-divisible A[GK]-module such that W* is free over A,
and Q = p. In place of the clean ramification condition, let

us suppose that W is crystalline2. Let T denote the Tate
module of Wand V = T(8)7LplQp so that we have an exact

sequence of A[GK]-modules

0 ~ T ~ V ~ W ~ O.

2 Here we rely on the brief expository account of this theory that was

given last semester. But we should add two comments. The first is that

crystalline issues will only begin to be germane in Chapter 4, and if you are

willing to impose some definite finite/singular structure for e = p, nothing

more specific than the axioms of "finite/singular structure" will be assumed

about it until Chapter 4 (Theorem 2) at which point one will have to deal

with crystalline matters. The second comment is that merely to give the

definition which we give below, we need not logically assume that W is

crystalline. But if we do not assume that W is crystalline, the finite/singular

structure defined may not be connected to anything useful.
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Define Hfl(GK' V) to be the kernel of the morphism

Hl(GK' V) ~ Hl(GK' V<&I(QpBcrys)

and define Hfl(GK' W) to be the image of Hfl(GK' V) under

the natural mapping Hl(GK' V) ~ Hl(GK' W). For M cW

a sub A[GK]-module, define Hfl(GK' M) c Hl(GK' M) to be

the inverse image of Hfl(GK' W) c Hl(GK' W) under

the map Hl(GK' M) ~ Hl(GK' W).

Proposition 7. The above rule imposes a finite/singular
structure on m(W) (which we will refer to below as the
crystalline finite/singular structure).

Proof: The group Hfl(GK' W) is p-divisible since it is

defined as the image of the vector space Hfl(GK' V). Our

Proposition then follows from the Lemma of §10.
0

Commentary: Later we will restrict to a subclass of
crystalline representations W which are particularly
relevant to us, and for these there is a slightly more

down-to-earth description of Hfl.

If it were sufficient for our purposes (it
is not, unfortunately!) to deal only with modules that
prolong to finite flat group schemes (or Barsotti-Tate
groups) over the ring of integers of K, we could use the
flat topology to define a reasonably satisfactory
finite/singular structure. Here is a sketch of what one

can do in that situation3.

3 What follows will not be used in the sequel.
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If M is a finite GK-module let us say that M prolongs

to a finite flat group scheme Mover 13K if there is such a

finite flat group scheme M with an isomorphism of its
generic fiber with M (which, for this purpose we we view
as finite flat group scheme over Spec K). There may be
many non-isomorphic prolongations, but for example,
when K = Qp and p > 2, a prolongation M, if it exists, is

unique up to unique isomorphism. Similarly, if W is a p-
divisible GK module of finite corank, then we have the

notion of W prolonging to a Barsotti-Tate group W over

13K (and a theorem of Tate4 guarantees that W, if it

exists, is uniquely determined by W for any K finite over
~p' any p). If M prolongs to a finite flat group scheme or

to a Barsotti-Tate group, M, over 13K, define

Hf1(GK' M) := HfI1(Spec(13K), M) C H1(GK' M)

where Hfl1 refers to cohomology over Spec(13K) computed

for the flat topology (cf. [Milne] Chap III) and Hs1(GK,M)

is defined so as to make the sequence (15) exact. The

group Hf1(GK' M) may depend upon M, the finite flat

prolongation of M chosen, in general. The Local Flat
Duality Theorem (loc. cit. Cor. 1.4) and the explicit
description for p-divisible groups (loc. cit. Prop. 1.13) tell

us, in effect, that this definition of Hf1 and Hs1 defines

the analogue of a "finite/singular structure" for Galois
modules M with prolongations to finite flat group
schemes, or to Barsotti -Tate groups. If we then restrict
our Galois modules to objects of the category Th(W) for W
a fixed p-divisible Barsotti-Tate group, taking M to be the

4 Theorem 4 in:

Tate, J.: p-Divisible groups, pp. 158-183 in ProceedinQ:s of a Conference on

Local Fields (NUFFIC Summer School held at Driebergen 1966) 1967,

Springer-Verlag.
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induced finite flat subgroup scheme on W fqr every M E
'J1l(W) we do get a finite/singular structure on that

category.

"~-,= --~
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Chapter two: Global preliminaries

A general reference: Milne, J.S.: Arithmetic Dualitv
Theorems Academic Press 1986. PD. 60-81, and 200-212.

§ 1. Global cohomology.

Although we could work over arbitrary number fields
with no retrenchment of statements in this §, let us focus

on the case of particular interest to us, namely Q. Fix Q,
an algebraic closure, and, as usual, let GQ = Gal( Q/Q).

Having done this we may identify abelian sheaves for the
etale topology over Spec Q with GQ-modules ( sheaves M ~

Galois modules M( Q)) and we shall do this with no change
of notation, i.e., we think of the M's in the parenthesis

above alternatively as abelian sheaves for the etale

topology and as Galois modules.

Let W be a p-divisible GQ-module of finite rank with a

commutative lLp-algebra A of endomorphisms. Suppose

that p > 2, and that the Cartier dual W* is a free A-

module of finite rank. Suppose further that W is

unramified except at a finite set L of primes, and at each
prime ~ ~ p for which it is ramified, it is "cleanly ramified";

moreover, W viewed as GQ -module is assumed to be
p

crystalline. Thus we have finite/singular structures for

<JTl ~ (W) where the subscript ~ signifies that W is viewed as

A[GQ~]-module, for all prime numbers~. Dually, we have

finite/singular structures for <JTl~ (W *) for all ~.1

1 If you are not at ease with the theory of Bcrys (and consequently with

the finite/singular structure we have imposed on 'JTlp(W)) you may put off

the moment when you must deal with these crystalline matters by merely

assuming, at present, that you have stipulated some specific finite/singular
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Let X = Spec 7L and S C X is a finite set of primes. For M

any A[GQ]- submodule of W or A[GQ]-quotient module of

W*, define the A-module H1(X-S, M) as follows:

(1) H1(X-S, M) := ker {H1(GQ, M) -+ TT Hs1(GQQ,M)}.

QtS

Let GQ,2:: denote the Galois group of the maximal Galois

extension of Q which is unramified outside 2: (equivalently,
the quotient of GQ by the closed normal subgroup generated

by all inertia subgroups at primes Q not lying in 2:). Then
the GQ-actions on Wand on M factor through the quotient

GQ,2:. Viewing M as sheaf for the etale topology over
Spec(Q) and letting j:Spec Q -+ X-S denote the natural
inclusion, form the direct image sheaf j*M for the etale

topology over X-So Our "cohomological notation" is meant to
be suggestive, and, in fact, the special case when pES, we

actually have a cohomological interpretation for H1(X-S, M)
as defined by (1). Namely,

Proposition 1: If pES, the injection

H1et(X-S, j*M) -+ H1(Spec Q,M) = H1(GQ,M)

identifies H1et(X-S, j*M) with the sub A-module H1(X-S, M)

of H1(GQ,M) defined in (1) above.

If 2: c S, then we have the further
identification:

structure at p. Absolutely no property of this finite/singular structure

(beyond the fact that it satisfies the defining axioms of a finite/singular

structure) will be relevant until Chapter 4.
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H1et(X-S, J*M)==H1(X-S, M) == H1(G(Q,S,M) C H1(G(Q,M).

This Proposition is a good exercise in eta Ie cohomology. For
some hints of how to do the exercise, see my article: Notes
on etale cohomology of number fields, Ann. Sci. Ecole.
Norm. 6 (1973) 521-552.

Commen t: We should guard against our cohomological
notation suggesting too much. For instance, if p is not in S,

we have yet defined the analogous groups Hl(X-S, M) for i

~ 2. To be explicit about this, the modules Hl(X-S, M) when
i ~ 1, or when pES are defined as follows:

HO(X-S M) = MG(Q .- , ,
H1(X-S, M) = as defined in (1) and if pES it may also be

identified with H1et(X-S, J*M) as submodule of H1(G(Q,M),

and if further L C S, it may be identified with H1(G(Q,S,M) as

asserted in Prop. 1 above,
Hl(X-S, M) --for i ~ 2 -- is only defined, so far if pES,

and then it is defined to be the etale cohomology group

Hlet(X-S, J*M).

I am thankful to Beilinson who pointed out that there is

no problem in defining "good modules" Hl(X -S, M) in general,
or at least the cases where M is given the crystalline (or
ordinary) finite/singular structure at p. We will not be
making any explicit use of this general definition (i.e., of

Hl(X-S,M) for i~2 when p is not in S) in these notes, but see
§ 6 below for a sketch.

Proposition: If M is of finite type over A, the A-modules

Hl(X-S, M) as defined above, when they are defined, are of
finite type.

Proof: This is standard for the etale cohomology groups
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over X-S (cf. Milne, Chapter II, Thm. 3.1 ) so Hl(X-S, M) is
of finite type over A when pES. But when p tj S,

H1(X-S, M), is a submodule of the A-module of finite type -

H1(X-(Sli{p}), M). Since A is noetherian H1(X-S, M), is of

finite type as well.

0

In particular, if M is finite, the groups Hl(X-S, M), when

defined, are also finite.

§ 2. Basic exact sequences.

Let M be a sub A[G(Q]-module of W or a quotient A[GcQ]-

module of W *. Let S c T be finite sets of primes. Then

(2) O-+H1(X-S, M) -+H1(X-T, M) -+ n Hs1(G(Q~,M)

~ET-S

is exact, a fact that follows immediately from the definition.

Proposition 2: For S a finite set of primes, and any

exact sequence

0 -+ W[cx] -+ W[cx~] -+ W[~] -+ 0

(with cx E A a nonzero divisor, and ~ E A) there is an

associated exact sequence for "cohomology":

(3) 0 -+ W[cx]G(Q -+ W[cx~]G(Q -+ W[~]G(Q -+

-+ H1(X-S, W[cx])-+H1(X-S, W[CX~]) -+H1(X-S, W[~]).

obtained by pullback from the corresponding exact sequence

for GcQ-cohomology:

Proof: The beginning of the sequence (3) being clearly

"defined" and exact, even at the "point" W[~]GcQ of the
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sequence, we may restrict our efforts to showing that the
arrows of the top horizontal line of the following
commutative diagram are defined, and that the top line is
exact:

0 0 0

1 1 1
W[p>]GQ~H1(X-S W[a]) ~ H1(X-S W[aA]) ~ H1(X-S W[A])=! -'1 -, 11-' - '11-'

W[~]GQ~H1(GQ' W[a]) ~ H1(GQ, W[a~]) ~ H1(GQ, W[~]) r

1 1 1

0 ~TTHs1(GQ~' W[a]) ~TTHs1(GQ~,W[a~])~TTHs1(GQ~'W[~]),

Here the product TT occurring in the bottom line is over all
prime numbers ~ not dividing m. The vertical lines and the
middle horizon tal line is exact; so is the lower line (by
Proposition 3 of Chapter 1). A diagram-chase gives our

Proposition.

0

We also have the dual sta temen t. For m > 0 an integer,
and any exact sequence

0 ~ W*/~W* ~ W*/a~W* ~ W*/aW* ~ 0

(with a E A a nonzero divisor, and ~ E A) there is an
associated exact sequence for "cohomology" obtained by
pullback from the corresponding exact sequence for GQ-

cohomology:

Proposition 3:

(4) 0 ~ W*/~W*GQ ~ W*/a~W*GQ ~ W*/aW*GQ ~

~ H1(X-S,W*/~W*) ~ H1(X-S, W* /a~W*)~

~ H 1 (X - S, W * / a W * ) .
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Proof: The proof is almost identical to that of Proposition
2. The beginning of the sequence (4) again being clearly

"defined" and exact, even at the "point" W*/I3W*G(Q of the
sequence, we may restrict our efforts to showing that the
rest of the sequence is defined and exact, as in Prop. 2. But
a straightforward diagram-chase with a diagram analogous
to that which enters into the proof of Prop. 2, whose
"bottom horizon tal line" is the exact sequence

0 --+ TTHs1(G(Q~, W * 113 W *) --+ TTHs1(GQ ~,W* 1 <X 13 W *)--+

--+TTHs1(GQ~' W* 1 <xW)

gives the proof.
0

§ 3. Recalling Global Class Field Theory, and Global
Tate Duality. i

,

Recall that p > 2. The fundamental facts about 2-
dimensional Galois cohomology of ~ 00' which will playa

p
dominant role in what follows are these.

The local invariant. For any prime number ~ have a
canonical isomorphism which we will call inv~

Inv~
H2(Gtr\ ' ~ 00) --+ Qp/lLp ;

~~ P

if h E H2(GII"\ ' ~ 00) , then inv~(h) will be referred to as its
~~ p

"(local) invariant"
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Passage from global to local. There is an exact sequence

1., L:
0 -+ H2(G(Q,~poo) -+ EB H2(G(QQ'~poo) -+ (Qp/lLp -+ 0 ,

where 'L is the direct sum of the natural restriction
mapping from G(Q-cohomology to G(QQ-cohomology, taken

over all prime numbers Q, and where L: is the summation of
the local invariants.

In the discussion for the rest of this paragraph, let M be
either an A[G(Q]-submodule of W, or an A[G(Q]-quotient

module of W*, and M*, as usual, its Cartier dual. Until
further notice S will refer to a finite set of primes
containing the prime p. Define

(5) lliS1(M) = ker {Hi(X-S,M) -+ nHi(G(QQ,M)}.'

QES

Note that, despite appearances to the contrary, lllS1(M) is

a "contravariant functor" on the directed system of finite
sets of primes S, and more specifically, if S c T, then we

have a natural inclusion lllT1(M) c lllS1(M). On the

other hand, lliS2(M) is a covariant functor, and more

specifically, if S c T, we have a natural surjection

llis2(M) -+ lliT2(M).

If ,.8 is any set of primes (possibly infinite)2 containing p,

put:

2 our convention will be that script .s refers to a possibly infinite

collection of primes while Roman S refers only to finite sets of primes.
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(6) lllJ:>1(M) = "proj. lim" lliS1(M) = n llis1(M)

ScJ:> Sc,,8

the projective limit taken over the system of all finite sets
of primes S contained in ,,8, which can be also viewed as an

intersection over ~ll S c J:>, where the lliS1(M)'s are all

viewed as submodules in H1(G(Q,M). Alternatively, we may

write:

(7) lliJ:>1(M) = ker {H1(G(Q,M)-+nH1(G(Q~,M) x nHs1(G([,)~,M)}.

~EJ:> ~f/,,8

Also, for J:> any set of primes, put

(8) lli,,82(M) = "ind. lim" lliS2(M) = U lliS2(M).

S c,s S c's

Defining these groups analogously for M*, Tate Global
Duality establishes, if M and J:>=S are finite, a perfect
paIrIng

-

(9) lliSi(M) x lliS3-i(M *) -+ (Qp/lLp.

(See Milne Chapter I §4), and passage to the limit yields
a perfect pairing

(10) lli,,81(M) x lliJ:>2(M*) -+ (Qp/lLp'

for any set of primes J:>.

If J:> is the set of all primes, abbreviate lli,,8i(M) as mi(M),

for i=1,2.

To analyze the structure of lli1(M) further in the case
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where M is finite, let KIll:;) be the splitting field for the GIl:;)-

action on M so that we have the exact sequence
1 -+ GK -+ GIl:;) -+ £::. -+ 1 where £::. is a finite subgroup of

AutA(M), and the action of GIl:;) on M is via projection to £::..

Consider the following exact sequence of A-modules obtained
from the associated Hochschild-Serre Spectral Sequence:

~
(11) 0 -+ H1(£::., M) -+ H1(GIl:;) , M) -+ Hom (GK,M)£::. .

Note that the submodule 1111(M) C H1 (GIl:;) , M) maps to

zero under ~. The reason for this the following. Let h E

m1(M) and let <p: GK-+ M be the £::.-invariant

homomorphism ~(h). Since h ~ 0 in H1(GIl:;)~, M) for all ~,

and in particular for all ~ which are unramified in the G(Q-

action on M, we see that <p brings the Frobenius elements of
GK attached to all liftings of such primes ~ to zero. But, by

Cebotarev's Theorem, these Frobenius elements are
topologically dense in GK' and since <p is continuous, <p = O. By

what has just been discussed, and the duality (10) we have
shown:

Proposition 4: The submodule m1(M) of H1(GIl:;) , M) is

contained in H1(£::., M) C H1(GIl:;), M). The modules m1(M)

and m2(M*) vanish if H1(£::., M)=O.

§4. A lifting problem.

Let X = Spec lL, and S a finite set. of primes containing p.
Here is the problem we wish to consider in this section.
Suppose we are given an exact sequence:
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0 -+ W*/~W* -+ W*/cx~W* -+ W*/cxW* -+ 0 ~

with cx a non-zero-divisor. Consider the mapping

H1(X, W*/cx~W*) -+ H1(X, W*/cxW*), which is, of

course, not necessarily surjective.

Is there an S c X such that the image of

H1(X,W*/cxW*) in H1(X-S, W*/cxW*) lifts to

H1(X-S, W* /cx~W*)?

Relevant to this question is the commutative diagram:

H1(X W*/CXAW*) -+ H1(X-S W*/CXAW*)-, 1 I-' - 1 I-'

(12) H1(X W*/cxW*) -+ H1(X-S W*/cxW*)-, - ,

1 1

ills2(W*/~W*) -+ H2(X-S, w* /~W*)

where the right vertical sequence is simply a piece of the

long exact sequence for etale cohomology, which is

legitimate since S contains p. That an element of

H1(X-S, W*/cxW*) which is in the image of

H1(X, W*/cxW*),. when mapped to H2(X-S, W*/~W*)
2 * / *actually lands in ills (W ~W) comes from the fact that

the local coboundary mappings H1(GQ~'W*/cxW*) -+

H2(Gcr;)~,W*/~W*) annihilate Hf1(GQ~'W*/cxW*), for all

prime numbers ~ (cf. Prop. 3 of §11 of Chapter 1).

Proposition 3: Suppose that ill1(W[~]) vanishes. Then
there is a finite set S of prime numbers so that the 1

elements of H1(X,W*/cxW*) in H1(X-S, W*/cxW*) lift to

H1(X-S, W* /cx~W*).
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Proof. This does follow directly from the above discussion
concerning diagram (12), and from the perfect duality (10)
of §3.

A sufficient criterion for the vanishing of i111(W[~]) is

given by Proposition 4 of §3; namely lli1(W[,B])=0 if
H1(~, W[,B]) = 0, where ~ is the image of G(Q which acts

faithfully on W[,B].

§ 5. The Bockstein pairing.

In this paragraph I would like to focus on a certain pairing
which I believe will clarify a good deal of the formalism
later. For reasons which will shortly become clear (I hope) it '1

seems reasonable to call it the "Bockstein pairing" relative to
«X"B). '

Keep notation as in the previous paragraphs. In particular,
let ,K= Spec 7L; let <x, ,B be elements of A with <X a non-zero-
divisor; and let ~ be the quotient of G(Q acting faithfully on

W[,B]. Let us suppose a hypothesis which we will call--

~-vanishing (for ,B) : H1(~, W[,B]) = O.

Now let x E H1(,K, W[,B]) and y E H1(,K, W*/<xW*). We wish
to define an element which we will denote {x,y}<x,~ E

(Qp/7Lp. For this, we first define elements YQ E

Hs1(G(QQ'W*/,BW*) for Q E S.

Note that our hypothesis of "~-vanishing" allows us to use
Proposition 3 of §4. That is, there is a finite set of primes S

(with pES) such that the image of y in H1(,K-S, W*/<xW*)

lifts to an element Y E H1(X-S, W*/<X,BW*), For each prime

number Q E S, let YQ EHs1(G(QQ' W*/<X,BW*) be the image of
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the restriction of y to Q, resQY E H1(G(QQ' W*/cx~W*') in

the singular part. Recall the exact sequence (Proposition 3

of § 11 of Chapter 1) '\

O~Hs1(G(QQ' W* /~W*) ~Hs1(G(QQ' W* /cx~W*) ~

~Hs1(G(QQ' W* /cxW*)

and note that since y E H1(X, W* /cxW*) , the image of YQ

in Hs1(G(QQ'W*/cxW*) is zero. It follows that YQ lies in the

submodule Hs1(G(QQ' W* /~W*) of Hs1(G(QQ' W* /cx~W*), and

from now on we will view YQ as an element of
Hs1(G(QQ' W* /~W*). :.:

Now let xQ denote the restriction of the class x E

H1(X, W[~]) to H1(G(QQ' W[~]), and note that xQ lies in

Hf1(G(QQ' W[~]) c H1(G(QQ' W[~]). We view xQ as an element

of Hf1(G(QQ' W[~])" Now we may invoke the pairing (which

we will denote < , > Q )

Hf1(G(QQ' W[~]) x Hs1(G(QQ'W*/~W*) ~ (Qp/lLp

and define

(13) {x,y}cx,~ = ~ <xQ, YQ>Q

QES

To see that this' definition does not depend upon the lifting
y, consider two such liftings, Y1 and Y2" Then the

difference 8 = Y1 - Y2 maps to zero in H1(X-S, W*/cxW*)
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and therefore comes from a class in H1(K-S, W* /~W*) by
Proposition 2 of §2. It then follows from the definitions that
the difference between the computation of the right-hand
side of (13) via the lifting Y1 and via Y2 is given by the

sum of all local invariants of the image in the cohomology

group H2(G(Q, I-lpoo) of the cup-product of the two global

cohomology classes xvc E H2(K-S, W[~](8)lL W*/~W*), and
p

by "Global Class Field Theory" (cf. § 3) this sum is zero. We
have therefore a well-defined bilinear pairing,

(14) H1(K, W[~]) x H1(K, W * / <xW *) --+ !Dp/lLp

which we will call the Bockstein pairing (relative to <X,~).
It is also evident from definition of the pairing that the
image of

H1(K, W* / <x~W*) --+ H1(K, W* / <xW*)

lies in the right-nullspace relative to the pairing (14).

Problems: I haven't yet worked this out, but I imagine
that the definition is symmetric, and the same pairing

could be defined by lifting the class x E H1(X, W[~]) to H1(X-
S, W[<X~]) and making a symmetrical construction, in which

case one would also have that the image of H1(X, W[<X~]) in

H1(X, W[~]) lies in the left-nullspace relative to the pairing
(14) (?) What, in fact, are the precise nullspaces?

§ 6. Definition of HI(K -S,M) "in general".

I am very thankful to Beilinson who suggested the
definition of these cohomology modules which we will only
very briefly sketch in this §. Here let us assume that m(W)
is given the crystalline finite/singular structure at p as in
Chapter 1, §11. Let K= Spec lL, as usual, and S c K a finite

subset, which we may as well assume not to contain p.
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Let 8: Spec Q ~ A-S-{P} and '11': A-S-{p} ~ A-S and
j:Spec Q ~ A-S denote the natural (the only, in fact) open
immersions. So j = '11'08.

Choose an algebraic closure F p of F p and let Qpnr

denote the maximal unramified extension of Qp , i.e., the

field of fractions of W(F p). Let Qp be an algebraic closure of

(Qpnr and Q C Qp the algebraic closure of Q in (Qp' Having

made all these choices, we can identify the categories of
etale sheaves over the relevant fields, with the
corresponding categories of Galois modules.

Let H1f(Qpnr ,M) , for M E m(W), denote the union of the

images of H1f(K,M) in H1(Qpnr ,M) where K ranges through

the finite extensions of Qp contained in Qpnr. The module

H1f(Qpnr ,M) has a natural GF = Gal( F p/F p) action, and may
p

be identified with a sheaf of A-modules for the etale
topology over F P' or alternatively as a "skyscraper sheaf"

supported at p on the etale topology of A = Spec 71; it is a

subsheaf of the skyscraper sheaf R1'11'*(8*M ) whose

underlying GF -module is H1(Qpnr ,M). Viewing
p

H1f(Qpnr ,M) as such a sub-skyscraper sheaf, let us call it

R1'11'*(8*M )f.

Fixing an injective resolution N. of the etale sheaf 8*M

on A-S-{P} we have a complex of sheaves for the eta Ie
topology on A,

GO G1
(15) 'II'*(NO) ~ 'II'*(N1) ~ 'II'*(N2) ~ ,

whose quasi-isomorphism class is independent of the choice
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of injective resolution, and which represents R/!'* (°* M ). We

have a diagram where straight lines are exact:

0
!

image(oO) -

! °1
0 - ker(01) - /!'*(N1) - /!'*(N2)

!
R1/!'*(0*M)

!
o.

Defining /!'*(N1)f C /!'*(N1) to be the subsheaf given as the

inverse image of R1/!'*(8*M)f C R1/!'*(0*M) in ker(01) C

/!'*(N1), we have a truncation of the complex (15) that we

will refer to as R/!'* (°* M)f :

°
(16) /!'*(NO) - /!'*(N1)f .

The quasi-isomorphism class of the complex R/!'* (°* M)f is

easily seen to be independent of the choice of (15) and its

sheaf cohomology groups, X.( R/!'*(o*M)f ) , are as follows:

XO = J*M, X1 = R1/!'*(0*M)f, and XJ = 0 for J ?: 2.

.. .
Definition: HI(X-S,M):= HI( X-S, R/!'* (°* M)f), where HI

referes to the hypercohomology of the complex R/!'* (o*M)f

for the etale topology on X -S .

These cohomology modules are A-modules of finite type;
they fit into "long exact sequences" restricting to the exact
sequences of §2 above. Beilinson has communicated to me
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that for S empty one can show that cup-product,

< . >: Hi(X,M) (8) H3-i(X,M *) ~ H3 (X, I-lpoo) = (Qp/7Lp,

gives rise to a perfect three-dimensional duality pairing,
and that using the above, one can obtain the Bockstein
pairing without any l::.-vanishing assumption. Namely. we
have a canonical pairing

(17) {.}: H1(X, W) (8) H1(X, W* (8) 7Lp (Qp/7Lp) ~ (Qp/7Lp

defined by {x,y} := <x,oy> where .

a: H1(X,W*(8)7Lp(Qp/7Lp) ~ H2(X,W*)

is the coboundary mapping in the long exact sequence of
cohomology coming from the short exact sequence of
modules

0 ~ W* ~ W*(8)7Lp(Qp ~ W*(8)7Lp(Qp/7Lp ~ o.

To compare the pairing (17) to the Bockstein pairing
defined in §5, let cx,~ be non-zero-divisors in A, and

x E H1(X,W[cx]) Y E H1(X,W*/~.W*).

Then, if the l::.-vanishing hypothesis holds for ~,

(18) {x'Y}cx,~ = {x, ~-1.y} I

where the { , }cx,~ refers to the Bockstein pairing defined in ;

§5, and the { , } on the right-hand side of (18) is the

pairing (17) for x considered as an element of H1(X, W) and

~-1.y as an element of H1(X,W*(8)7Lp(Qp/7Lp).
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Chapter three: The Symmetric Square of a rank two

Galois representation

§ 1. Our basic set-up for this Chapter.

We will keep all of the notational conventions of the '"

previous two chapters, and begin to restrict the type of ,
oj

G(Q-modules W that we wish to consider. Recall that p > 2

and that the base ring of scalars A is a commutative local
finite faithfully flat 7Lp-algebra. Let m c A denote the

maximal ideal, and k = Aim the residue field.

Let H be a free A-module of rank 2 with continuous A-
linear action of G(Q, unramified outside a finite set ~ of

prime numbers including p. This defines a continuous
Galois represeni;ation, p: G(Q,~ -+ GL2(A), well-defined up

to conjugation.

We make the following assumption about the :I

determinant of the representation p.

(1) The p-cyclotomic determinant condition:

The determinant character det A p : G(Q -+ A* is the

composition of the p-cyclotomic character, "X: G(Q -+ 7Lp*

with the natural inclusion 7Lp* C A* .

Let T ~ E A denote the A -tr ace of the ~ - Frobeni us

element Frob~ on H, and let us call T ~ the ~-th "Hecke

operator" in A. It follows from (1) that the action of
Frob~ on H satisfies the ("Eichler-Shimura -type")

identity

(2) Frob~2 - T~. Frob~ + ~ = O.
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For any ideal J contained in the maximal ideal of A, let

PJ: G(Q ~ GL2(A/J)

denote the reduction of P mod J, and let

p: G(Q ~ GL2(k)

be the reduction modulo the maximal ideal, i.e., P = Pm

is the associated "residual representation".

It follows from (1) that P is an odd representation, i.e.,
that the image of a "complex conjugation" involution 1:" in
G(Q under p is not a scalar matrix in GL2(k).

Assume that P is absolutely irreducible.

§ 2. Principal polarizations.
;

To give a G(Q-equivariant skew-symmetric pairing

(3) ( , ): H @lLp H ~ lLp(1)

with respect to which the action of A is self-dual is visibly

the same as giving a lLp[G(Q]- homomorphism
r

(4) ~:./\A 2(H) ~ lLp(1).

It is also the same as giving a lLp-homomorphism (4) "I

since G(Q-equivariance of such a homomorphism is

automatic: by the p-cyclotomic determinant condition,

the action of G(Q on ./\A 2(H) is via the p-cyclotomic

character 'X, which is precisely how G(Q-acts on lLp(1).

Refer to the pairing corresponding to ~ as ( , )~ .
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Lemma: The following are equivalent:

i) The G(Q-equivariant, A-Hermitian, skew-symmetric

paIrIng

( , )l/J: H (8)lLp H ~ lLp(1)

is perfect in the sense that the induced mapping

l/J: H ~ HomlLp (H, lLp(1))

m ~ [ n ~ (m,n)l/J ]

is an isomorphism of (equivalently)

a) lLp-modules,

b) A-modules, where HomlL (H, lLp(1)) is given its
p

induced A-module structure, and of
c) A[G(Q]-modules, where HomlLp(H, lLp(1)) is given its

induced A[G(Q]-module structure.

ii) The A -module HomlLp (1\ A2(H) , lLp(1)) is free of rank

1, generated by the element in HomlLp(I\A2(H) , lLp(1)),

call it l/Jo: I\A2(H) ~ lLp(1), induced from ( , )l/J.

Proof: The equivalence of a) and b) in i) is clear and
just put in for the record. That c) is equivalent to b)
comes from the discussion right before the statement of
the Lemma. Now suppose i) in the form of c). We first

')
show that l/Jo E HomlLp(I\A2(H) , lLp(1)) is a generator of

the A-module HomlLp(I\A 2(H) ,lLp(1)). For, by Schur's

~emma (see the form of it proved in the appendix) since
p has been assumed to be absolutely irreducible, any

48

i '" !L'~~!ij~



A[GIQ]- module homomorphism f : H ~ HomlLp(H, lLp(1))

is a scalar multiple of the A[GIQ]-isomorphism 1lJ, i.e., there

is an element a E A, such that fo = a.llJo, where fo' llJo E

HomlLp(.I\A2(H) , lLp(1)) are the elements induced from f

and 1lJ. The A-module HomlLp(.I\A2(H) , lLp(1)) is therefore 1>

cyclic; that it is free of rank 1 then follows from the fact
that it is lLp-free of the same lLp-rank as A. Therefore i)

implies ii). To see that ii) ~ i) b) note that the GIQ-action

plays no role, so you can choose an A-basis x,y of H, and a

lLp-generator ~ of lLp(1) giving .1\ A2(H) = x A y.A , lLp(1) =

~.lLp. A generator, then, llJo of the A-module

HomlLp (.1\ A2(H) , lLp(1)) is given by x A y.a ~ ~. tr (a) for

a E A, where tr : A ~ lLp is a Gorenstein trace for A

over lLp , i.e., tr is a generator of the A-module

Hom(A,lLp); cf. §8 below. Then the associated

homomorphism 1lJ: H~ HomlLp (H, lLp(1)) is seen to be

x.A $ y.A ~ HomlLp (y.A, ~. lLp) $ HomlLp (x.A, ~.lLp)

x.a + y.b ~ a.tr + b.tr

(with the evident notational conventions) and this 1lJ is

perfect.
0

Definition: A pairing satisfying anyone of the
equivalen t conditions of the previous lemma is called a
principal polarization of H. Since the only
"polarizations" we consider in this course are principal, we
shall drop the adjective "principal" and refer to a

principal polarization simply as a polarization.

The following two Corollaries come immediately from
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formulation (ii) of the Lemma:

Corollary 1: Let ( ,)~: H ~lLp H -+ lLp(1) be a

polarization. Then foy any G(Q-equivariant skew-linear

pairing (,)~ there is a unique element a E A such that
(x,y)~ = (a.x,y)~ for all x,y E H.

The pairing ( , )~ is a polarization if and only if a is a unit

in A ; it is a polarization if and only if ~ is a generator of

the A-module HomlL [G ](/\A2(H), lLp (1)).
p (Q

0

Corollary 2: The ring A is Gorenstein if and only if H
admits a polarization.

0 ~

We shall not be assuming the existence of a polarization,
(or equivalently that A be Gorenstein) until §8 below.

§3. The symmetric square of H. Define W* to be

SymA 2(H) with its induced A[G(Q]-module structure. Then

W* is a free A-module of rank three. Also, for any ideal J
C A, we have that

W*/J.W* .= Sym 2(H/J.H)
A/J

is a free A/J- module of rank 3.

0 0Lemma 1: Let EndA (H)= End (H) denote the A-module

of A -endomorphisms of H of trace zero. Then given a
polarization ( , ) = ( , )~ of H, as in § 2 above, there is a

canonical isomorphism of A-modules

SO
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(4) W == Endo(H)\8)lLp(Qp/lLp C HomA(H, H\8)lLp(Qp/lLp)

w -+ [T w: H -+ H \8) lLp (Qp/lLp) ]

where, if w is an element of W = Hom (Sym 2(H),~ 00)
lLp A p

and if we view w as a ~ oo-valued A-bilinear symmetric
p

function w(x,y) of "two variables" x, y on H, the
transformation Tw is determined by the rule w(x,y) =

(x, T wY)'1' where the pairing

( , ),T,: H x H \8) lL (Qp/lL -+ lLp(l) \8) (Qp/lLp = ~ 00

~ p p P

is induced in the evident manner from the given
polarization (, )'1" The canonical isomorphism is G(Q-

equivariant if we endow Endo(H) \8) lLp (Qp/lLp with the

adjoint action induced from the G(Q-module structure of H

(explicitly: if g E G(Q and e E EndO(H) then:

Ad(g).e = g.e.g-l : H -+ H ).

Proof: That the rule of passage w +--+ T w described

above gives an A-module isomorphism between A-bilinear
functions of two variables w(x,y) and elements T w E

Hom A (H, H \8) lLp (Qp/lLp) is straightforward, in view of the

fact that our polarization gives us a perfect pairing. Let us
see that the trace zero condition on Tw corresponds to the

symmetry condition on w. For this, we can cheat and
choose an A-basis x,y of H, a lLp-basis ~ of lLp(l), writing

Twas a 2 x 2 matrix with coefficients a and d on the
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diagonal, and writing the polarization 'Ii as

'Ii: x A y. CX ~ ~. tr (cx)

for cx E A and for tr some Gorenstein trace (cf. §8).
Then the symmetry condition for w translates simply as
the condition (cx .x, T wY)'Ii = (y,cx.T wx)'Ii for all cx E A,

o~ equiva~entlY, tr (d~cx) = - tr, (a.cx) for al~ ':x E ,A. ~

Since tr is a Gorenstein trace, this latter condition is ,~

equivalent to requiring that a+d = O.

0

Changing the polarization 'Ii to a.'Ii, for a unit a E A*
changes the identification 'L above to a. 'L. It will be useful
in Chapter 4 to assume the existence of a polarization, to
fix a polarization, and thereby identify the A-module W

with End A o(H)@lLp(Qp/lLp.

Define W = Horn lL (W*, I.l 00)' to be the Cartier dual
p p

of W* with its induced A[G(Q]-module structure, so that W

and W* are in accord with the notational conventions of
the previous Chapters. For any ideal J C m C A, W[J] is
the Cartier dual of W * /J. W * , both modules given their

induced (A/J)[G(Q]-actions. In particular, W[m] is seen to

be a 3-dimensional k-vector space, Cartier dual to

W*/mW.

We now assume that the 3-dimensional k-vector space

W*/m.W* (= Symk2p) is an irreducible G(Q-

representation. It is equivalent to assume that W[m] be
irreducible as G(Q-representation.

We also assume that W is cleanly ramified when
viewed as A[G(Q~]- module for all ~ ~ p and we give W,
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,

viewed as A[GQ~]-module, its associated finite/singular

structure at ~ (cf. Chapter 1) for ~ ~p. As for
finite/singular structure at p, assume that W is
crystalline when viewed as GQ -module, and give it its

p
crystalline finite/singular structure (or, the relentless
axiomatician may simply assume that a specific
finite/singular structure has been imposed at p, whose
particular properties will be irrelevant until Theorem 2 of
Chapter 4). So our W has been endowed with
finite/singular structures at all primes ~, and conforms to
the running assumptions made in Chapter 1. In particular
we have the machinery of global cohomology introduced
in Chapter 2 which applies now to W, its submodules of

the form W[cx] for cx E A, and for W* and the analogous
quotient modules.

Since W[m] is an irreducible 3-dimensional vector
space, it has no fixed vectors under GQ and therefore, for

any finite set S c X (= Spec lL), we have:
~

WGQ = HO(X-S W) = HO(X W) = 0.- , -,

Lemma: H1(X-S, W[CX]) = H1(X-S, W)[cx].

Proof: This comes from the long exact sequence of §2 of

Chapter 2, and the fact that HO(X, W)= 0.

§ 4. The singular depth at primes of type .r..

If J C m C A is an ideal, let KJ /Q denote the field
extension which splits the representation PJ. So PJ maps

GQ onto Gal(KJ/Q) which injects to GL2(A/J). By a

"complex conjugation" involution, call it 'T='TJ' in

Gal(KJ/Q) we mean any representative of the conjugacy "
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class of the image of the nontrivial element of a
decomposition group Gal([/~) mapping naturally to
Gal(KJ/(Q), i.e., corresponding to a complex imbedding of

KJ.

Let LJ denote the set of prime numbers ~ which are

unramified for p and such that a Frobenius element Frob~

is (contained in the Gal(KJ/(Q)-conjugacy class of) the
complex conjugation involution 'T = 'TJ. If J1 c J2 is an

inclusion of ideals of A, both contained in the maximal
ideal m, we have LJ1 c LJ2 C Lm. Put L = Lm. By the

Cebotarev Density Theorem, there are an infinity of
primes in LJ for any ideal J of finite index in A. "

A

!i
~,

If ~ E LJ then Frob ~ satisfies the rela tion Frob~ 2 - 1 == 0 ~

mod J, so that (2) implies that ~ == -1 mod J, and T ~ == 0

mod J. Recalling that p > 2, an application of Hensel's
lemma gives us then that we have a factorization in A[X]:

(5) X2 - T~. X + ~ = (X+ u).(X+v)

for elements u,v E A with u == 1 and v == -1 mod J.

Lemma 2: Let ~ E L and retain the notation above. We
have a direct sum decomposition of the A-module

(6) H = Hu $ Hv

where each of the A-modules Hu and Hv are free of rank

1, and Frob~ acts as multiplication by u on Hu and

multiplication by v on Hv.

Proof. Take
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Hu : = (Frob~-v).H and Hv: = (Frob~-u).H,

and note that Hu n Hv = {a} since Frob ~ acts on any

element in this intersection as, simultaneously,
multiplication by +1 and by -1 modulo the maximal ideal
(recall: p >2). If h E H, writing hu = (Frob~-v).h and hv =

-(Frob~-u).h, we see that hu+hv = (u-v).h and since u-v

is a unit in A, we do have our direct sum decomposition H
= Hu ED Hv. Neither Hu nor Hv can vanish, because if one

did (say Hu= 0) then Frob~ would act as multiplication by
the scalar v on all of H, and hence its trace T~ would be
2.v which is not == 0 mod m. Similarly, 2.u is not == 0 mod
m, so Hv cannot vanish. Now, since the free rank two

module H is a direct sum, Hu $ Hv of two nonzero

modules, it follows, counting dimensions over k, that
'¥
,

Hu (8) A k and Hv(8) A k are both of dimension 1, and II
11

therefore, by an application of Nakayama's lemma, Hu ~

and Hv are both cyclic A-modules. Since A is lLp-

torsionfree, a necessary and sufficient condition for a
cyclic A-module U to be free of rank one is that its tensor
product U(8) lLp (Qp have the same dimension (as a vector

space over (Qp) as A (8) lL (Qp does. A simple dimension
p

count shows that Hu and Hv satisfies this condition.

0

Lemma 3: With the above notation, if ~ E r., then the

singular quotient at ~, Hs1(G(Q~, W*) = H1(I(Q~,W*)GF~ is a

free A-module of rank one. Moreover, for any ideal J c

A, Hs1(G(Q~, W*/JW*) =H1(I(Q~,W*/JW*)GF~ is a free

A/J-module of rank one.
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Proof: Since H1(I(QQ'W*) = W*(-1) as a FrobQ-module, we

use the decomposition (6) of Lemma 2 to give us a

decomposition of W* as a direct sum of three free A-
modules of rank 1:

(7) W* = (Hu@AHu) EB (Hu@AHv) EB (Hv@AHv)

and FrobQ acts on the first as multiplication by u2 the

second as multiplication by uv = Q and the third as .-

multiplication by v2 . It follows that it is only the second

of these three factors that contribute to the FrobQ-fixed

space in W * (-1). The first assertion of our lemma follows.

The second assertion follows from the analogous

calculation made over A/J, noting that u2:=v2 := 1 mod

m, and therefore that the first and third factors in (7)

still fail to yield anything fixed by FrobQ in W*'/JW*(-1).

If c is a cohomology class in H1(G(Q,W*) let cs,Q E

Hs1(G~Q'W*) denote the projection of resQ(c) E
,

H1(G(QQ'W*) to Hs1(G(QQ' W*), the singular quotient.

Definition 1: If (X is a nonzero-divisor in A, and Q is a
prime number in L we will say that the cohomology class
c has singular depth, at Q, equal to (X E A if we have
isomorphisms of A-modules

Hs1(G(QQ' W*)/cs,Q.A = A/(XA,

or, equivalently, if the annihilator of the cyclic A-module

Hs1(G(QQ' W*)/cs,Q.A is equal to the ideal generated by (x.
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Remark: The tightness (and usefulness) of Definition 1

depends upon Hs1(G(QQ' W*) being free of rank one over A,

which, in turn, occurs (cf. Lemma 3 above) when Q E L. In
particular, we have only defined the notion of "singular
depth being equal to (x" for primes Q E L. This is to be
compared with the following looser notion, which makes
sense for all prime numbers Q:

Definition 2: If (X is a nonzero-divisor in A, and Q is
any prime number we will say that the cohomology
class c has singular depth, at Q, divisible by (X E A if

the image of cs,Q in Hs1(G(QQ' W*/(XoW*) vanishes.

§5. Systems of Flach type.

Keep the hypotheses and notation of §4.

If ~ E A is a non-unit, non zero-divisor, let K= K~ be the
splitting field of the G(Q action on W[~]. Let 6 = Gal(K/(Q),

so that the Hochschild-Serre Spectral Sequence yields an
exact sequence

<P

(8) 0 -+ H1(6, W[~]) -+ Hl(X, W[~]) -+ Hom (GK, W[~])6,

and, consequently if H1(6, W[~]) is assumed to be zero
(the "6-vanishing hypothesis for ~" of Chapter 2) the
homomorphism <P is injective, allowing us to identify

H1(X, W['(j']) with a submodule of Hom (GK, W['(j']) 6; to any

cohomology class c E Hl(X, W[~]) let its image under <P be
denoted <Pc ' a 6-equivariant homomorphism:

<Pc: GK -+ W['(j'].

To be explicit here, the 6-equivariance condition boils
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down to the following. Since 4Jc is a homomorphism to an

abelian group, the homomorphism 4JC factors through the

maximal abelian quotient GKab of GK. Let E be the fixed

field of the kernel of GK--+GKab so that E/~ is Galois, with

Galois group fitting in the exact sequence,

1 --+ GKab --+ Gal(E/Q) --+ ~ --+ 1.

:~
'"Denote the natural "conjugation-after-lifting" action of "

~ on GKab by exponentiation, i.e., the action is given by

8g : 8.g.8-1 for 8 E~, g E GKab ,and 8 E Gal(E/~)

denotes any lifting of 8.

Denote the action of ~ on W[~] by 0, so that if 8 E ~ and
w E W[~], then the action is given by (8,w) ~ 8ow.

Then by ~-equivariance of 4Jc we have:

(9) 4Jc(8g): 8o4Jc(g).

It follows that the kernel of 4Jc is stabilized by ~. Let L/K
denote the field fixed by the kernel of 4Jc and r : Gal(L/K).

The field extension L/Q is then a finite Galois extension,
and we have the exact sequence

1 --+ r --+ Gal(L/Q) --+ ~ --+ 1.

The homomorphism 4Jc induces an injective
homomorphism, which we again denote by 4Jc: r --+ W[~],

and ~-invariance then boils down to (9) again where
now g is taken to be in r, and the exponential action is
the evident action of ~ on r.

Definition: If cx E A is a non zero-divisor, let J denote
the ideal (cx) if cx is not a unit, or the maximal ideal m if
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cx is a unit. A Flach system of depth cx (relative to the

A[G~]-module H) is a rule which assigns to each prime

number ~ E L a cohomology class c(~) E Hl(X-{~}, W*)
which has singular depth cx at ~ (in the terminology of

§4).

Let us assume that a Flach system of depth cx, ~ ~ c(~),

is given. Consider the diagram

c(~) E Hl(X -{~}, W *)

1

H 1 (X, W * / cx W * ) c H 1 (X - { ~ }, W * / cx W * )

Lemma: For all ~ E L, the image of c(~) under the

vertical mapping in the above diagram is contained in the

submodule Hl(X, W*/cxW*) C Hl(X-{~}, W*/cxW*).

Proof: The condition to be checked is in the singular

quotient of Q~-cohomology, so let us recall the notation of

§4 and pass from the above diagram to the corresponding

diagram of singular quotients for Q~-cohomology,

c(~)s,~ E Hsl(GQ~' W*)

1

Hsl(GQ~' W* / cxW*),

and note that by Lemma 3 of §4, Hsl(GQ~' W*) is free of

rank one over A, and Hsl(GQ~' W*/cxW*) is the quotient

of Hsl(GQ~' W*) modulo cx.Hsl(GQ~' W*). Moreover, by
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the defintion of "depth cx", c(~)s,~ lies in cx.Hs1(G(Q~, W*)

so goes to zero in Hs1(G(Q~, W*/cxW*).

0

Let d(~) E H1(X, W*/cxW*) be the unique class mapping to

the image of the class c(~) in H1(X-{~}, W*/cxW*).

Define, for J and ideal in A of finite index:

(10) ~J c H1(X, W* / cxW*)

to be the sub A-module generated by the elements d(~) E

H1(X, W*/cxW*) for all ~ E r.J.

§ 6. Annihilation of cohomology.

The following theorem, up to change of language and
axiomatic setting, is due to Flach, and its proof is simply
copied from the proof of Proposition 1.1 of [F].

Theorem 1: We suppose our running hypotheses. We
suppose that the 6-vanishing hypothesis holds for all non

zero-divisors ~ E A, i.e., H1(6, W[~]) = 0 where 6 is as in

the beginning of § 5.

Then if a Flach system of depth cx exists,

(11) H1(X, W[cx]) = H1(X, W)[cx] = H1(X, W).

Proof: The first equality is just from the lemma of §1. It

is the second equality, giving that H1(X, W) is annihilated

by cx that is the point of the Proposition. Let x E H1(X,W).

Since H1(X, W) is A-torsion, we may assume that x is
annihilated by ~ for some non zero-divisor and non-unit
in A; we can (and do) fix such a ~ to be a multiple of cx.
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By the lemma of §1, again, x E H1(X, W[o-]) and we must
show that x is annihilated by cx.

Lemma 1: If ~ E r, the restriction res~ (x) E H1(G(Q~ ,W[ 0-]) !

of the class x is annihilated by multiplication by cx.

Proof: Let the image of x in H1(GQ, W[o-]) be denoted xQ'

Fix a prime number ~ E r, and any scalar .B E A. Consider

the cohomology class .B.c(~) E H1(X-{~}, W*). let .B.c(~)Q E

H1(GQ, W*/o-W*) denote the image of this class after

projecting the coefficient module to W*/o-W*, and passing
to GQ-cohomology. Form the cup-product of the

cohomology classes xQ and .B.c(~)Q:

xQv.B.c(~)Q E H2(GQ, W[o-](8)7L W*/o-W*),
p

and, using the natural pairing W[o-](8)7Lp W*/o-W* -+ I-lpoo

we get a cohomology class which we will denote

(12) xQ v .B.c(~)Q E H2(GQ, I-lpoo).

If q is a prime number different from ~, then the local
invariant at q of the cohomology class (12) is zero. This is
because, by hypothesis and construction, the restriction of

both classes xQ and ~.c(~)Q to GQ -cohomology lie in the
q

finite parts of their respective cohomology groups and so
these classes are orthogonal under cup-product. Since the
sum of all the local invariants of the global cohomology
class (12) is zero, we then get that the local invariant of
(12) at the prime ~ is zero, as well. In other words, the
classes res~(x) and .B.c(~)s,~ are mutually orthogonal in

the pairing:
,
,
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(13) Hf1(GQQ' W[~]) x Hs1(GQQ' W*/~W*) ~ Qp/lLp. j

Bu t A is Hermitian in the above pairing, and by Lemma 3

of §4, we may identify Hs1(GQQ' W*/~W*) with A/~A,

viewed as A module, and moreover, the identification can
be made in such a way that c(Q)s,Q is identified with ()(.

Via the duality (13) we may use the above identification

to identify Hf1(GQQ' W[~]) with the A-module

Hom lLp (A/~ A, Qp/lLp)

and the element resQ(x) E Hf1(GQQ' W[~]) is identified

with a "homomorphism" r: A/~A ~ Qp/lLp such that

r(~O()()= O. This being true for any ~ E A, we have that

()(or=O, i.e., resQ(x) E Hf1(GQQ' W[~])[()(].

0

Since the image of ()(oX in Hf1(GQQ'W[~]) is zero for all Q

E r., in the terminology of §3 of Chapter 2 we have that

()(oX E lli,81(W[~]) where ,8 is the set of prime numbers r..
Since r.(~) c r., we have that

llir.1(W[~]) c lllr. 1(W[~])
(~)

and therefore Theorem 1 then follows from the following
refinement of Prop. 4 of § 3 of Chapter 2 (and the ~-
vanishing hypothesis for ~), where ~ is as defined there,
or again in the discussion at the beginning of § 5.

Lemma 2: lli,81(W[~])c H1(~, W[~]), when -8=r.(~).
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Proof: Using the exact sequence (7) it suffices to show

that if c E lli,,81(W[15']) then the ~-invariant

homomorphism tp = tpc: GK ~ W[ 15'] is zero.

Recalling the discussion at the beginning of §5, let L/(Q be
the finite Galois extension containing K, such that L is the
field fixed by the kernel of tp, we have r = Gal(L/K), and

we denote by tp again the induced injective ~-
eq~ivariant homomorphism tp: r-+ W[15'].

Choose 'T E Gal(L/Q) a complex conjugation. For every g
E r= Gal(L/K) choose a prime number Q = Qg unramified for

p such that there is a prime 1) of Labove Q = Qg in Q

whose associated Frobenius element FrobL/Q(1)) E

Gal(L/Q) is equal to 'Tog. Let A be the prime of K lying
under the prime 1) of L. The projection of FrobL/(Q( 1)) to

FrobK/Q(A) in ~ =Gal(K/Q) is equal to 'T, and therefore the

prime numbers Q= Qg are all in L(15') =,,8. The residue

field degree of A over Q is 2 (recall: 'T is of order two) and

therefor.e FrobL/K(1)) = ('Tg)2. Since c is assumed to be in

lli,,81(W[15']) , the restriction, resQ(c), of c to H1(GQQ'W[15'])

vanishes. It follows that tp(FrobL/K( 1))) = tp( 'Tg'Tg) = o. But

both 'Tg'T = 'Tg'T-1 and g lie in r, and tp is a

homomorphism, so therefore:

(14) tp( 'Tg'Tg) = tp( 'Tg'T-1) + tp(g) = tp('Tg) +tp(g) = 0 (g E r).

Since tp is ~-equivariant, tp('T g) = 'Totp(g), and therefore
(14) gives us that the image, }f. = tp(r), of the

homomorphism tp lies in W[15']-, the subspace of W[15']
where 'T acts as -1. Moreover, }f. is stable under the action
of ~.

Since 15' is a non-unit in A, W[m] C W[15'], and the action of
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6 stabilizes W[m]. As discussed previously, W[m], being

the Cartier dual of W*/mW*= Symk2(p) is a k-vector

space of dimension 3, and is irreducible as a 6-
representa tion space.
To conclude the proof of Lemma 2 (and the Theorem) we
must show that X = O. For this it suffices to show that
XnW[m] = O. From the above discussion we have that

Xn W[m] c W[m]- and since both X and W[m] are 6-

stable, so is XnW[m]. But since det(p) is odd, W[m]- is a
vector space of dimension 2 over k, and therefore can
contain no nonzero 6-stable sub-vector spaces. Therefore
Xn W[m] = O.

0

§ 7. Left nondegeneracy in the Bockstein pairing.

One can get a bit more out of the machinery of the
proof of Theorem 1. For this, let us assume again that the
6-vanishing hypothesis holds for all non zero-divisors ~ E

A.

Now consider the Bockstein pairing relative to «X,<X),

denoted {-,-}<x <X ' as introduced in (14) of § 5 of Chapter 2:,

(12) H1(X, W[<x]) x H1(X, W*/<xW*) ~ ~p/7Lp.

(x , y) 1-+ {x,y}={x,y}<x <X
,

Suppose that we are given a Flach system of depth <x,

with ~«X) c H1(X, W* /<xW*) the A-submodule

generated by the images d(~) of all the classes c(~) for ~ E
L«x), Consider the restriction of the Bockstein pairing

(12) to
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(15) H1(X, W[<x]) x ~«X) ~ (QpllLp.

(x , y) ~ {x,y}

Proposition 1: The restriction of the Bockstein pairing

(15) is left-nondegenerate. That is, if x E H1(X, W[<x]) has
the property that {x,y} = 0 for all y E ~«x), then x=O. The

left-nondegenerate pairing (15) induces an injection of A-
modules,

(16) 0 ~ H1(X,W) ~ HomlLp(~«X)' (QpllLp).

Proof: Let y E ~ be the image of a Flach class c(~) for ~
E .L.«X). Recall the definition of the Bockstein pairing

associated to the exact sequence

0 ~ W*/<xW* ~ W*/<x2W* ~ W*/<xW* ~o.

According to the definition, we must first find a finite set

S of primes such that the element y E H1(X, W*/<xW*)

lifts to aYE H1(X-S, W*/<x2W*). But the Flach class
itself is such a lifting, i.e., we may take S = {~} and Y =
c(~). Next we must restrict Y to the primes of S, which in
our present case means ~, and project this restriction to
the singular quotient getting an element we denote Y~ E

Hs1(G(Q~, W*/<x2W*), By Lemma 3 of §4, the A/<x2A- I
module Hs1(G(Q~, W*/<x2W*) is free of rank one, and by '1

the axioms for a Flach system, Y~ is of singular depth <x,
i.e., Y~ is a genera tor of the (free, rank one) AI <xA -

submodule

Hs1(G(Q~, W*/<xW*) C Hs1(G(Q~, W*/<x2W*), ~

Then, the Bockstein pairing {x,r.y} for rEA is given by
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the value <resQ(x), r.YQ> of the local pairing < - , - >:

(

Hf1(G(QQ' W[cx]) x Hs1(G(QQ' W*/cxW*) --+ (Qp/7Lp.

It follows from nondegeneracy of this pairing, that if x is

an element in H1(X, W[cx]) which lies in the nullspace of ~
relative to the pairing (15), then resQ(x)=O for allQ E

L(cx), i.e., x E 1ll,,81(W[cx]) where,,8 = L(cx). Lemma 2 in

the proof of Theorem 1 then allows us to conclude left-

nondegeneracy of the {cx,cx}-Bockstein pairing, and, using

Theorem 1 we get the stated inclusion (16), thereby

concluding the proof of the present Proposition.

0

Let length denote the length of an A-module.

Corollary: In the above situation,

(16)

length {H1(X,W[cx])}=length {H1(X,W)} ~ length {~}. "-

§8. Gorenstein rings and congruence elements
(minimalist version).

Here we wish to review very briefly a mild modification

of the notion of congruence ideal due to Andrew Wiles

(exposed in his lectures at the Newton Institute,

Cambridge in June 1993; see also the distributed notes of

H. Lenstra).

Suppose that our commutative, local, faithfully finite flat

7Lp-algebra of scalars, A, is Gorenstein. If k is its residue

field, we may view A as W(k)-algebra via the canonical
homomorphism W(k) --+ A which induces the identity on j

~

!
,
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residue fields. Let us recall that A is Gorenstein if and only
if these equivalent conditions hold:

(a) Hom 7Lp (A,7Lp) is a free A -module of rank 1.

(b) HomW(k)(A,W(k)) is a free A-module of rank 1.

(c) HomA( A(8)7L A, A) is a free A(8)7L A-module of rank 1.
p P

(d) HomA( A(8)W(k)A, A) is a free A(8)W(k)A-module of

rank 1.

Some comments are in order: The "Hom's" mean module-
homomorphisms over the coefficient ring which occurs in
the subscript. For (c) and (d) we are viewing A@7L A and

p
A(8)W(k)A as A-modules by letting an element a E A act on

A(8)7L A via multiplication by 1(8)a, and the same for
p

A(8)W(k)A. The module in (c) is given its canonical

A(8)7L A-module structure, and the same for (d).
p

For B any finite flat 7Lp-algebra, let us call a Gorenstein

tracel (over B) a homomorphism tr: A (8) 7L B ~ B of
p

1 Eventually I would like to replace this section of the notes by some more

elaborate discussion of the Gorenstein condition. But for now I must at least

warn the reader that to use the word trace in the phrase Gorenstein

trace might be misleading. The reason for possible confusion, of course, is

that there is the other, more natural and more standard, trace mapping

Trace A17Lp: A -+ 7Lp

whose value on a E A is simply the ordinary trace of the matrix with entries

in 7Lp obtained by multiplication by a (choosing a 7Lp-basis of A which is a

free 7Lp -module of finite rank). And these traces can be different. For

example, if A is a complete intersection A = 7Lp[[Xl,X2,...,XnJJI (fl,f2,...,fn),

(flat over 7Lp) then A possesses a Gorenstein trace (over 7Lp) tr which

bears the following relation to Trace AI7L defined above. Trace AI7L is equal
p p
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B- modules which is an A<&IlL B-generator of the (free)
p

A<&IlLpB-module HomB(A<&IlLpB,B). Fix such a Gorenstein ~

trace tr over A. So tr is an A-module homomorphism

tr : A<&IlL A ~ A.
p

Let TT: A<&IlL A ~ A (a<&lb ~ a.b) denote the natural
p

homomorphism of A-algebras.

Consider the composition

TTt TT
A == HomA(A,A) ~ HomA(A<&IlL A,A) == A<&IlL A ~ A,

p P

where the isomorphism in the middle is given by sending

u E A~lL A to u.tr E HomA(A<&IlL A,A), and where TTt is
p p

the "transpose" of TT, i.e., the A-module homomorphism
obtained by applying the functor Hom A (- ,A) to TT. The

above sequence of homomorphisms are all A-module
homomorphisms, and therefore the composition, which is
an A-module endomorphism of A, is given by
multiplication by a unique scalar 1') E A, called the
congruence element of A. Although the congruence
element 1') depends upon the choice of Gorenstein trace
over A, the ideal that it generates does not and is called
the congruence ideal of A.

Exercises: 1) If we perform the "identical" construction
using A<&IW(k)A rather than A<&IlL A, we would get the

p
same congruence ideal (1')) c A.

2) The congruence element 1') is a non zero-
divisor in A if and only if A is reduced, i.e., A <&IlLp ~p is a

to tr times the image in 7Lp of the determinant of the jacobian matrix

(CJfi/CJX j).
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Iproduct of fields. '

§ 9. Cohesive Flach Systems.

Up to now, in our preparatory study of Flach's
method, we have formulated the notion of "Flach
System", which represents a good deal less than what
the constructions of Flach provide for us in some concrete
instances. The point of that exercise in axiomatics, of
course, was to invoke the bare minimum equipment
needed to get the type of annihilation results obtained in
the past two § 'so

But as we shall show in Parts II and III, the
cohomology classes produced by Flach's construction fit
together into a rather "tight structure". Specifically,
Flach's construction produces what we will be calling a
Bilateral Flach Derivation in Chapter 10. But for ease
of exposition, it seems natural to pave the way for the
axiomatics of Chapter 10, by first introducing an
axiomatic structure weaker than the notion of Bilateral
Flach Derivation, yet stronger than the bare notion of
Flach System. The existence of this "intermediate
structure", which we call Cohesive Flach Systems, is
already sufficient to yield all the arithmetic applications
explicitly given in these course notes.

To review our running hypotheses: The prime p is > 2.
We are dealing with H a free A-module of rank two,
endowed with a A[G(Q,L]-module structure giving rise to a

representation

/
p: G(Q,L --+ GL2(A)

satisfying the p-cyclotomic determinant condition (1). We

suppose that the Sym2(~), the symmetric square of the
residual representation p is absolutely irreducible. For
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W* and W as in §3, we have supposed the local
ramification conditions at primes ~ E L as described in
§3.

We now add to our running hypotheses by also assuming
from now on that the f:1-vanishing hypothesis holds for all
non zero-divisors ~ E A.

Definition: Let (X E A be a non-zero-divisor, A Cohesive
Flach System (of singular depth (X) for the A[GQ]-

module H is a rule which assigns to each prime number ~

not in L a cohomology class c(~) EH1(X-{~}, W*) satisfying
these properties:

1) The singular depth of c(~) at Q is divisible by (X for all
, prime numbers ~ f/ L (cf. Definition 2 of §4)

[ Hence, for each prime number ~ f/ L, the image of

c(~) in H1(K-{Q}, W*/(XW*) is equal to the image of a

unique element, call it d(~), in H1(K, W*/(XW*) ]

2) For all ~ E L, the singular depth of c(~) at ~ is equal
to (X (cf. Definition 1 of §4)

[ Hence restricted to ~ E L, Q ~ c(~) is a Flach System of
singular depth (X ]

3) There is a unique derivation e : A -+ H1(X,W*/(XW*),

from the ring A to the A-module H1(K,W*/(XW*) with
the property that for each prime number ~ f/ L,

(17) e(T~) = d(~) E H1(K,W*/(XW*),

where T~ E A is the ~-th Hecke operator (cf. §1 above). ,

If we denote by D: A -+ QA = QA/W(k) the universal
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W(k)-derivation of A into the A-module of Kahler

differentials2, then axiom 3) is equivalent to asking that
there be a unique homomorphism of A-modules

(18) h : QA -+ H1(X, W* / cxW*)

such that h(D(T Q)) = d(Q) for all prime numbers Q f;/~.

Clearly, if we are given a Cohesive Flach System, the A-

module ~(cx) c H1(X,W*/cxW*) (cf. §7 above) generated

by the classes d(Q) for all Q E L(cx) is contained in the :

image of QA under the homomorphism h. It follows that

if we first use Theorem 1 to identify H1(X, W) with '

H1(X,W(cx]), and then "pull back" the {cx,cx}-Bockstein
pairing (via h) to a pairing,

(19) H1(X, W) x QA -+ (Qp/lLp'

we get left-nondegeneracy of (19), and therefore get a
natural inclusion of A-modules

(20) 0 -+ H1(X, W) -+ HomlL (QA' (Qp/lLp).
p

Corollary: Given a Cohesive Flach System (of any depth),
then

length {H1(X, W)} ~ length {QA}.

2 Whenever there is a choice we mean continuous derivations and Kahler

differentials; a good reference for the theory of deriviations and differentials

is Grothendieck's EGA IVa 20.3-20.5. Another source is Ch 10 in Matsumura,

H. : Commutative Alg:ebra W.A. Benjamin Co. New York (1970). A quick

compendium, with proofs referred to Matsumura is given in Hartshorne, R.:

Alg:ebraic Geometry Springer (1977) II §8. ,
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Remark: Beilinson pointed out to me that since we may
multiply any Cohesive Flach System (CFS) of depth cx by
an non-zero-divisor ~ E A, to get a CFS of depth cx~, it
might be more natural, given a CFS of depth cx, to "divide"
the e and the h of (17) and (18) by cx, i.e., to view the
range cohomology group as a submodule in

H1(G(Q, W* (8) (Qp/lLp)

and thereby hope to have (17) and (18) somewhat less
"dependent" upon the particular CFS from which it comes.

72

.I~,"J :";,~;"



Chapter four: The deformation theo~ of rank two
Galois representations

§ 1. Our basic set-up for this Chapter.

We retain all the notation introducted in Chapter 3. Our
ring of scalars A is, as usual, (commutative), complete,
local, faithfully flat and finite over lLp and the prime

number p is > 2. We let H be an A[G(Q,L::]-module which is

free of rank two over A; H determines a homomorphism

p: G(Q,L:: ~ AutA(H)

which gives us an equivalence class of representations
which we shall also denote p: G(Q,L:: ~ GL2(A), and the

associated residual representation we denote, as usual.' p:
G(Q,L:: ~ GL2(k).

We assume that ~ym2(p ) is absolutely irreducible,
which implies that p is absolutely irreducible as well. We
assume that the p-cyclotomic determinant
condition holds, i.e., that

detA(p): G(Q ~ lLp* c A*

is given by the p-cyclotomic character X: G(Q ~ lLp*.

Local conditions:

If ~ E L:: and ~ ~p: Assume further that if ~ E L:: and ~
~p, the restriction of the representation p to G~~ is semi-

stable, and that p is ramified.

This means, in down-to-earth terms, that if I~ is an

inertia group at ~ then I~ acts on H through the p-part of

its tame quotient I~ ~ lLp(1), and if ~ is a choice of
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topological generator of lLp(1), then the action of ~ is given

for a suitable A-basis of H by the matrix:

[~ ~].

In slightly less coordinate-dependent terms, note the

following equivalences:

Lemma: Let G be a commutative noetherian local ring
with residue field k. Let X be a free G-module of rank two
over G, and ~: X -+ X an A-linear homomorphism. These

conditions are equivalent:

(i) There is an G-basis of X with respect to which the
action of ~ is given by the matrix:

[~ ~].

(ii) We have (~-1)2=0, and ~@k is not the identity in

X@Gk.

(iii) The image of ~-1 : X -+ X is equal to the ker(~-1),
and is a free G-module of rank 1, sitting as a direct-
summand in X.

Proof: (iii) is equivalent to (i) which clearly implies (ii).

Now assume (ii), and let v=~-1, so that v2=0 on X.
Consider the mapping

X -+ v.X c X[v] c X

whose composition gives v: X -+ X. Since v@Gk is nonzero,

we have that the inclusion X[ v] c X induces a nontrivial
homomorphism X[ v]@Gk -+ X@Gk, and so we can find an
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element x in X[1J] C X which reduces non trivially in
X 18) Cik. By Nakayama's lemma (and the fact that X is

free of rank 2 over Ci) we can find a element y in X such
that x,y is a free G-basis for X. The matrix for 1J in
terms of the basis x,y is then

[~ ~J.

where u.v=O, v2=O, and u and v are not both in the
maximal ideal of G. It follows that u is a unit, and
consequently v = 0. Changing x to u.x, we have found a

basis for which the matrix for 11' is:

[~ ~].

0

If ~ = p: Assume that the restriction of the ~ '

representation p to G(Qp is "Barsotti-Tate" in the usual

sense that it is isomorphic to a G(Qp -representation (of

dimension 2.[A:lLp]) coming from a Barsotti-Tate group

over Spec lLp'

§ 2. The deformation theory for p. Let us make a
choice of residual representation

(1) p: G(Q,2: ~ GL2(k),

(as homomorphism, rather than just conjugacy class of
homomorphisms). We wish to make use of a bit of the
deformation theory developed last semester. By a
deformation of p to a noetherian complete local ring G
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with residue field equal to k we mean a lifting of the
homomorphism (1) to a. strict equivalence class of

homomorphisms,

(2) PG: G~,2: -+ GL2(G),

(two homomorphisms being strictly equivalent if they
can be conjugated one to another by an element in GL2(G)

which reduces to the identity in GL2(k)). It is convenient

to "choose" a representative homomorphism PG in each

deformation class and to make the minor abuse of
language of referring to the homomorphism PG ''as the

deformation class" but we will try not to allow any
confusion to result, and in any event will explicitly signal
whether it is the deformation class, or a particular
homomorphism in it, that is being discussed.
Let R unlV (p) stand for the complete local noetherian ring

with residue field k which is the "universal deformation
ring" for the residual representation (1). This exists since
P has been assumed to be absolutely irreducible. Let R
denote the "somewhat less universal" deformation ring
which classifies deformations of P to complete local
noetherian rings G with residue field k which have the
property that

(3) (i) p-cyclotomic determinant condition. The
determinant detG(PG) : G~ -+ G* is the

composition of the p-cyclotomic character X: G~

-+ 7Lp* with the natural homomorphism from

7Lp* to G*,

(ii) Local conditions away from p. The
representation PG is (unramified outside 2:, and)
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semi-stable at primes ~ E ~ with ~ ~p, ;

(iii) Local condition at p. The representation
PG is "pro-finite flat" (meaning that for all finite

artinian quotients, Go of G, the induced

representations PGo satisfie~ the finite flat local

condition at p).

That this deformation problem is actually representable
with the subtle finite flatness condition at p is a result of

Ramakrishna ([R])l.
If G is lLp-torsion free, condition (iii) is equivalent to !

asking that PG be "Barsotti-Tate" ( ).

Universality of the ring R means that we have a

representation

(4) PR: G<Q,~ -+ GL2(R),

satisfying the conditions of (3), determined up to
conjugation by an element of GL2(R) which reduces to

the identity in GL2(k), such that if we are given any

deformation (2) of (1) satisfying (3) there is a unique
W(k)-homomorphism R -+ G. such that PG is induced

from PR.

Now choose any finite set of primes S and consider the
"less restricted" problem of classifying deformations of P
which satisfy the same determinant condition as (3i)
above, and which are required to have all of the local
behavior required in (3ii) and (3 iii) above for all primes ~

, This theory was explained last term; cf. e.g. [M] for the

general theory related to Runlv . The ring R is a quotient of

R unlV as will be shown in the next Lemma.
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which are not in S, but we impose no conditions at ~, for
~ E S. Call RS the complete local noetherian ring with

residue field k which classifies this problem, and PRS: GQ

-+ GL2(RS) the "universal deformation" for this problem.

So PRS is unramified outside 2::US; PRS satisfies the local

conditions (3ii) and/or (3iii) on the complement of 2::nS in
2::; and there are no a priori local requirements for PRS

on the complement of 2::nS in S. We have R = Rj2f, and

for inclusions S c T we have natural mappings RT -+RS'

Lemma: The mappings RT -+ RS are surjections.

Proof: Let S C T be an inclusion, with T a finite set of
prime numbers. Let <J(. C RS be the image of RT' and let

P~ be the deformation of P to <J(. induced from the

deformation PRT via the surjection RT -+ <J(.. The

deformation

P <J(.: GQ, SU 2:: -+ GL2«J(.)

has the property that extending scalars from <J(. to RS the
induced deformation is equal to PRS. We wish to show

that the representation P<J(. satisfies the local conditions

(3ii) and/or (3iii) at prime numbers ~ in the complement
of 2::nS in 2::. For then, the representation P<J(. would

satisfy all the requisite properties for it to be "classified"
by the universal deformation PRS' giving us a ring-

homomorphism RS -+ <J(. whose composition with the

inclusion <J(. C RS gives the identity automorphism of RS; in

other words, giving that <J(. = RS'
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For this, first consider the case of a prime number ~ ~p
in the complement of LnS in L. Then we must show that

if N = <J(, x <J(, is the free <J(,-mod ule of rank two endowed
with G(Q-action via the homomorphism P<J(,: G(Q,2:US -+

GL2«J(,), and if ~ E lLp(1) is a topological generator, we

must show that (~-1) satisfies any of the three
equivalent conditions of the Lemma of § 1, for G= <J(" and
X=N = <J(,x <J(,. But if we extend scalars M= N(8)<J(,RS we do

have condition (ii) of the Lemma of §1 for G=RS' and

X=M, i.e., (~-1)2=O and (~-1) is not the identity after
tensoring with k. Since N C M and M(8)RSk = N(8)<J(,k,

condition (ii) persists for G=<J(, and X=N.
0

Next, suppose that p is in the complement of 2:nS in 2:.
We must show that P<J(, satisfies the (pro-) finite flat

condition at p. But we know that PRS does. What we

want, then, follows from the fact that if 'JT1. is a G(Q -
P

representation "attached to" a finite flat group scheme 'JT1.
over Spec(lLp), and if n C 'JT1. is a sub-module which is

stable under the G(Q -action, then n is "attached to" a
p

~ ~

finite flat subgroup scheme n c 'JT1. over Spec(lLp). Here

the phrase "attached to" means: is the natural Galois
represen tation on Qp-rational points; e.g., 'JT1. = 'JT1. (Qp)'

The subgroup scheme n is given be the Zariski closure of
n, viewed as a subgroup scheme of the generic fiber, in

'JT1..

0

Until further notice, the only deformational problems
related to p that we will consider in this course are the
problems classified by the rings RS' and so we will just

refer to RS as the universal ring (relative to g).
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Since the deformation p: GIQ,L:; ~ GL2(A) of § 1 satisfies

all the requirements of the classfication problem solved
by the ring R (and a fortiori by the rings RS) we have a

canonical W(k)-homomorphism Tr: R ~ A coming from
the universal property satisfied by the ring R. This Tr is
the unique W(k)-homomorphism which brings the
universal representation PR to p. Denote by TrS: RS ~ A

the composition of Tr with the natural homomorphism
RS~ R. It will be useful at times to view A as R-algebra

(and as RS-algebra) via the structure homomorphism Tr

(and TrS).

§ 3. The deformation-theoretic interpretation of

the cohomology of EndAo(H)~lL IQp.
p

In this section it is convenient, but probably not
necessary, to assume that A is Gorenstein. By the
Corollary of §2 of Chapter 3, it is equivalent to assuming
that H have a polarization. Fix, then, a polarization 'l' of
H. We get, by Lemma 1 of §3 of Chapter 3, a canonical
iden tification of A[GIQ]-modules

1-

(5) W =: End A o(H) (8) lL IQp/lLp,
p

where Endo refers to endomorphisms of trace zero, and
W is the Cartier dual of W * which is defined to be

SymA2(H) as in Chapter 3.

In view of the local conditions satis;fied by H, the A[GIQ]-

module W is cleanly ramified at each ~ ~ p and is
crystalline at p since the functor Sym A 2 preserves

crystalline representations ( ). We impose, at each
prime number ~, the standard finite/singular structure
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on W, as described in Chapter 1.

If R. is a complete noetherian local ring with residue field
k denote by Q'R = Q'R/W(k) the 'R-module of Kahler

differentials. We now turn to a result, which in the
generality we state it is due to Wiles:

Theorem 2. Let S c X be a finite set of primes. There is
a canonical isomorphism of A-modules

A
(6) Hl(X-S, W) -+ HomA( QRS~RSA, A~lLp~p/lLp)'

Comments. We defer the proof of Theorem 2 to §4, and
§5. If S contains L, this is a fairly standard deformation-
theoretic identification. For variants, see [M-T]. If S
contains p, then it is also an essentially elementary
exercise; see §4 below. The subtle part of Theorem 2 (due
to Wiles) comes in the case when S does not contain p; see
§ 5 below. In this case we are really dealing with the finite
flatness condition at p that we have imposed on the
deformation problem, i.e., we are using the theory of
Ramakrishna [R] cited previously, and (for the first time
in the course!) we really must come to grips with the
imposed crystalline finite/singular structure at p.

Changing the polarization 'Ii to a-'Ii with a E

A* changes the isomorphism A of the Theorem to a-A.

Corollary: We have a "canonical" isomorphism of A-
mod ules

~
(7) Hl(X-S, W) -+ HomlLp( QRS~RSA , Qp/lLp ).

-
Remark: The quotation marks around the word
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"canonical" is just to remind us that E. will turn out to
depend on a choice of polarization, and a choice of
Gorenstein trace as will be clear in the proof below.

Proof of the Corollary: This turns on the following
fact. Fix a Gorenstein trace over lLp' tr : A -+ lLp , and let

tr again denote the induced homomorphism
tr (8)1: A(8)(Qp/lLp -+ (Qp/lLp' Now,

Lemma. Let M be an A-module of finite type. Then the
homomorphism

Hom A (M , A (8) lLp (Qp/lLp) -+ HomlLp (M ,(Qp/lLp )

<p ~ tr 0 <p

is an isomorphism of A-modules (call it the trace
isomorphism) .

Proof: Resolve M by free A-modules of finite rank,
T

(8) Ar -+ As -+ M -+ 0,

so that M is finitely presented by the s x r matrix T, with
entries in A. Applying HomA( -, A(8)(Qp/lLp) to (8) gives us

an exact sequence,

0-+ Hom A (M,A(8) (Qp/lLp) -+ Hom A (A s,A(8) (Qp/lLp) -+ Hom A (Ar ,A (8) (Qp/lLp)

which we can "evaluate" as

Tt~1

(9) 0 -+ HomA(M,A(8)(Qp/lLp) -+ As (8) (Qp/lLp -+ Ar(8)(Qp/lLp,

where Tt is the transpose r xs matrix to T. On the other
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hand, applying HomlL (-, ~p/lLp) = Hom( -, ~p/lLp) to (8)
p

gives us an exact sequence of A-modules,

0 ~ Hom(M'~p/lLp) ~ Hom(A S'~p/lLp) ~ Hom(A r '~p/lLp) ,

which can be identified with

Tt(8'/1

(10)
0 ~ Hom(M'~p/lLp) ~ Hom(A,lLp)S(8'/ ~p/lLp~ Hom(A,lLp)r(8'/ ~p/lLp'

where Tt is, again, the transpose to T, operating as
indica ted.

We may now assemble (9) and (10) into a commutative

diagram,

Tt(8'/1

O~HomA(M,A(8'/~p/lLp) ~ AS(8'/~p/lLp ~ Ar(8'/~p/lLp'

1 1 1

0 ~ Hom(M'~p/lLp) ~ Hom(A,lLp)s(8'/ ~p/lLp~ Hom(A,lLp)r(8'/ ~p/lLp

Tt(8'/1

where the vertical arrows are all induced by the Gorenstein
trace tr (i.e., the left-most arrow as described in the
statement of our Lemma, the middle arrow given by

(a1,a2,...,as) (8'/ b ~ (a1. tr ,a2. tr ,..,as. tr) (8'/ b.

Since the two right vertical arrows are isomorphisms of A-
modules, so is the left-most, giving our Lemma. Composing
the mapping A of the Theorem with the trace isomorphism
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of the Lemma gives the isomorphism E" and our Corollary.
Note that E, depends on both the choice of a polarization

and of a Gorenstein trace.

D

§4. Beginning the proof of Theorem 2.

We begin with a standard isomorphism in the
deformation theory of Galois representations:

Proposition 1. Let S be a finite set of primes containing
L, and let J c A be an ideal. There is a canonical

isomorphism,
K

H1(G(Q,S, EndA o(H/J.H)) ~ HomA ( QRS~RSA, AIJ).

-

Proof: Let p: G(Q,S ~ AutA(H) be our initial

representation. Form the A-algebra A= AE9£.AIJ, where
£2 = 0, so that we have the canonically split extension

1)
O~ £.AIJ ~ A ~ A ~ 0,

and form
I

H = H~AA = H E9 £.H/J.H

so that we have an exact sequence

1 ~ 1 + £.End(H/J.H) ~ AutA(H) ~ AutA(H) ~ 1

with a canonical splitting,
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AutA(H) = AutA(H) . (1 + £.End(H/J.H) ).

Given x E H1(GQ,S, EndA o(H/J.H)) we wish to define K(X).

Let

0c: GQ,S -+ EndA (H/J.H)

be a 1-cocycle representing x.

Define Pc(g) = p(g).(1+£.c(g)), which is a representation

lifting P, unramified outside S, and such that

detpc(g) = detp(g). (1+£.trace(c(g))) = det(p(g)),

the latter equality since c(g) has trace zero. It follows
that Pc satisfies the p-cyclotomic determinant condition

because p does, and therefore Pc satisfies all the

requirements necessary for it to be "classified" by RS' i.e.,

there is a canonical homomorphism,
Trc: RS -+ A giving rise to Pc. The homomorphism Trc'

dependent only on the strict equivalence class of Pc is

therefore independent of the choice of 1-cocycle c
representing the cohomology class x, for if c' is a 1-cocycle
represen ting the same cohomology class x as c , write c' = \

c+8(w) where W E EndA o(H/J.H) is viewed as "O-cocycle"

and 8 is the coboundary. Then Pc' is directly seen to be

equal Pc conjugated by the element 1+£.w in the kernel
of AutA(H) -+ AutA(H)} (and conversely: if p is the

conjugate of Pc by such an element 1+£. w, then p = Pc'
where c' = c+8(w)). With this understanding, we can
relabel our homomorphism Trc as Trx: RS -+ A since the

choice of 1-cocycle c no longer enters in to the game.
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This discussion yields the commutative diagram below,
which will still take some explaining:
(11)

0 0
1 1
~ -+ ~ ~RSA -+ EoA/J

1 1 1

1~rrs rrx~1
A A -RS~W(k)RS -+ RS~W(k)A -+ A

1 8RS 18Ao(rrs~1) 11)

RS -+ A = A

1 rrs 1

0 0

The ~ are completed tensor products; if ~ is a complete
noetherian local W(k)-algebra, the mapping 8~: ~ ~W(k)~
-+ ~ is the natural product homomorphism; the mapping
labelled rrx~1: RS ~W(k)A -+ A is viewed as A-algebra

homomorphism (where, of course, RS ~W(k)A gets its A-

algebra structure by the operation on the right).; the ideal
~ is simply the kernel of 8RS' and we view ~ as RS-

module, via the action on the right; viewing A as RS-

algebra via the structural homomorphism rrS allows us to

form the completed tensor product ~ @RSA. The

vertical sequences are exact, and we may view the
middle vertical sequence as arising from applying ~ RSA

to the left-most veritical sequence. "Dividing by ~2" in the
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top horizontal line of (11) gives us a diagram

S/S2 -+ S/S2 (8)RS A-+ e.A/J

(12)

1= 1= 1~

QRS -+ QRS(8)RS A -+ A/J.

K(X) '"

The homomorphism of A-modules K(X) that we want to
define is then given by the indicated arrow in (12).

To go the other way, begin by noting that any A-module
homomorphism K: QRS(8)RS A -+ A/J defines, threading

backwards through diagram (12), a canonical RS-module

homomorphism

uK : S -+ S/S2 -+ e.A/J.

Now note that the (right) RS-algebra RS ~W(k)RS admits
a natural splitting,

RS ~W(k)RS = RS $ ~.

Using this splitting we can define an Rs-algebra
homomorphism vK: RS~W(k)RS -+ A (where

RS ~W(k)RS is given its right Rs-algebra structure. and A
obtains its RS-algebra structure via the composition of

IrS: RS -+ A with the natural A-algebra structure of A )
by defining vK on S to be uK and on RS to be IrS.

Restrict vK' now, to the (left) RS = RS(8) 1 in RS ~W(k)RS

to give us a homomorphism, which we will call irK : RS -+
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A. This homomorphism induces a deformation PK of P to

A (induced from the given "universal" deformation to
RS). Taking PK to be represented by a given

homomorphism,
PK : G(Q,2: ~ GL(f{)

we can then obtain a 1-cocycle cK by inverting the

procedure of the beginning of this proof, i.e., define cK by

the formula

PK(g) = p(g).(1+£.cK(g))

and denote its corresponding cohomology class

X(K) E H1(G(Q,S' End A o(H/J .H)).

One checks directly that x ~ K(X) and K ~ X(K) are

two-sided inverses.
0

Corollary. Let S be a finite set of primes containing 2:.
There is a canonical isomorphism,

AS

H1(X-S, W) ~ HomA( QRS(8)RSA, A(8)(Qp/lLp),

-
(to be given explicitly in the proof below).

Proof. Taking J to be the ideal generated by p1J (1J=1,2,...)
in Proposition 1, gives us isomorphisms

K1J

H1(G(Q,S' EndA o(H/p1JH)) ~ HomA( QRS(8)RSA, A/p1JA)
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and "compiling" these isomorphisms via the natural
mappIngs

0 0 1
EndA (H/pVH)-?EndA (H/pv+ H) and A/pvA-?A/pvA

both given by multiplication by p, and noting:

Hl(G(1:;),S, EndA o(H) (8) (1:;)p/lLp) = indo limo Hl(G(1:;),S, EndA o(H/pVH))

V-?oo

Hom A ( QRS(8)RSA, A/pVA) = indo limo Hom A ( QRS(8)RSA, A/pv A)

V-?oo

gives the isomorphism
K

1 0 )H (G(1:;),S' EndA (H) (8) (1:;)p/lLp) -? HomA( QRS(8)RSA, A(8)(1:;)p/lLp .

Finally, making the identification (5) gives an

isomorphism

AS

Hl(X-S, W) -? HomA( QRS(8)RSA, A (8) (1:;)p/lLp).

0

Theorem 2 will then follow from:

Proposition 2. Let S be any finite set of primes. Let S =
SU L. There is an isomorphism of A-modules, AS, fitting

into the commutative diagram,
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As
H1(X-S, W) ~ HomA( ORS(8)RSA, A(8)(Qp/lLp)

1 1
AS

H1(X-S, W) ~ HomA( ORS(8)RSA, A (8) (Qp/lLp),

where the vertical arrows are (the natural) inclusions,
and where AS is the isomorphism given to us by the

previous Corollary.

Proof: The left-hand vertial mapping is injective as
follows directly from our definition of the cohomology
groups. The previous Corollary does indeed give us the
isomorphism AS since S contains 2:. The right-hand

. vertical morphism is indeed injective, as follows from the

Lemma of § 2. What remains be checked is most
conveniently expressed using some of the notation from
the proof of Proposition 1. Specifically, for any ideal J of
finite index in m c A, and any class,

x E H1(X-S, EndA O(H/JH))

we must show that x lies in H1(X-S, EndA O(H/JH)) if and

only if the representation Pc (for one choice of cocycle c

represen ting x, or equivalently, for all choices) satisfies
the local conditions (3ii) and/or (3iii) for each ~ E Sn2:.
Considering these conditions, one prime number at a time,
this discussion has shown that it suffices to prove:

Lemma: Let S be a finite set of primes, ~ a prime
number not in S, J an ideal of finite index in m c A, x
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an element in the A-module H1(X-SU{Q}, EndA O(H/JH)), c

a 1-cocycle representing x, Pc as in the proof of

Proposition 1.

Then x lies in the A submodule H1(X-S, EndA O(H/JH)) if

and only if Pc satisfies (3ii) if Q~p, and (3iii) if Q=p. ,(

Proof:

Let us first consider the case Q ~ p. By the defining
property of 1-dimensional cohomology over X-S, the class

x lies in the submodule H1(X-S, EndA O(H/JH)) if and only

if its restriction to Q, res Q (x) goes to zero in the singular

quotient,

Hs1(G(QQ' EndA O(H/JH)) = H1(I(QQ,EndA O(H/JH))GFQ . At

this point it is important to specifically fix an imbedding- -
(Q c ~Q so as to have a fixed imbedding I(QQ C G(QQ C G(Q

in mind. Having done this, then we can find a
representative 1-cocycle c for x which, when restricted to
I(QQ vanishes. Then the representation Pc(g) =

p(g).(1+£.c(g)) is evidently semi-stable at Q, since pis.
Going the other way, we choose ~ E I(QQ mapping to a

topological generator of lLp(1) (cf. notation as in Chapter

1), and fix a basis for H so that p(~) is given by the matrix

[ 1 1
]0 1.

Writing c(~) as a matrix (entries in AIJ)

[~ ~),

with r+v = 0, we now consider what conditions the entries
of the matrix c(~) must satisfy in order for
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[1 11[1+~or ~'Sl = [1+~o(r+u) 1+~o(V+S)

]10 1J l ~oU 1+~ovJ ~ou 1+~ov

to be unipotent. Since the trace must be 2, we have u= 0,
and therefore, since the eigenvalues. must "both" be 1, we

get r=v=O
\as well, leaving us with a matrix for c(~) of the form C

[~ ~],

but letting Co denote the coboundary of the "O-cocycle"

[~ ~J.

we have co(~) = c(~), i.e., res~(c) projects to zero in

GFHs1(G(Q~, EndA O(H/JH)) = H1(I(Q~,EndA O(H/JH)) ~ as

was to be shown.

§5. The case -P.=p. We now consider the case ~=p, this
being the first time that we must consider, in its
particularities, the finite/singular structure at p ****** (to be written)***********
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Chapter five. Deformation-theoretic implications of
the existence of Flach Systems, and of Cohesive Flach

Systems

§ 1. Our basic set-up for this Chapter.

Let A, p, p, H, W*, W, etc. be as in §1. Fix a polarization
'lI of H. Assume that A is Gorenstein, and fix tr :A-+ 7Lp , a

Gorenstein trace. Let 11 be the associated congruence
element of A. Assume that 11 is a non-zero-divisor of A
(equivalently, A~7Lp!Qp is a product of fields). Assume the

~-hypothesis for all non-zero-divisors ~ E A.

Let R be the universal ring for p, as in §2 above (relative
to S= the empty set of primes). We have the
homomorphism of rings rr: R -+ A. Assume that rr is \

surjective. This would be the case, for example, if A
were generated as 7Lp-algebra by the Hecke operators TQ

for all Q f/ L.

§ 2. Consequences of the existence of a Flach

System.

Now assume that we have a Flach System Q 1-+ c(Q)

of depth (X for W as in Chapter 2, where Q ranges
through prime numbers in r., and where the notation is
from §4, §5 of Chapter 2. For Q E r., we have denoted

d(Q) E H1(X,W*/<xW*) to be the "image" of the class c(Q),

and ~ c H1(X,W*/<xW*) the A-submodule generated by
the d(Q)'s for Q E r.. Applying Proposition 1 of §7 of
Chapter 2, we have that the «X,<x)-Bockstein pairing
restricted on the right to ~«x),

H1(X, W[<x]) x ~«X) -+ !Qp/7Lp
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is left-nondegenerate, and by Theorem 1 of Chapter 3, § 6,
we have that

Hl(X, W[cx]) = Hl(X, W).

Putting this together with the Corollary to Theorem 2 of
§ 3 in Chapter 4, applied in the case when S is empty, we
have that the {cx,cx} Bockstein pairing restricted on the
right to ~(cx) can be viewed as giving a pairing, "

(1) HomlLp( QR(8)RA , IQp/lLp ) x ~(cx) -+ IQp/lLp

which is nondegenerate on the left, and with respect to
which A is Hermitian.

Thus, given a Flach system of depth cx, we have (by
left-nondegeneracy of (1)) a natural injection

(2)

0 -+HomlLp( QR(8)RA , IQp/lLp) -+ HomlLp(~(cx) ,lQp/lLp)'

and, passing to Pontr jagin duals, a natural surjection,

(3) ~(cx) -+ QR(8)RA -+ 0

of A-modules.

Corllary 1: The length of QR(8)RA is finite, and less than

or equal to the length of ~(cx).

Corollary 2: If the depth cx of the Flach system is a unit
in A, then R=A=W(k).

Proof: For then QR(8)RA vanishes and therefore so does

QR and therefore the Zariski tangent space of R vanishes
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as well. Nakayama's lemma gives sur jectivity of W(k)
~ R; but the injection W(k) ~ A factors through the
surjection R ~ A; in a word, we have the equalities of the

Corollary.
0

Corollary 3 : Spec (A@lL (Qp) is open in Spec (R@lL (Qp)'
p p

Proof: Let X = W(k)@lLp (Qp, the field of fractions of !

W(k); let a = A@lL (Qp, which, by our assumptions is a
p

product of (finite) field extensions of X. Let <R, = R@lL (Qp.
p

We have the surjection of X -algebras induced by Tr, TT: <R,
A

~ G. Let a denote the semi-local X-algebra which is the
completion of ~ with respect to the ideal ker(TT). Since
QR@RA is of finite length over W(k), the X-vector space

aR@RA @W(k)X vanishes, and since

aU/X @<R, a = Q<R,/X @<R, a = QR@RA @W(k)X,

we have that a a/x @<R, a vanishes and hence (by a

application of Nakayama's lemma to the semi-local
A

complete ring a) we have that Q a/x vanishes as well,
A

giving that a = a and giving, therefore, the conclusion of
our Corollary.

0

§ 3. Preliminary consequences of the existence of
a Cohesive Flach System.

Suppose that the hypotheses of §5 are in force, and
beyond that let us (suppose that there exists, and) fix a
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Cohesive Flach System for the A[G(Q]-module H, as in

§ 9 of Chapter 3, of depth (X = T), where T) is a congruence

element for the Gorenstein ring A.

Combining the injective homomorphism (20) of §9 of
Chapter three (dependent, of course, on the Cohesive
Flach System):

(4) 0 -+ Hi(K, W) -+ HomlL (0 A, (Qp/lLp)'
p

and the identification

(5) HomlLp ( OR(8)R A , (Qp/lLp ).= Hi(X, W)

of the Corollary to Theorem 2 of § 3 of Chapter four
(dependent upon a choice of principal polarization of H
and of Gorenstein trace for A) we get, after passing to
Pontr jagin duals, a natural surjection of A-modules:

(6) °A -+ OR(8)RA -+ 0,

this surjection being dependent upon the hypothesized
Cohesive Flach System, and the choices enumerated
above.

Let us also recall the surjection (3) (but here with

(X=T)):

(7) ~(T)) -+ OR(8)RA -+ 0,

and the natural surjection

(8) QR(8)RA -+ °A -+0

(stemming from our hypothesis that Tr: R -+ A be

sur jective).

Combining, now,
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(a) the three surjections (6), (7), (8), and

(b) the inclusions ~(cx) C h(QA) C H1(K,W*/TiW*),

we deduce that all three surjections in (a) above are
isomorphisms of A-modules, and that the homomorphism

h: QA -+ H1(K,W*/TiW*) is an isomorphism of QA onto

the submodule ~(Ti)' To record some of this:

Corollary 1: The (surjective) homomorphism rt: R -+ A
ind uces an isomorphism of A -modules

QR(8)RA -+ QA.

D

Definition: Given a surjective homomorphism of
noetherian local rings, f:B -+A, with the property that the
induced mapping of A-modules QB(8) A -+ QA is an'

B
isomorphism, we shall say that f (or B) is an

evolution! of A.

So Corollary 1 can be rephrased as saying that the
universal deformation ring R is an "evolution" of A. For
an analysis of this notion of "evolution", see §4 below.

Corollary 2: In the above situation, the homomorphism

h : Q A -+ H 1 (K, W * / cx W * )

is injective.

1 The motivation for the term is just that, thinking of Spec A as a closed subscheme of Spec

B, the larger scheme Spec B possesses no new infinitesimal directions that can be seen from the
vantage-point of Spec A, i.e., whatever "growth" occurs, going from the smaller scheme to the
larger, follows in already set-down directions: it is an "evolution". I am thankful to David
Eisenbud for pointing out that this notion occurs in the papers of (See [ ], for example)
where the property in question is called "differentially basic".

;
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0

In a certain context, below, where A is Gorenstein we
will construct Flach Systems of depth cx equal to T), a
congruence element of A. Given such a Cohesive Flach
System, some questions come to mind:

1) Is the homomorphism h: °A ~ Hl(,X,W*/cxW*)

an isomorphism?

2) Composing the isomorphisms (6) and (8) we get A-
module isomorphism U: °A ~ °A. It doesn't quite (yet)

make sense to ask: What is U? This is because the
pairing <, > depends upon a choice of polarization, a
choice of Gorenstein trace, to say nothing of a choice of
Cohesive Flach System. Any change of the first two
choices entails modification by multiplication by a unit of
A. Also, since the depth of a Cohesive Flach System is
fixed to be T), one can still modify the System by
multiplication by any unit in A. Nevertheless it still
makes sense to ask: Is U given by multiplication by a unit
in A?

§4. Evolutions (minimalist version)
,

Let A be a (commutative, faithfully finite, flat, local)
W(k)-algebra such that A~ lLp Qp is a product of fields,

where k is the residue field of A. Recall from §3 above
that an evolution f:B ~ A is a surjective
homomorphism of complete (noetherian) local rihgs with
the property that the induced homomorphism of A-
modules, df: °B ~BA ~ °A ' is an isomorphism.

I am thankful to Hendrik Lenstra for enlightening
discussions on the topic of evolutions (and on other topics),
and for conveying to me the Lemma below which
provides a necessary and sufficient condition for the ring
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A to admit no nontrivial evolutions:

Let P = W(k)[[X1,"',Xn]] be a power series ring in n

variables over W(k); let (*) 0 ~I ~P ~ A ~O be a
presentation of A; and let U denote the kernel of the
induced homomorphism Op(8)pA ~ °A. We have a

natural surjection of A-modules v: 1/12 ~ U .

Lemma (Lenstra): These are equivalent:

1) A admits no nontrivial evolutions.

2) The induced homomorphism v(8)k: (I/I2)I8IAk ~U(8)Ak

is an isomorphism (for one, and equivalently for all
presentations (*))

3) the dimension of the k-vector space (I/I2)I8IAk is

less than or equal to the dimension of U(8)Ak (for one,

and equivalently for all presentations (*)).

Definition: If the ring A possesses the (equivalent)
properties above, we will say that A is evolutionarily
stable.

Proof of the Lemma: 3) ~ 2): For V(8)k is surjective.

2) ~ 1): Let B ~ A be an evolution, and we
can suppose that B is presented by P as well, giving a
diagram:

0 ~ J ~ P ~B ~ 0

1 1 1
0 ~I ~p ~A ~o

and
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J/J2 -+ Op@pA -+ °B@BA-+ 0

1 1= 1=
1/12 -+ Op@pA -+ °A -+ 0,

so that the composition J IJ2 -+ 1/12 -+ U is surjective.

Tensoring with k, we deduce, from 2), that

(J/J2)@Ak -+ (1/12)@Ak

is surjective, and therefore, by Nakayama, so is J -+ I.

1) ~ 2): Let n c (1/12)@Ak be a k-subspace complementary

to the kernel of 1)@k: (1/12)@Ak -+U@Ak, and let "(P1,...'"(Pr E n
be a k-basis. Lift the "(iJ j'S to elements <P j in I, and letting J =

«P1"",<Pr) be the sub-ideal in I of P that they generate, I

guess it is clear that B=P/J is a nontrivial evolution of A.
D

Corollary: If the W(k)-algebra A, satisfying the
properties above, is a complete intersection, then A is
evolutionarily stable.

Remark: In a forthcoming article written jointly with
David Eisenbud, the following result will be shown:

Proposition: Let A be local with residue field equal to k,
which is reduced, Gorenstein, finite flat over W(k), and
which has imbedding dimension ~3 over W(k) (i.e., the
relative Zariski tangent space of A is of dimension ~ 3
over k, or equivalently, the W(k)-algebra A admits a
surjective W(k)-algebra homomorphism from the power
series ring in three variables over W(k) ).

Then A is evolutionarily stable.
D
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A corollary of the above Proposition is

Corollary: Let A be local with residue field equal to k,
which is reduced, Gorenstein, finite flat over W(k), and
which has W(k)-rank $ 4.
Then A is evolutionarily stable.

D

Problem: Find any example of a local ring A which is
reduced and finite flat over W(k)-- and which is either
Gorenstein or not-- which admits a nontrivial evolution.

We still lack any such example!

Side comments concerning the cotangent complex:
It is natural to try to gain some perspective on the notion
of evolutions by appealing to the theory of the cotangent
complex ( [I] Illusie, L.: Com~lexe Cotan~ent et
Deformations I Lecture Notes in Mathematics 239
Springer- Verlag (1971)). In [1] a functor B 1-+ LB/C is

constructed from (commutative) C-algebras B to
simplicial B-modules LB/C (this simplicial B-module

being taken only up to quasi-isomorphism, and called the
cotangent complex attached to B/C). There is a
canonical isomorphism of B-modules HO(LB/C) .= QB/C.

Given a homomorphism of W(k)-algebras R ~ A, one gets
from the functorial construction of the cotangent complex
an induced homomorphism of simplical A-modules,

(9) LR/W(k)~RA ~ LA/W(k)

such that the induced homomorphism on homology in
degree zero gives the functorial homomorphism of A-.
modules,

(10) QR~RA ~ QA'

If the homomorphism (9) of simplicial A-modules is a
quasi-isomorphism, then it follows from [I] III 1.2.5.1
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and III 3.1) that R ~ A would be etale, and in our
situation ( R ~A a surjective homomorphism of complete
noetherian local rings) R ~ A would then be an
isomorphism. What axiomatics, if any, would refine the
homomorphism (6) to produce a homomorphism of
simplicial A-modules LA/W(k) ~ LR/W(k)@RA whose

induced homomorphism on homology in degree zero yields
(6)?

§ 5. Criteria for universality.

In this § we give some sufficient conditions for the-
representation p to be a "universal" deformation of, p in
the sense of § 2 above (i.e., satisfying the conditions (3)
there). Actually, as Kazhdan mentioned, one would prefer
to have necessary and sufficient conditions...

For clarity of the statement of the "criterion" below, we
include explicit mention in its text of all of our "running
hypotheses" along with the specific hypotheses we need
for this particular Proposition.

Proposition: (a criterion for a representation to be
"universal")

1) The context. Let p > 2. Let

p: G(Q ,L ~ GL2 (k)

be a residual representation such that Sym 2(p) is
absolutely irreducible, and which is (unramified for prime
numbers ~ (j L, and) semi-stably ramifi,ed, but actually
ramified, for all Q E L such that ~ ~ p, and which is
finite flat at p. Suppose that p is a deformation of p to a
local ring A with residue field equal to k, and which is a
reduced finite flat W(k)-algebra. Let H (= A x A) denote the

free rank two A[G(Q]-module given by the representation
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p, and suppose H is endowed with a (principal)
polarization (and therefore A is Gorenstein). We shall

make use of the notation W*, W with their usual
definitions. Suppose that p, W, A have the following
properties:

2) Conditions on p: The deformation p satisfies the p-
cyclotomic determinant condition; it is {unramified for ~
1;/ ~, and) semi-stably ramified for ~ E ~, ~ ~p; and it is
Barsotti-Tate at p.

3) Conditions on W: The 6-vanishing hypothesis holds
for all non-zero-divisors of A.

4) Conditions on the deformation of p to A: We
suppose that'A is generated by all the Hecke operators T ~

for ~ I;/~, and that a Cohesive Flach System exists for the
A[GQ]-module H.

5) Conditions on A: We suppose that A admits no
nontrivial evolutions, i.e., that A is "evolutionarily stable".

Conclusion: The deformation p of p to A is the
universal deformation of p ("universal" in the sense of
§2). Equivalently: The mapping n: R-+A determined by
the deformation p is an isomorphism.

Proof: Since A is generated by the Hecke operators T~ for
~ I;/~, the mapping n:R -+ A is surjective. Our other

hypotheses then allow us to apply Corollary 1 of §3,
giving that n: R-+A is an evolution, and therefore an
isomorphism by virtue of the condition we imposed on A.

0

Let us signal the conclusion above by the simple phrase.
"p is universal". Assume that we are given a p as in the
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context 1) above and assume that conditions 2), 3), 4),
are satisfied but hot (yet) that the mysterious condition
5) holds.

Corollary 1 (Wiles2): Under the above assumptions
1) -4), if A is a complete intersection, then "p is
universal".

Proof: Using the Corollary of §4, we have condition 5)
when A is a complete intersection.

0

Corollary 2: Under the above assumptions 1) -4), if the
W(k)-algebra A has imbedding dimension ~3 (or if A has
W(k) rank ~4) then "p is universal",

Proof: This follows from the result with Eisenbud quoted
in §4.

0

But, this Chapter and our axiomatic study has gone on,
perhaps, too long! In the second half of the course we will
study Flach's construction (of "Flach Systems").

2 This result ( in its essence, with minor differences, perhaps, in language

and setting) is a consequence of one of the results Andrew Wiles covered in
/)

his Princeton course (Spring, 94): Under the hypothesis that A be a complete

intersection, Wiles also discussed universality of p for cases of "raised level"

when p can no longer be assumed to be "cleanly ramified".
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Appendix A. Schur's lemma for complete local
noetherian rings.

Let TT be a profinite group and p: TT -+GLN(R) any continuous

homomorphism where R is a complete local ring with residue

field k. Let C(p) C GLN(R) be the subgroup of matrices in GLN(R)

commuting with the image of p. Then if the residual

representation p: TT -+GLN(k) obtained from p is absolutely

irreducible, the group C(p) is the subgroup of scalar matrices

in GLN(R).

Proof: It suffices to prove this for artinian local rings A, for

one then gets the full result by passage to a projective limit.
So let R = A be an artinian local ring with residue field k. Our

proof will go by induction on the length of A, noting that when

A= k, this is indeed one of the classical versions of Schur's

lemma. We therefore are led to consider a small extension,
0 -+ I -+ A -+ AO -+ 0

where I is a principal ideal ('T) annihilated by mA and assume

we are given p: TT -+GLN(A), a continuous homomorphism

which is residually absolutely irreducible, and denoting by
PO:TT -+ GLN(AO) the representation induced from p we may

assume, by induction, that C(PO) C GLN(AO) consists of scalar

matrices. Now take an element c E GLn(A) which commutes

with p(TT). By our inductive assumption, c projects to a scalar
matrix in GLN(AO). Modifying c by an appropriate scalar

matrix in GLN(A) we may assume that it reduces to the

identity matrix in GLN(AO). Since the kernel of

GLN(A) -+ GLN(AO) consists of matrices of the form I + 'ToMN(A)

and since 'T is annihilated by mA, c may be written as I+'T°S

for a matrix S E MN(A), and the image S E MN(k) is uniquely
determined by c. Moreover, we may write c = 1+'ToS' for any S'
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E MN(A) with S' = S. Since c commutes with p(n), the matrix
- -
S commutes with p(n), and therefore, by the classical Schur's
lemma again, S is a scalar matrix in MN(k), hence so is c.

0
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Part II : Constructions

) Chapter six. Cohomological Preliminaries

Reference text: [Milne 2] Milne, J.S.: Etale cohomolog~
Princteon Univ. Press (1980)

§1. Cohomological purity and its immediate
consequences.

In this section let S denote an irreducible base
scheme, which will eventually restricted to being the
spectrum of a field or a discrete valuation ring. Let V be
an irreducible smooth S-scheme. Let Z c V be a smooth
S-subscheme closed in V of codimension c. In the
terminology we used on Monday, (Z, V) is a smooth pair
over S. By a morphism of smooth pairs over S we
mean a morphism cp: (Z', V') -+ (Z, V) such that (both (Z', V')
and (Z, V) are smooth pairs, and) Z' is the scherne-
theoretic fiber product Z' = ZxVV'. Let (Z,V) be a smooth

pair over S, and set U = V-Z, giving us a diagram:

. 0
1 J

Z c-.. V ~~ U

~ 1 .,/

S .

Let F be a locally constant torsion sheaf for the etale
topology on V annihilated by an integer n which is
relatively prime to all the characteristics of the closed
points of S. [From Monday's lecture, we have the
theorem of cohomological purity-- cf. [Milne 2: Ch. VI §5
Thm 5.1; §6 Thm 6.1] --namely we can "evaluate" the
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sheaves Hr z(V ,F) for the etale topology on Z as follows:]

Theorem:

Hr Z(V ,F) = 0 if r ~ 2c, and

H2cZ(V,F) .= i* F( -c),

the isomorphism being canonical.

Consequences:

1) (Global cohomology with support) Since we have, "in
general", a Spectral sequence:

Hr(Z, HsZ(V ,F)) ~ Hr+sZ(V,F),

we get for our smooth pair (Z, V):

Corollary 1: There is a canonical isomorphism

Hr(Z,F( -c)) .= Hr+2cZ(V,F)

(called the "Gysin isomorphism", and given by cupping
with the fundamental class).

0

Corollary 2: Hr Z(V ,F) = 0 if r < 2c.

0

Corollary 3: If S is the Spectrum of a field K and Z = z
is the Spectrum of a field extension L/K, then

Hr z(V ,F).= Hr-2c(GL,F( -c)).

0
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Let us also record that, in the above context, if V denotes
the completion of V at z, we have

Hr z(V ,F) = Hr z(V,F) = Hr-2c(GL,F( -c)).

Applying the functor Extr V(-,F) to the exact sequence of

sheaves on V

0 -+ J!J*lL -+ lL -+ i*i*lL -+ 0

gives us a long exact sequence:

(1) .., -+ Hr z(V ,F) -+ Hr (V ,F) -+ Hr (0 ,F) -+ Hr+1Z(V,F) -+ .,'

and replacing the term Hr Z(V ,F) by its image under the

Gysin isomorphism gives us (the "Gysin" sequence)

Corollary 4: In the above context we have a natural
long exact sequence

... -+ Hr-2c(Z,F( -c)) -+ Hr (V ,F) -+ Hr (0 ,F) -+ Hr+1-2c(Z,F( -c)) -+ .',

, .,J.,
.

§2. The fundamental class.

The theory of the "canonical class" goes hand-in-hand
with the isomorphism of sheaves given in the statement
of the purity theorem of § 1. Specifically, let 1\ denote lLp

for p a prime not e'qual to any of the residual
characteristics .of the residue fields of S, and when we
want specifically to emphasize that we are viewing 1\ as
constant sheaf on any of the schemes involved we may
denote it ,.6.,
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A t the risk of proceeding backwards relative to the
logical development of the theory; cf. [Milne 2], a direct
consequence of Corollary 1 of the Theorem of § 1 is the
following:

Corollary: Let Z c V be a smooth, irreducible, S-
subscheme closed in V of codimension c. There is a
canonical isomorphism of sheaves on Z:

2c
.t>o =: Hz (V,A(c)).

By the fundamental class

2c 2cs(Z/V) E HZ (V,A(c)) = r(z, Hz (V,A(c))),

we mean the section of image of 1 E A under the above
isomorphism (cf. [Milne 2] VI, §6) and if Z is not
necessarily connected, i.e., Z= U Z j where Z j are the
connected components of Z, then define

2c 2cs(Z/V) E HZ (V ,A(c)) = EB HZ. (V,A.(c))
J

to be the sum ~ j s(Z j/V). The rule:

2cZ/V ---~ s(Z/V) E HZ (V,A(c))

enjoys these properties:

.. 1) (functoriality) If <p : (Z'/V') ~ (Z/V) is a morphism

of smooth pairs of codimension c, then

<p * (s(Z/V)) = s(Z' IV').

2) (a generating section) Multiplication by s(Z/V)
ind uces an isomorphism of sheaves
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-

2c~ -+ Hz (V,I\(c)).

s(Z/V)

3) (in codimension 1) Let c= 1, so that Z is a smooth
irreducible divisor in V. We have a commutative
diagram

(2)

HO(U, (Gm) -+ HZ1(V, (Gm) -+ H1(V, (Gm) -+ H1(U, (Gm)

=1 =1 =1 =1
r(u, (5u*) -+ 7L -+ Pic(V) -+ Pic(U)

ordZ

and the standard Kummer sequences

o -+ (l\/pnl\)(1) -+ (Gm -+ (Gm -+ o

pn

compile (as n ~ 00) to yield a homomorphism

1 21\ = 1\(8) HZ (V, (Gm) -+ HZ (V, 1\(1)) .

The image of 1 E 1\ under this homomorphism is s(Z/V).

4) (transitivity). Suppose now that we have a triple of
smooth varieties over S Z C Y c V, where Z and Yare
closed subschemes of V, Z is of codimension a in Y, Y is of
codimension b in V (and therefore Z is of codimension
c=a+b in V). In this situation, the Spectral Sequence
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HZr(y, HyS(V,!\(c))) ~ HZr+s(V, !\(c))

degenerates, by purity, to an isomorphism

HZ2a(y, Hy2b(V,!\(c))) == HZ2c(V, !\(c)), \.

and since the domain of this isomorphism can be written
as

HZ2a(y, Hy2b(V,!\(c))) = HZ2a(y, !\(a) (8)Hy2b(V,!\(b)))

= HZ2a(y ,!\(a)) (8) Hy2b(V,!\(b),

we get a natural isomorphism

HZ2a(y ,!\(a)) (8) Hy2b(V,!\(b)) == HZ2c(V,!\(c)).

Then the tensor product of the fundamental classes
s(Z/Y) (8)s(y IV) maps, under this isomorphism, to s(Z/V).

One easily sees that a functor (Z/V) --- ~ s(Z/V)
satisfying 1)-4) is necessarily unique. For a proof of
existence, see [Milne 2] VI § 6.

§ 3. "Extension obstructions" for the three-
dimensional cohomology of smooth surfaces. '

Let V be a smooth S-surface. For the moment, let Z c V
be of codimension c= 2, and U = V-Z. Thus Z is zero-
dimensional and smooth over S, i.e., Z is an etale
extension of S. If r= 3, Corollary 4 gives the exact
sequence

, (3) 0 ~ H3(V,F) ~H3(U,F)~HO(Z,F(-2))

i.e., if a three-dimensional cohomology class on U
"extends" to a class on V, it does so uniquely, and the
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obstruction to its doing so is measured by a canonical

homomorphism to HO(Z,F(-2)).

Letting F = lL/pnlL (2) we have that the group HO(Z,F(-2)) is

canonically lL/pnlL-- and then, more conveniently, passing
to the limit and letting F = lLp(2)-- we get a natural exact

sequence
'6Z

(4) ° -+ H3(V,lLp(2)) -+H3(U,lLp(2)) -+ HO(Z, lLp)'

Call the image '6Z(c) E HO(Z, lLp) of a class c E H3(U ,lLp(2))

the extension obstruction of c (across Z): we may
think of the exact sequence (4) as saying that a class c in

H3(U ,lLp(2)) "extends" to V if and only if its "extension

obstruction" vanishes, and if it does extend, it does so
uniquely. Of particular interest to us will be the following
situation: S = Spec K, V is smooth and proper over S,

and U is the complement of a finite set of closed points Z j

(j=l,...,v) in V. Then a class c in H3(U,lLp(2)) extends to the

compactification V of U if and only if the v-tuple of p-adic
integers given by the obstruction invariants

( '6Z1(c), '6Z2(c), , '6zv(c) )

vanishes, and its extension is unique.

§4. Three-dimensional cohomology of proper
smooth surfaces over fields.

Here let S = Spec K, S= Spec K, for K an al~ebraic
closure of K. and let V be proper. Denote by V the base
change V~SS. We have the Spectral Sequence
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(5) Hr(GK,HS(V,7Lp(2)) =} Hr+S(V,7Lp(2))

from which let us consider the edge-homomorphism
"-

e: H3(V ,7Lp(2)) ~ HO(GK,H3(V,7Lp(2)))

Lemma: If H3(V,7Lp(2)) is torsion-free and K is either a

Global number field or a local number field of residual
characteristic different from p, or a finite field of
characteristic different from p, then e= O.

A consequence of the above lemma is that the Spectral
Sequence (5), under the hypotheses of the Lemma,
determines a canonical mapping

(5) H3(V ,7Lp(2)) ~ H1(GK,H2(V,7Lp(2)))

c f-+ c.

§5. Smooth curves in surfaces.

Now we wish to consider smooth surfaces over S again,
bu t no longer assume them to be proper as was assumed
in §4. So let us call our ambient, not necessarily proper,
surface U. Let Z cUbe closed subscheme of
codimension c= 1, smooth over S; in particular, Z is a
smooth curve over S. The local-to-global Spectral
Sequence for cohomology with supports on Z gives the

isomorphism:

H1(Z, 7Lp(1) <8> HZ2(U ,7Lp(1))) == HZ3(U,7Lp(2)),

and, identifying the domain with

H1(Z, 7Lp(1)) <8> HZ2(U,7Lp(1)), we get a canonical

isomorphism
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(7) H1(Z, 7lp(1)) (8) 7l HZ2(U,7lp(1)) .= HZ3(U ,7lp(2)),
p

or, more concisely, an isomorphism

(8) H1(Z, 7lp(1)) .= HZ3(U ,7lp(2))

obtained by "cupping with" the canonical class s(Z/U).

The cohomology group H1(Z, 7lp(1)) can be computed

using the Kummer sequence, giving:

(9)
0 -+ ~* (Z) (8)7l7lp -+ H1(Z, 7lp(1)) -+ Tatep(Pic(Z)) -+ O.

Composing the isomorphism (8) on the right with the

natural mapping HZ3(U,7lp(2)) -+ H3(U,7lp(2)), and on the

left with the natural injection ~*(Z)(8)7l7lp-+ H1(Z, 7lp(1))

of (9) we get a canonical homomorphism

(10) a: ~* (Z) (8) 7l7lp -+ H3(U ,7lp(2)).

For f E ~* (Z) (8) 7l7lp denote by a(f;Z/U) E H3(U,7lp(2))

the cohomology class a(f). If, further, the surface U
satisfies the hypotheses required of V in the Lemma of §4
above, then the Hochschild-Serre Spectral sequence yields
a homomorphism H3(U,7lp(2)) -+ H1(GK,H2(U ,7lp(2))) and

we shall, most often, be dealing with the image

a'(f;Z/U) E H1(GK,H2( U ,7lp(2)))
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of cr(f;Z/O) under that homomorphism.

Note: Let us give ourselves an element f E ('j*(C)(8)lLlLp ,

and assume:

(a) S = Spec K is a Global number field,

(b) 0 is "almost proper", i.e., it possesses a smooth
compatification V such that V-V is a finite union of closed

points zi' ..., z1)'

(c) H3c,V,lLp(2)) has no p-torsion.

.. Then we have the following three natural questions:

The questions:

1) What are the "extension obstructions" for the
cohomology class cr(f) =cr(f;Z/V) across the points zi?

Assume these obstructions vanish, so that cr(f) extends

(uniquely) to H3(V,lLp(2)) and then the previous discussion

(in particular, thanks to our hypotheses a), b), c), the

Lemma of §3 ) gives us a class cr(f) E H1(GK,H2(V,lLp(2))).

2) At which primes A of K is the class cr(f) ramified?

3) When the class cr(f) is not ramified at A, how can one

pin down its image in H1(GkA,H2(V,lLp(2)))?

§ 6. Properties of cr(f; Z/O). c

1) (functoriality) If tp : (Z',O') ~ (Z,O) is a morphism of
smooth pairs over S-schemes of codimension 1, then:
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<p*(cr(f; Z/U)) = cr(fo<p; Z'/U').

2) ( linearity)

cr(A1f1+A2f2; Z/U) = A1cr(f1; Z/U) + A2cr(f2; Z/U).

§ 7. Calculating the extension obstruction.

Let C denote a closed curve in a smooth surface V over
S= Spec K with K a perfect field. Let z E C{K) be a
(closed) K-valued point of C, such that Z = C-z is smooth,
so that if U = V-z, then (Z,U) is a smooth S-pair. Let C--+C
denote the normalization of C, so that Z = C-z is naturally
contained in C as an open subscheme. Let zi"",zr denote

the closed points of C in the complement of Z, i.e., lying
over z. Let di denote the degree of the residue field

extension zi/z. If f is a rational function on C which is

regular on Z, define ordz(f) by:

r
ordz(f) = L d joord Z j(f).

j=l

Theorem: In the above situation, if ~z denotes the

"extension obstruction" over the point z (as defined in §3
above) and if the base field K is of characteristic 0, then

~ z( cr(f ; Z/U)) = ordz(f).

Proof: The extension obstruction is insensitive to change
of base field K, so we may (and do) assume that K is
algebraically closed: all the points Z j are defined over K,

and therefore all the d j'S are equal to 1. The extension

obstruction at z also being unchanged by completion at z
we assume that V is the spectrum of a complete regular
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" local ring (K -algebra) of dimension 2 with residue field
equal to K, i.e., V = Spec K[[x,y]], and U = V-z. The formula
of our Theorem is "additive on components" in the sense
that if Z breaks up as the disjoint union of components Z j
for j = 1,...,s and if f j denotes the restriction of f to the j-

th component Z j, then L ordz(f j) = ordz(f), and

L ~ z( cr(f j ; Z j/U)) = ~z( cr(f ; Z/U)) so that we may also

(and we do) reduce attention to the case where C C V is. irreducible.

We now consider the special case where C is smooth in V.
After suitable change of coordinates, we may take C to be
the closed subscheme of V given by the equation y= O.

For this, we need the following commutative diagram:

(11) ordz

(j* (Z) -+ Hz1(C,{Gm) == lL

K 1 1 K

0
H1(Z,lLp(1)) -+ Hz2(C,lLp(1)) == lLp

v s(Z/U) 1 1 v s(C/V)

HZ3(U ,lLp(2)) -+ Hz 4(V ,lLp(2)) == lLp

ooi

where the mappings K are the natural mappings coming
from Kummer Theory, tpe mappings 0 come from
coboundary mappings of the evident long exact sequences
for cohomology, and the mapping i is the natural mapping

HZ3(U,lLp(2)) -+ H3(U,lLp(2)).

(Check this commutativity!) Granted commutativity
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""

of (11) our Theorem follows in this case (C smooth)
because if you make the circuit

(J*(C) ~Hz4(V,lLp(2)) .= lLp
I
"I

by the right-hand route you get ordz(f) E lLp' while

making it via the left-hand route gives ~z(cr(f ;Z/U)).

~,
To reduce to the case where C is smooth, let C now be an

arbitrary but irreducible curve in V, let Co = Spec K[[ t]],

and let V ~ Co be a projection for which the composition

C ~ Co is not constant, i.e., is of finite degree. Judicious

change of the coordinates x,y will allow us to take this
projection to be given by t = x, so that V = Co ~ D where

D = Spec K [[y]]. The mapping V ~ C is formally smooth.
Let 1J:C ~ C be the normalization of C, and since we are

in a completed situation, we have that there is a unique
po in t 2 in C lying above z. Let 1.1 denote the degree of the
mapping C ~ Co. Since K is algebraically closed of

characteristic 0, : C ~ Co is Galois, cyclic of order 1.1 (a

"model" being given by K[[t]] c K[[t1/1.1]] ). Let g:t1/1.1~

~ l.1°t1/1.1 be a generator of the Galois group, for ~ 1.1 a

primitive l.1-th root of 1 in K. Put

V = CxC V = C ~ D,
0

so that the natural projection V ~ V is cyclic Galois of
degree 1.1, and is merely the product of the cyclic Galois
mapping 6fdegree 1.1 C ~ Co with the identity on D .

Our V is (formally) smooth over C which is also
(formally) smooth. There are 1.1 distinct sections -T1j :C ~ V

~. ~ ~ ~ ~(j=1,...,I.1) given by 'T1j = (gJ,1J). Let Zj ='T1j(C) - z and

let ~ denote the unique function on Z j such that tj°-T1j =

fo1J on C, for j= 1,...,1.1. Put Q = V -2. If Z denotes the
~119 '
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pullback, Z = 0 x UZ, then Z is the disjoint union of the Z j

and we have a morphism of smooth S-pairs, <p:(Z,O)
-+ (Z,U) . Moreover, fo<p on Z restricts to ~ on the

component Zjo

Since C j is smooth in V, we know that

~z(cr( ~ ; Z j/O )) = ord z(~) = ordz(f).

Moreover, we have a commutative diagram,

(12)

<p*
HZ3(U ,7Lp(2)) -+ HZ3( 0,7Lp(2))

i 1 i 1 \
H3(U,7Lp(2)) -+ H3(0,7Lp(2))

0 1 0 1

Hz 4(V ,7Lp(2)) -+ H:;;4(V,7Lp(2)) 1

=1 =1
7Lp -+ 7Lp 0

~

and since <p *: HZ3(U ,7Lp(2)) -+ HZ3( 0,7Lp(2)) brings the

class cr(f ; Z/U) to
~

cr(fo<p ; Z/O) = L cr(~; Z j/O ),

j=1

we compute that

~
~.~z( cr(f ; Z/U)) = L ~z(cr(~; Zj/O)) =~.ordz(f),

j=1
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which gives what we want.

0

§ 8. Measuring ramification.

We begin with a review of two basic compatibilities
which are preliminary "exercises" in preparation for the
eventual Proposition of this section.

Let K be a finite extension of ~Q' with Q ~p. The following

diagram is commutative:

(13) K

K* ~ H1(GK,lLp(1)) ~ H1(IK' lLp(1))Gk

ord 1 [) 1 ==

lL c Hom(lLp,lLp) = HomGk(lLp(1), lLp(1))

where K comes from Kummer Theory, the horizontal
arrow comes from restricting cocycles on GK to I K C GK,

and the vertical isomorphism comes from the natural
isomorphism [) (cf. §7 of Ch. 1 of Part I) which identifies
the maximal pro-p quotient of IK with lLp(1).

Next, let S = Spec(f3K), So = Spec(k), and ST)=Spec K,

and u = Spec( f3K[[ t]]), Uo = Spec(k[[ t]]), and uT)= Spec

K[[ t]]. Define the sections z C u, Zo C uo' and zT) C uT) by

t= 0, giving the following picture:
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Here the mapping labelled e is given by our "basic
construction", i.e., tensoring with the image of f under
Kummer Theory with the fundamental class,

f ~ K(f) ~s(zT)/uT))'

The mapping labelled c is given by cup-product, and the
right-hand vertical mappings are given, reading from
bottom to top, as follows.

The bottom arrow comes from the Hochschild-Serre
Spectral Sequence, the middle arrow comes by the
identification of the GK-modules

~s( z- /u- )
T) T)

2lLp(l) ~ Hz- (u- ,lLp(2)),
T) T)-

while the top arrow also comes from the appropriate
Hochschild-Serre Spectral Sequence, in view of the fact

that Hz_3(u- ,lLp(2)) vanishes.
T) T)

Now let V be proper and smooth over S. Let 2 be a
subscheme of V. Suppose 2 to be regular, and proper over
S. Let, as above, the subscripts "T)" and "0" refer to
generic and special fibers, respectively. Suppose further
that 2T) C VT) is a smooth pair over ST)' and the special

fiber 20 is reduced. Let f be a rational function on 2T) (not
identically zero) satisfying the "ord-condition". We may ~

view f as a rational function on the regular scheme 2,
and if (f) denotes its associated Cartier divisor of zeroes-
and-poles on 2, let (f)vert denote that part of the divisor

(f) supported on 20; equivalently, the difference of the
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two divisors, (f)-(f)vert ' is a "horizontal" Cartier divisor,

i.e., contains no irreducible component of the fibers of
Z~ S in its support.

We can form the cohom ology class K (f) (8) s (ZfI/U fI)'

which lies in HZfl3(UfI,lLp(2)), and which maps to the

cohomology class we have called cr(f;ZfI/UfI) in

H1(GK,H2(Un ,lLp(2)).

We wish to describe the ramification of the class
cr(f;ZfI/UfI) in the sense that we want to know its image

under the natural mapping

(15) H1(GK' H2(Un ,lLp(2)) ~ H1(IK' H2(Un ,lLp(2))Gk.
,
.,

Of course, the class cr(f;ZfI/UfI) is unramified if and

only if its image under (15) is zero. We can think of the
mapping (15) as having the following domain and range:

H1 (GK, H2 (U n,lLp( 1)) (8) lLp (1)) ~ H1 (I K,H2(U n,lLp (1)) (8) lLp(1))Gk.

Since U is smooth over S and since we are assuming
that ~ ~ p, the action of the inertia group IK on the

module H2(Un ,lLp(1))(8)lLp(1) is trivial. Therefore the

range above can be identified with

Hom(IK, H2(Un ,lLp(1))(8)lLp(1))Gk =

HomGk(lLp(1), H2(Un ,lLp(1))(8)lLp(1)) =

H2(Un ,lLp(1))Gk =

2 - Gk
H (U o(8)kk ,lLp(1)) ,

the last identification being given by the comparison
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theorem for the etale cohomology of the generic and
special fibers of the the smooth proper scheme U over S.

The isomorphism (15), after the identification of its

range with H2(Uo~kk ,7Lp(l))Gk as above, yields the

mappIng:

(16) H1(GK' H2(U"Ti,7Lp(2))~ H2(U o@kk ,7Lp(1))Gk

/

Definition: Let t=, be a cohomology class in

H1(GK,H2(U"Ti,7Lp(2)) and let D denote a Cartier divisor in

Uo. We will say that the ramification of t=, is given
by D (in notation: ram(t=,) = D ) if the image of t=, under

(4) is equal to the Chern class of D in H2(U o,7Lp(1))Gk.

Proposition: The ramification of the class cr(f;ZT1/UT1) is

given by the Cartier divisor (f)vert.

Proof: The key, here, is to prove a stronger statement.
We shall use our rational function f on ZT1 to produce a

class cr(f;ZT1/U-Zo) in HZT13(U-Zo,7Lp(2)) which maps to

~ 3
cr(f;ZT1/UT1) under the natural mapping HZT1' (U-Zo,7Lp(2))

~ HZT13(UT1,7Lp(2)). We then compute the image of

cr(f;ZT1/U-Zo) under the composition

3 3 4(17) HZT1 (U-Zo,7Lp(2)) ~ H (U-Zo,7Lp(2)) ~ HZo (U ,7Lp(2)).

If n denotes the Gk-set (i.e., set, with given Gk-action)

of irreducible components of the scheme Zo@Spec kSpeck,

we may
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(a) identify the range of (3) with the lLp-module

Gk
lLp[TT] ,

and

(b) view (f)vert = L:: m joC j (m jEll, C j E TT) as "

being an element in lL[TT]Gk.

We shall prove that the image of cr(f;ZT)/U-Zo) in

lLp[TT]Gk is equal to (f)vert = L:: m joC j. This suffices to

establish our proposition, as can be seen by consulting
the following commutative diagram:

(18)

HZ 3(U-Zo,lL p(2)) ~ H3(U-Zo,lL p(2)) ~ HZ 4(U ,lLp(2))
T) 0

1 I 1

HZT)3(UT),lLp(2)) ~ H1(GK,H2(Un,lLp(2)) ~ H2(U o@kk,lLp(1))Gk

where the right-hand vertical mapping is given by

sending an element L:: m joC j in HZo 4(U ,lLp(2)) =

lL[TT]Gk to its "Chern class", L:: m jO Chern(C j) in
2 - Gk

H (Uo@kk ,lLp(1)) .

Returning to the proof of the Proposition, let Co be

any component of Zo' and let mo den6te the multiplicity

of that component in (f), or equivalently, in (f)vert. We

wish to show that the multiplicity of Co in the image of

~ Gk
cr(f;ZT)/U-Zo) in lLp[TT] is also equal to mo. But, to
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check this equality of integers, we may restrict our " ;

entire picture to a formal neighborhood CU in U of a
(smooth) affine open in Co C Uo ; let ~ denote the

"scheme-theoretic" intersection of CU with Z, i.e., the
formal scheme cut out in CU by the ideal of definition of
the scheme Z. We may reduce our picture even further
and still be able to check the desired equality of integers.
Namely, after making, if necessary, a finite base change
of k find a "transverse slice" u to Co in CU. If we let "z"

denote the (formal) scheme-theoretic intersection of u
with Z, we have that z== Spf(CL) and u == Spf(CL[[ t]]) for

L an appropriate finite extension of K, and t a
uniformizer. The equality we are required to check then
follows directly from commutativity of the diagram (14).

0

§9. Commentary about the resolutions of
Gersten, and of Bloch-Ogus.

The "Gersten resolution" , and its cohomological
reformulation studied by Bloch and Ogus, are systematic
machines which produce elements in the K-theory of
schemes U, and in various cohomology theories of U,
respectively. See [G], [8-0]. Our treatment of the
cohomological classes cr(f; Z/U) may be viewed as a
somewhat ad hoc reconstruction of a tiny piece of this
machinery in the simplest case. We shall not need an
more of this than we have already made explicit, but let
us recall that the full Gersten resolution of the sheaf Kn

on a smooth scheme U over a field (conjectured by
Gersten, and proved in this context by Quillen; cf. [B]) is
a chain complex of sheaves for the Zariski topology on U,

(19)
11 iuKn(k(u)) --+ 11 iuKri-1(k(u)) --+ ... --+ 11 iuKa(k(u)) --+ a,

UEUa UEU1 UEUn
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where UJ refers to the set of points u of codimension j in
U, k( u) is the residue field of u, and iu F, for F a

commutative group, is the direct image to U of the
constant sheaf F on the Zariski closure of u in U. The

analogous (Bloch-Ogus) resolution for the sheaf Hn(lLp(n))

for the Zariski topology on U associated to the pre-sheaf

<1J ~ Hn«1J, lLp(n)) (H* = etale cohomology, and U smooth

over a field of characteristic different from p; cf. [5]) is

given by the complex

(20)
11 iuHn(k(u), lLp(n)) ~ 11 iuHn-1(k(u), lLp(n-1)) ~ ...

UEUO UEU1' ~
,

~ 11iuHO(k(u), lLp(O))~O,

UEUn

The previous paragraphs of this Chapter have been

dealing, in effect, with H1(U, K2) and with

H1(U,H2(lLp(2))) as computed via the complexes (19) and

(20) for n= 2. Moreover, H1(U,H2(lLp(2))) is related to

H3(U ,lLp(2)) via the Spectral Sequence

Hr(U ,HS(lLp(2))) ~ Hr+s(U ,lLp(2)).

To formalize what we have done, let GC(U) denote the
"Gersten" 1-cocycles of the complex (19), i.e.:
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"ord"

GC(U):= ker { ffi k(u1)* -+ ffi 7L }.
u1 E U u2 E U

cod u1 =1 cod u2 =2

The formation of GC is both covariantly and

contravariantly functorial in U for finite faithfully flat

morphisms: if <p:U -+V is a finite faithfully flat

morphism, we have the commutative diagram

k(v1)* -+ ffi k(u1)*

u1 ~ v1

(21) ord 1 lord

7L -+ ffi 7L

U1 ~ v1

where v1 E V is a point of codimension 1, and u1 E U

ranges through the full inverse image of v1. The top

horizontal mapping is the natural one, and the bottom
horizontal mapping sends 1 E 7L to the vector

(...,eU1'.'.) E ffi 7L

u1 ~ v1

whose u1-component (for each u1 ~ v1 ) is the

ramification index of the localization of U at u1 over the

localization of V at v1. The "direct sum" of the diagrams

(19) for all points v1 E V of codimension 1 induces the

(contravariant) functorial homomorphism
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<p *: GC(V) -+ GC(U).

The covariant functor is obtained from the norm
mapping. Explicitly, we have the commutative diagram

Norm
EB k(u1)* -+ k(v1)*

u1 ~ v1

(22) ord 1 lord

EB lL -+ lL
U1 ~ v1

where the botttom horizontal arrow sends (...,aU1'...) to

L [k(U1):k(v1)].aU1

u1 ~ v1

and where the brackets [ , ] means degree of the field
extension. The "direct sum" of the diagrams (20) for all
points v1 E V of codimension 1 induces the (covariant)

functorial homomorphism <p *: GC(U) -+ GC(V).

We have a natural homomorphism

cr

GC(U) -+ H3(U ,lLp(2)) \

which commutes with <p* and <p* and which is

constructed as in the previous paragraphs. Specifically,
if c E GC(U) and if we write
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c = EBcUl E EB k(ul)* ,

ulEU
cod ul =1

let Z be the (closed reduced) scheme which is the closure

of the finite set of points ul E U of codimension 1, such

that the component cul of c in k(ul) * is not equal to 1,

and let f denote the rational function on Z which on the

component of Z given by the closure of ul is equal to cul.

Then, since c is a Gersten cycle, we have that OOord fOO =0

on Z , and cr(c) is defined to be the class cr(f;Z/U) in

H3(U ,lLp(2)).
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Chapter seven. Correspondences

§1. "Marked curves" and "marked correspondences".

Let S = Spec K, with K perfect. For an integer w, a w-

marked curve over S will mean a reduced curve X over
S, marked with a nontrivial rational section, call it fX, of

the w-th tensor power of the line bundle Q 1X /S
sm

where Xsm is the smooth locus of X.

The integer w we will call the degree of the marking fX.

Let X, V be irreducible curves over S. By a (reduced; resp.:

irreducible) correspondence r "from" X "to" V we mean
a reduced (resp.: reduced and irreducible) closed one-
dimensional subscheme r c X x V, and we will assume that

every irreducible component of r maps nontrivially to X
and to V, under the natural projection maps nX and nV.

A "general" correspondence is a formal sum (rational

integer coefficients) of irreducible correspondences.

If X, V are proper and smooth over S, and if rc XxV is
an irreducible correspondence ("from X to V ") the

projections nX and nV are both finite and faithfully flat.

Consequently nX and nV induce both covariant and

con travarian t mappings on cohomology. The
correspondence r itself induces a homomorphism denoted
r '* '

'*:= nV,* onX from the etale cohomology of X to that of

V, and a homomorphism r'*:= rrX'* onV'* from the etale

cohomology of V to that of X. We extend the formation of

r,* and r'* from irreducible correspondences to all

correspondences, by linearity. More explicit description of
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this, and use of it, will be made in § 2 below.

If X is w-marked and Y is v-marked, we may view a
reduced correspondence r as (w-v)-marked by setting fr

to be the rational section of the (w-v)-th tensor power of

01 r /S given as the image of
sm

nX* (fX) @ny* (fy)-1

(restricted to the smooth locus r sm).

Remark: Saying that the correspondence is "from" X and
"to" Y is perhaps arbitrary since the notion of
correspondence makes no distinction between the first or
second factors in X x y, but it is useful to make this (non)-
distinction anyway. First, one gets convenient notation for

the two induced mappings on cohomology (r* and r*).

Secondly, the marking given to r clearly does depend
upon the ordering of X and Y.

We take X, Y irreducible and smooth over S, but our
correspondences r may (and generally will) have
singularities and many components. If X and Yare both
w-marked for some wEll, then any correspondence r
from X to Y is "O-marked", i.e., is endowed with a chosen
ra tional function f r. The "hook-up" of this situation with

the constructions of Chapter 6 is that we have a smooth
surface V = XxV over S, a reduced curve r on that
surface, and a rational function fr on r. Recall the

definition of "ordz" as in § 3, Chapter 6, and define the bad

set ~ (for r in XxV) to be the (finite) set of points at
which "ordz(fr)" ~ o.

For any prime number p ~ char(K), we have
constructed, in §5, Chapter 6, the cohomology class
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crr= cr(fr; r / XxV) E H3(XxY - ~; lLp(2)).

In the special case where the "bad set" is empty, i.e.,
"ordz(fr)" = 0 for all z E r, we have

crr £ H3(XxY; lLp(2)).

We can extend the construction r~ crr by linearity to

apply to formal sums of reduced r's, i.e., to general

correspondences.

§ 2. Composition of correspondences

Let X, Y, Z be irreducible smooth curves over S. Let F be a
correspondence from X to Y, and G a correspondence from
Y to Z. There are various equivalent ways to express the
composition correspondence r = GoF. Here is one.

Consider the three projections

n-Z: XxYxZ ~ XxV

n-y: XxYx-Z ~ XxZ

n-X: XxYxZ ~ YxZ.

Let n- * and n- * denote the usual mappings of cycles, so

that (for example) if C is a i-cycle in X x Z, then n-y* (C) is

the cycle CxY in XxYxZ, and if C is an irreducible i-cycle
(i.e., closed irreducible curve) in XxYxZ then n-y*(C) =0

if C is a fiber of n-y and is d.C if n-y(C) is a curve C in

X x Z, where d = the degree of the (finite) mapping

n-y: C ~ C.
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Lemma:

1) The two (reduced, effective) divisors TrX* (G) and

TrZ* (F) in X x Y x Z intersect properly (i.e., have no

irreducible components in common).

2) If K is of characteristic 0, the intersection of any

irreducible component of TrX* (G) and any irreducible

component TrZ* (F) is generically transversal.

3) More generally, we have the conclusion of 2) under
the assumption that at least one of the projection

mappings

G ~ Y or F ~ Y

is generically etale on each irreducible component of their
respective domains.

Proof: As for the first assertion, note that any component

of TrX* (G) is a union of fibers of TrX and any irreducible

component of TrZ* (F) is a union of fibers of TrZ, and

therefore if they had an irreducible component in
common, this common irreducible component would be a
(single) fiber of the mapping

TrX Z : XxYxZ ~ Y,
,

contradicting the assumption that every irreducible
component of F and G maps nontrivially to each factor.

As for 3), let us begin by considering any closed
point ~ in the intersection of the smooth locus of an

irreducible component Q of TrX* (G) and that of an
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irreducible component R of Tl"Z*(F). We may write E, as

xx1i' = <pxy for points 1i' E G, <p E F, X E X, and y E V. In

the tangent space 'T of the point E, in XxVxZ we have the
lines 'TX, 'TV, 'T Z determined by the coordinate axes, and

the tangent planes 'T Q' 'T R to the surfaces Q and R (both

assumed to be smooth at E,). By construction, 'TX C 'T Q'

and 'T Z C 'T R. If we had a nontransversal intersection of
'TQ and 'T R at E" we would have equality 'TQ = 'TR and

consequently, 'T Q = 'TR = 'T X x 'TZ' In a word, the

projections Q~V and R~V would have vanishing
differential at Is' and <p, respectively. By the hypothesis of
3), one of these projections, say Q ~ V, is generically etale,
and therefore by choosing 1i' sufficen tly general we get a
contradiction to nontransversality at E" proving 3).

Since these projections (being non trivial) are generically
etale if the characteristic of K is 0, we get 2).

0

Let then C = Tl"X*(G) n Tl"Z*(F), meaning the (scheme-

theoretic) intersection. By 1) we have that dim (C) ~ 1. So
as not to have to worry too much let us define the
notion of composition of correspondences G and F

only under the hypothesis that

(*) The scheme C is generically reduced 1.

Under this hypothesis, we use the same letter C now to
denote the (reduced) i-cycle in XxVxZ given as the "sum"
of the irreducible components of the scheme C.

Definition: Given a pair of correspondences F from X to
V and G from V to Z satisfying (*), the composition of

1 In what follows we will only be considering the construction of the

composition of correspondences for base fields of characteristic 0, in which case,

by 3) our hypothesis (*) is automatically satisfied
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correspondences G and F, denoted GoF, is r = Try * (C)

viewed as a correspondence from X to Z.

Note: It is sometimes helpful to "think of" GoF as

"(1xG)*(F)" or as "(Fx1)*(G)", which is what it would be if

G (or F) were actual functions.

§3. The Liebniz property.

Let us now hypothesize that X, Y, Z are irreducible
smooth w-marked curves over S (all for the same w),
and that F is a correspondence from X to Y, and G a
correspondence from Y to Z. Let r = GoF. We suppose
further that the "bad sets" for all three (O-marked)
correspondences F ,G,r are empty. This gives three
cohomology classes,

O"F E H3(XxY, lLp(2))

O"G E H3(y x Z, lLp(2))

O"r E H3(XxZ, lLp(2)).

What is the relationship between them?

Proposition:

(1) O"r = (Fx1)*oO"G + (1xG)*oO"F,

where we view Fx1 as giving a correspondence from XxZ
to Y x Z, and 1 x G as giving a cohomological correspondence

from XxV to XxZ.

Proof: I am very grateful to Beilinson for giving me the
following elegant proof of this Proposition: It is sufficient to
establish the above formula on the level of "Gersten
Cycles" using the terminology of § 9 of Chapter 6. It is also
sufficient to do this after replacing X and Z by finite etale
coverings of their generic points. After a suitable such
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replacement we may assume that the projections F ~ X,
G ~ Z are isomorphisms on each irreducible component of
F, G, respectively. By bilinearity, we may assume that
F~X and G ~Z are isomorphisms; now (1) is clear.

0

§4. Galois cohomology classes coming from

correspondences.

Let X, Y be smooth proper irreducible w-marked curves
over K, a number field or a finite extension of (Q~ for ~ ~p.

.Let r be a correspondence from X to Y, with empty "bad
set". Let

'Tr E H1(GK' H2(Xx Y; lLp(2))

be the image of the class crr constructed in the previous

sections where -means passage to K. Since lLp(2) has no

p-torsion, and the cohomology of curves over
algebraically closed fields have no p-torsion we may
project to Kunneth components, and we let

T1r E H1(GK' H1( X; lLp(1)) @lLpH1(y; lLp(1)))

be the class induced from 'Tr under the canonical

projection

H2(XxY; lLp(2) ~ H1(X; lLp(1)@lLpH1(y; lLp(1)).

Using the Proposition of §3, if we have three smooth w-
marked curves X, Y,Z and correspondences F, G as in §3
with composition equal to r, then
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T1r E H1(GK' H1(X; lLp(l)) @ lLpH1(Z; lLp(l)))

is given by the formula

*
(2) T1r = (F @l)oT1G + (l@G*)oT1F

where

(3) F* : H1(y; lLp(l)) --+H1(X; lLp(l)) and

G* : H1(y; lLp(l)) --+ H1(Z; lLp(l))

are the inverse and direct image mappings on the
cohomology groups cited induced from the respective
correspondences, and the "parentheses" ( ) occurring in
(2) means the natural mappings induced from these on 1- j

dimensional GK cohomology.

§ 5. Bilateral derivations: first visit.

For use in subsequent paragraphs, let us quickly
introduce a bit of algebra somewhat separately from the
context in which it will arise. We will revisit this topic in
significantly greater detail in Chapter 9, below.

Let G be a lLp-algebra not necessarily commutative, or

noetherian.

Definition: A bilateral derivation from a lLp-algebra

G to an G@lL G-module N is a lLp-linear mapping
p

0): G --+ N

such that O)(xoy) = (x@ 1) ° [)y + (1 @y) ° [)x for all x,y in G.
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Example: The lLp-linear homomorphism

8: G -+ N = G(8)lL G
P

given by 8(cx)= cx(8)1-1(8)cx, for cx EG is a bilateral
drivia tion.

If [):G -+ N is a bilateral derivation, and if x and yare
commuting elements in G, then we have

(4) 8(x).[)(y) = 8(y).[)x.

Suppose, now, that G is a commutative lLp-algebra.

Given an G(8) lL G-module N, let N 8 c N denote the
p

intersection of the kernels of multiplication by the
elements 8(cx)= cx(8)1-1(8)cx acting on N, for all cx E G.

Note that N8 is naturally an G-module, for its

G@lL G-module action factors through the natural
p

homomorphism ~: G(8)lL G -+ G.
. p

Lemma: If G is a commutative lLp-algebra, N an

G(8)lL G-module, [): G -+N a bilateral derivation, and I c G
p

an ideal such that 1(8)1 and 1(8)1 annihilate N, then the
restriction of [) to I c G, induces an G-module

homomorphism
(5) to: I /12 -+ N8

Proof: If ~ EI, then (CX(8)l).[)~ = [)(cx.~) = [)(~.cx)=
(l(8)cx)[)~ for all cx E G. If both cx and ~ are in I, then the
above gives [)(cx.~)=O.

0
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§ 6. Self-correspondences.

Let X be a smooth proper irreducible w-marked curve
over K, a number field or a finite extension of (Q~ for ~ ~p.

A correspondence F from X to X is self-adjoint if the
two induced mappings

F* : Hl(X; lLp(l)) -+Hl(X; lLp(l))

and

F* : Hl(X; lLp(l)) -+Hl(X; lLp(l))

agree.

We view Hl(X; lLp(l)) as lLp[GK]-module.

Let Go denote an algebra (possibly infinitely generated) of

commuting, self-adjoint correspondences from X to X, the
multiplicative structure being given by composition. Let

G = Go@lLp. Then Hl(X; lLp(l)) is an G-module, its G-action

commuting with the action of GK' and the action of r E

Go being given either as r* or r*, these being the same

since r is assumed self-adjoint. Let B denote the image of

G in EndlLp(Hl(X; lLp(l))), so that B is a finite flat lLp-

algebra.

At this point we wish to choose a maximal ideal ill C B
and let A denote the completion of B at ill, so that A
occurs as a factor algebra of the semi-local algebra B Let

H:= the completion of the B-module Hl(X; lLp(l)) with

respect to ill, or equivalently, H= Hl(X; lLp(l))@BA. We
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have that H is an A[GK]-module.

Let I denote the kernel of the projection of G to A:

0 -+ I -+ G -+ A -+ O.

The 7Lp -module H@7L H has a natural A@7L A module
p p

structure which commutes with its natural GKxGK action.

So, the cohomology group H1(GK' H@ 7LpH) is endowed with

an A@7L A-module structure. ~~

P ~
~

!

The discussion up to this point has given us the ~

Proposition. There is a bilateral derivation

(6) U): G -+ H1(GK' H@7L H)
p

uniquely determined by the requirement that the image of

[)(r) in H1(GK' H@7L H) be equal to T1r. Let 1= ker(G-+A).
p

Then the restriction of U) to I induces ( see (5) above) an A-
module homomorphism,

(7) 115 : 1/12 -+ H1(GK' H@7L H)8 .
P

Proof: The proof of this Proposition follows directly from
formula (2) of §4, the fact that our correspondences are
self-adjoint, the definition of bilateral derivation, and the
lemma of §5.

0

Define the derivation J) of G as follows: The natural
projection H@7L H -+H@AH induces a homomorphism on

p
cohomology

H1(GK' H@7L H) -+ H1(GK' H@AH)
p
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which when composed with (6) gives a (plain old!)
deriva tion

(8) J): a -+ H1(GK' H@AH)

where H1(GK' H@AH) is viewed as a-module. Note that "\

J) annihilates 12 and when restricted to 1 factors through
an A-homomorphism

,
(9) D : 1/12 -+ H1(GK' H@AH). 1

§7. Divisibility of D by 1).

To prepare for the "Divisibility Proposition" below we need
two elementary lemmas in commutative algebra. For the
first, let B be a commutative reduced ring, finite flat
over lLp and Gorenstein. Since B is reduced, if 1) is a
congruence element for B, we have that 1) is a non-zero-
divisor of B.

Let M,N be free B-modules of finite rank. Consider the

composition of B@lL B -module homomorphisms
p

(10) j: (M@lL N)8 c M@lL N -+ M@BN,
p P

where we recall the notation "subscript 8" of §5: The B-
module (M@lL N)8 is, by definition, the intersection of the

p
kernels of multiplication by 8(x) = x@1-1@x (all x E B) in
the B@lL B-module M@lL N. We can (and do) view j as

p p
B-module homomorphism since the first and last modules

in (10) are canonically B-modules.

Lemma 1. The B-module homomorphism j identifies the
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B-module (M(8)7LpN)S with the submodule T).(M(8)BN) C

M(8)BN.

Proof: The statement being "bilinear" in M and N (e.g.,

((M1~M2)(8)7L N)S is canonically isomorphic to
p

(M1(8)7L N)S ~ (M2(8)7L N)S,
p P

etc.) we may suppose that M and N are both free of rank
1. So let us rewrite (10) for this case:

~
(11) j: (B(8)7LpB)S ~ B(8)7LpB ~ B, ~

where the modules involved are viewed as B(8)7L B-
p

modules, the morphisms being B (8) 7L B -linear. Now
p

"dualize" (11), to get

(12)
Hom7L (B,7Lp ) ~Hom7L (B(8)7L B, 7Lp) ~ Hom7L ((B(8)7L B)S,7Lp),

p p p p P

which we identify with the diagram of B(8)7L B-modules
p

A

~ ~
B ~ B(8)7L B ~ B(8)BB =5.

p

But the composition ~o ~ is simply multiplication by T)
(by definition of congruence element).

0

Now assume that H is free over A (in which case A is
then Gorenstein, since H has a principal polarization and A
acts in a self-adjoint way) , and that A is reduced. Let
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T1 be a (fixed) congruence element for A. By Lemma 1
we have that there is a "canonical" isomorphism f:' of A-
modules making the following square commutative:

(H@lL H)S c H@lL H -0, H@AH
p p

(13) f:' 1 == 1 =
H@AH -0, H@AH.

T1

Of course, f:' is dependent upon the choice of congruence
element T1.

Lemma 2: If for every Jordan-Holder constituent M of

the lLp[GK]-module H@lLpH we have MGK = 0, then

H1(GK' H@lL H)S = H1(GK' (H@lL H)S).
p P

Proof: This is quite general: Let N be a lLp[GK]-module

such that everyone of its Jordan-Holder constituents M

has MGK = 0 (equivalently, this is true for every

subquotient lLp[GK]-module attached to N) and let ~

denote a set of lLp[GK]-endomorphisms of N (say a finite
set, ~ = {~1"..'~'U} but finiteness is not really necessary) .

Then

H1(GK' N [~] ) = H1(GK' N) [~],

where [~] means the intersection of the kernels of the

endomorphisms ~ E ~.

This we prove by induction on 'U, using the fact that the
hypothesis made for N is also valid for any of its lLp[GK]-
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submodules, and so we are reduced to showing our lemma
for 1) = 1. For this, let us consider the exact sequences

~
0 ~ N[~] ~ N ~ ~N ~ 0

~ 1 li

0 ~ ~N ~ N ~ N/~N ~ o.
1

to distinguish the endomorphism ~ from the
homomorphism N~ ~N we call the latter ~, so that ~= i.~.
By virtue of our hypothesis, we have that

HO(GK' N/~N) = 0, and therefore (by the exact sequence

induced from the lower line of our diagram)

i*: H1(GK' ~N) ~H1(GK' N)

is injective, and consequently,

H1(GK' N)[~] = ker{ ~:H1(GK' N) ~ H1(GK' N)} =

= ker{ ~:H1(GK' N) ~ H1(GK' ~N)}.

But HO(GK' ~N) also vanishes by our hypothesis, and

therefore the exact sequence induced from the upper line
in the diagram gives

H1(GK' N[~]) = ker{ ~:H1(GK' N) ~ H1(GK' ~N)} = H1(GK' N)[~] .

0

Assume, from now on, the hypothesis of the above
lemma.
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The restriction to I c G. of the pilateral derivation
U): G. -+ H1(GK' H(8)7L H) has given us an A-homomorphism

p
which we called If) :1/12 -+ H1(GK' H(8) 7L H)8. By the above

p
lemma, and by (13) we may make the identifications

,8 iii
~

(14) H1(GK' H(8)7L H)S = H1(GK' (H(8)7L H)S) == H1(GK' H(8)AH).
p P

Composing If) with the isomorphism of A-modules given
in (14) we obtain an A-homomorphism which we denote

(15) f:l: 1/12 -+ H1(GK' H(8)AH).

The above constructions and discussion give us the
following simple relationship between D of (9) and f:l of

(1.5):

Divisibility Proposition: T).f:l = D,

(i.e., D is "divisible" by T)).

Corollary: There is a unique derivation of A,

(16) e: A -+ H1(GK, H(8)AH/T).H(8)AH),

fitting into the commutative diagram

0-+ I -+ G. -+ A -+0

(17) f:l1 .:01 e1 :

0 -+ H1(GK' H(8)AH) -+ H1(GK' H(8)AH)-+ H1(GK' H(8)AH/T).H(8)AH),

T)

where the lower line is a piece of the long exact sequence
on cohomology coming from the exact sequence
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0 -+H(8)AH -+ H(8)AH-+ H(8)AH/T).H(8)AH -+0.

0

,

~

(.
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Chapter eight. Hecke axiomatics

§1. Hecke Curves.

In attempting to clarifying the logical structure of
some of the arguments to follow I found it useful for
myself, and I hope also for the reader, to simply
"axiomatize" the constellation of geometric properties of
the modular curves (for the modul~r groups r O(N), N

square-free) that seem particularly critical to us. What
follows, then, is an exposition of an axiomatic set-up of
which I know only one example: namely the tower of
modular curves XO(N) for N squarefree (cf. Chapter 8.5

below).

Let 31 denote the set of square-free positive integers.

Definition 1. A Hecke Tower )( is a collection of
smooth projective, geometrically irreducible curves Xn

over Spec Q, for nE 31, with the following extra structure.

Data:

(a) For each pair m,n E 31, with m dividing n, we
are given a nonconstant morphism defined over Spec Q,

jn m: Xn --+ Xm '
,

(b) For each pair m,n E 31, with m dividing n, we
are given an involution defined over Spec Q,

wm: Xn --+Xn .

This data is required to satisfy the following list of
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Hygotheses:

(i) Transitivity of the j's:

Given m, n, r in n each dividing the next, we
have that the composition

. .
Jr n In m, ,

Xr ~ Xn ~ Xm

is equal to jr m (i.e, we have a "tower of curves" indexed,
mu,ltiplicatively by n).

(ii) The multiplicative nature of the j's:

Let m,n En, and put M = the least common multiple
of m and n, and D = the greatest common divisor of m

and n. We have (by (i) above) a commutative diagram

XM
. .

JM,m JM,n
/ '\.

Xm Xn

. .
Jm,D In,D

'\. /
XD '

which gives us a mapping of the curve XM to the fiber

product of curves Xm x XDXn. We hypothesize that this

mapping is a birational isomorphism. In particular, this
implies that the fiber products Xm xXDXn are

geometrically irreducible.
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(iii) The multiplicative nature of the w's:

If m1 and m2 are relatively prime positive divisors of n

E:11 then the involutions wm1 and wm2 of Xn commute

and their composition is equal to wm1om2.

(iv) The relationship between the J's and the w's:

Given m, n, r in:11, each dividing the next, then wm
!

commutes with Jr n' i.e., we have a commutative
,

diagram

wm
Xr ~ Xr

Jr,n 1 1 Jr,n
Xn ~ Xn

Wm

(v) Models over Spec lL. We hypothesize further that

each curve Xn/Spec (Q (nE:11) of the Hecke Tower be given

a proper, regular, semi-stable model over Spec lL, denoted

Xn/Spec lL. The model Xn/Spec lL is hypothesized to be

smooth over Spec lL[1/n].

(vi) The mappings wand j over Spec lL. For all m,n
E:11 with m dividing n, we require the involutions wm

extend to involutions wm/Spec lL of these models. We

require the morphisms In m extend to morphisms,

In,mlSpec lL : Xn/Spec lL ~ Xm/Spec lL.

Moreover, if r is any prime number not dividing n, we
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want the restriction, In,mlSpec F r' of the morphism

In,mlSpec 1L to characteristic r to be a generically etale

mapping of the curve Xn/Spec F r onto Xm/Spec Fr.

(vii) The "Eichler -Shimura" relation and Hecke
Correspondences: For square-free positive integers n, m
which are relatively prime, let r n m c Xm xXm denote,
the image of the mapping

In.m,mx(Jn.m,mown) : Xn.m ~XnxXn

which we view as being an irreducible geometric
correspondence from Xn/(Q to Xn/(Qo We will refer to

rn,m/(Q as the n-th Hecke Correspondence and

sometimes abbreviate this notation to Just r n if the

curve Xm on which we are operating is "understood".

Let ~ be a prime number not dividing mE n and let

r~/lL= r~,mllL c XmxXm/Spec 1L

denote the Zariski closure of r ~ ,m/(Q in the model of

XmxXm over Spec 1L given to us by (v). We hypothesize

that the fiber, r ~ IF ~ ' of r ~ III over Spec F~ is the

reduced divisor in the regular surface Xm x Xm/F ~

consisting of two irreducible components: Frob~ c
XmxXm/F~' the graph of the Frobenius mapping, and

Frob~#C XmxXm/F~' its transpose (i.e., Frob~# is the

image of Frob ~ under the symmetry of Xm x Xm wich

permutes the two factor Xm's).

152

I'



Lemma 1.

(a) The subvarieties r n = r n m C Xm x Xm are
,

invariant under the involution of XmxXm which

interchanges factors.

(b) The correspondences r n are self-adjoint.

(c) If n,m are mutually relatively prime square-free
positive integers, then we have r norm = r n.m where °

denotes composition of correspondences.

(d) The correspondences r n (n En) all commute

(under "composition of correspondences").

(e) Let p and ~ be distinct prime numbers not dividing
mEn. The action r~*: H1(Xm;(Qp) ~ Hl(Xm;(Qp) of the

Hecke correspondence r~ on one-dimensional etale
- -

cohomology of Xm = Xm ~ (Q (Q with coefficients in (Qp is

given by

(The "Eichler Shimura" relation)

r~* = Frob~* + Frob~*.

Proof: (a) Since wn is an involution, the subvariety r n
= r n m C Xm x Xm can also be viewed as the image of the

,
mappIng

(jn.m mown)xjn.m m :Xn.m ~XmxXm,, ,

i.e., r n C Xm xXm is invariant under the involution of
Xm x Xm which interchanges the factors. Assertion (b),

that the correspondences r n are Hermitian follows
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immediately from (a). As for (c), we must show that

rty*{rtX*(rm) nrtz*(rn)} = rn.m (cf. §2 of Chapter 7)

and this is straightforward from the definition of the r's,
using that wn.wm= wn.m' Assertion (d) then

immediately follows. Assertion (e) comes directly from
the hypothesis (vii) above and the comparison theorem
foretale cohomology of smooth proper schemes.

0

Defini tion: Let N be a square-free positive integer. A
Hecke curve of level N is a curve X over Spec (Q given
along with a Hecke Tower X and an isomorphism X == XN ~

over (Q, where the curve XN is the N-th curve of the

tower X.

§ 2. Admissible w-markings on Hecke Curves. Let N
be a square-free positive integer. Let us be given a Hecke
curve X of level N as in §1, i.e., X == XN, the N-th curve

in a Hecke Tower X = {Xn}nE n. Let w be an integer, and

fX a w-marking on X/(Q (as defined in Chapter 7 §1).

Thus fX is a rational section of the line bundle (.QX/(Q)(8)W

on X. Let Div(fX) denote the divisor of zeroes and poles of

the rational section fX of the pluricanonical sheaf

(8)w(.QXsm /S 7L) on the smooth locus of the stable
C' pec

model X/Spec 7L'

Notation: For each nEn relatively prime to N, denote by
fX n ' or fn for short, the Q-marking (alias: nontrivial,
ra tional function) on r n induced, as in Chapter 7 § 1, by

the w-marking fX on each of the two factors in XxX.

Note that multiplying the w-marking fX by a non-zero
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rational number does not change the rational functions
fX,n' n En, and the mapping fX ~ fX,n is multiplicative

in the w-marking fX, for each n En.

Now fix a w-marking fX, and for n En, we let fn denote

fX n.,

Lemma 1: If Q is a prime number not dividing N, then
the vertical part, (fQ)vert' of the divisor of zeroes and

poles of the rational function f Q on r Q /Spec 7L is supported

entirely in characteristics dividing Q.N. In characteristic
Q this divisor, (fQ)vert/FQ when viewed as a Cartier

divisor on the smooth surface X x X/F Q is given by the

formula

(fQ)vert/FQ = w'(FrobQ#- FrobQ).

(Recall that FrobQ is the graph of Q- Frobenius and

FrobQ # is its transpose).

Proof: Let r be a prime number not dividing N. Since
XN/F is geometrically irreducible for any prime number

r
r not dividing N (and since 7L is a PIO) we may "force" the
vertical part of the divisor Oiv(fX) in all such

characteristics r to vanish, by multipling fX by a suitable

nonzero rational number. Recalling that the functions fn

are left unchanged by multiplying fX by any nonzero

rational number, we may (and do) suppose that we are in
the case where the divisor Oiv(fX) has no vertical

component in characteristics r not dividing N.

Now let r be a prime number not dividing Q.N. Noting
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that j~ oN,N/Spec F r has been hypothesized to be a

generically etale mapping of the curve X~ oN/Spec F r onto

XN/Spec Fr (in Definition 1, (vi), in §1 above) it follows

that the projection of r~ to each factor of XN x XN is

generically etale in characteristic r, and therefore (f ~ )vert

has no support in characteristic r.

It remains to consider the case when r= ~. Hypothesis
(vii) of Definition 1 allows us to explicitly compute the
support of (f ~)vert in characteristic ~ and this

computation gives us the formula displayed in our
Lemma. Namely, the pullback of fX to Frob~ under

j~oN,N in characteristic ~ contributes nothing to the

vertical component of (f~) since the projection of Frob~,

the graph of ~-Frobenius, to the first factor of
XNxXN/Spec F~ is etale. The pullback, however, of fX to

Frob~# under j~oN,N in characteristic ~ "picks up a factor

of ~w" since j~oN,N is purely inseparable on Frob~# and

looks locally like" z ~ z~", and since we are working in

the sheaf (OXN)@W. Thus the vertical component of the

divisor of zeroes and poles of (j~oN,N)'*(fX) in

characteristic ~ is given by woFrob~#. The roles of Frob~

and of Frob ~# get reversed when we consider the
contribution to fn of (j~oN,N°w~) '* (fX), and this accQunts

for the formula displayed in our Lemma.
0

Definition 2. A w-marking fX on X/Q will be said to be

admissible if for all nEn (n relatively prime to N) and
for all closed points z of r n/Q,

"ordz(fn)"=O.
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Notation: Denote by o.<Jn(X) the set of all admissible
markings of X.

Then o.<Jn(X) forms a (commutative) group under
multiplication, and the mapping which associates to a
marking fX E o.<Jn(X) its degree w is a homomorphism

degree
(1) o.<Jn(X) -+ 7L.

§3. The Hecke rings: If X is a Hecke curve of level N,
as defined in § 1 above, for n any square-free positive
integer not dividing N, let r n C X x X denote the geometric

self-correspondence of X isomorphic to the n-th Hecke
correspondence r n N C XNxXN of the Hecke Tower )(,
"attached to" X, the isomorphism induced by the
isomorphism given between X and XN' We refer to r n as
the n-th Hecke correspondence for X. Let 0.0 = 0.0 X

,
denote the (commutative) 7L-algebra of self-
correspondences of X generated by the Hecke
correspondences r n (n E <]1, n relatively prime to N)

where the multiplication is given by composition of
correspondences. From Lemma 1 (c), 0.0 is generated by

the r ~ 's where ~ runs through all prime numbers not

dividing N. Let 0. =0.0(8)7L7Lp be the 7Lp-algebra obtained

by tensor product. Then the rule which associates to each

r n E 0.0 the endomorphism r n* of H1(X/Q,7Lp(1)) extends

to define a unique action of the 7Lp-algebra 0. on

H1(X/Q,7Lp(1)). Let B the 7Lp-algebra quotient of 0.

operating faithfully on H1(X/Q,7Lp(1)) (notation here as in

Chapter 7). We have that B is a finite flat 7Lp-algebra,

hence semi-local. Fixing one of the (finitely many)
maximal ideals m. C B, put A : = Bm. ' i.e., the completion

of Bat the maximal ideal m., and

157

=, ::: ! '( "_.c~~ '



H : = H1(X,lLp(1))(8!BBm'

viewed now as A[GiQ,2:]-module. Here 2: is the set of prime

divisors of p.N.

Definition 3: The maximal ideal ill C B will be said to be
admissible if its residual characteristic, p, is odd, and the

f following four hypotheses hold.

(1) The ring A is reduced.

(2) The A-module H is free of rank 2.

(3) As usual, let p : GiQ,2: -+ Aut A (H) .= GL2(A) denote the

representation coming from the GiQ action on H, where 2:

is as above, and the .= is given by the: choice of an A-basis
of H assuming (2), and let p : GiQ,2: -+ GL2(k) denote the

residual representation associated to p, where k is the
residue field of A. We hypothesize that p is ramified, and
cleanly ramified, at each prime divisor of N. We

hypothesize further that Symk2p is absolutely

irreducible.

Note: The "Weil pairing" for 1-dimensional cohomology of
the curve X/~ induces a principal polarization on H, and

by Lemma 1 of §1, the action of A is Hermitian with
respect to this pairing. It follows from our hypotheses up
to this point and from the Lemma of §2 of Chapter 3 that
A is Gorenstein.

(4) Let W* := SymA2(H) and W = HomlL (W*,j.l) these
p

both being considered as A[GiQ]-modules. We assume the

"6- hypothesis" for cx E A, for all non-zero-divisors cx E r,
as in § 5 of Chapter 2.
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§4. The Flach Classes.

Let us give ourselves now a Hecke Curve X of level N
together with an admissible w-marking fX and an

admissible maximal ideal ill, keeping the notation of the

previous § 's.

Then for each prime number ~ not dividing p.N we
obtain (using hypothesis (1) of §2 above, and the

constructions of Chapter 6) a cohomology class,

cr~= cr(f~; r~/ XxX) E H3(XxX/(Q,7Lp(2)).

- -
Put V = XxX and V = V~(Q(Q. Since, by the Lemma of §4

of Chapter 6, the edge-homomorphism e: H3(V,7Lp(2)) -+

HO(GK,H3(V,7Lp(2))) vanishes (because K is a number field

and H3(Xx X,7Lp(2)) is torsionfree), it follows, as in §4, §5

of Chapter 6, that the Hochschild-Serrre Spectral

Sequence yields a natur9.l homomorphism,

H3(V,7Lp(2)) -+ Hl(GK,H2(V,7Lp(2)))

and, conforming to prior notational conventions, we

denote by cr'~ =cr'(f~; r~/ XxX) E Hl(GK,H2(Xx X,7Lp(2)))

the image of cr(f~; r~/ XxX) under this homomorphism.

N ow let

(2) cr~ E H1(G(Q, Hl(X,7Lp(l))~7LpHl(X,7Lp(l)))

denote the image of cr'~ under the natural mapping \

induced on cohomology from Kunneth projection

H2( X x X,7Lp(2)) -+ Hl( X,7Lp(l)) ~ 7LpHl( X,7Lp(l)).
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Let us consider the "ramification" of the classes (J'~ and-
(J~.

As for the behavior of cr ~ restricted to the decomposition

groups at primes dividing N.p, we defer this to § below.
As for its behavior at primes r not dividing N.p, we have,
from Chapter 7, that the "ramification" of (J'~ is

measured by the divisor Ramr«J n) E Div(X/F x X/F)
~ r r

given by the "part" of the Cartier divisor (f~) which is

vertically supported in characteristic r. By the
hypothesis (2) of §2 above, we have then that (J~ is

unramified except possibly in characteristics dividing
~.N.p. In characteristic ~, we have, by the hypothesis
(3) of § 2 above, the formula:

(3) Ram~«J~) = w.(Frob~ -Frob~*).
,

Definition 4: Let (X,fx,m) be a triple, where X is a

Hecke Curve, fX an admissible w-marking on X, and ill

an admissible maximal ideal (we also use the same
notation, ill, for the maximal ideal of the ring A = Bm; cf.

Definitions 2,3 above),

For each prime number ~ not dividing N the ~-th Flach
Class

c(~) E H1(GQ,LU{~}' W*)

is defined to be the image of the class cr~ under the

natural projection

H1(GQ, H1( X,lLp(1)) (8) lLpH1( X,lLp(1))) -+ H1(G~, W *).

§5. Cohesive Flach Systems attached to Hecke
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curves.

Theorem: Let X be a Hecke curve endowed with an
admissible w-marking fX, and an admissible maximal

ideal ill. C A (cf. above, for the definition of A, which is
Gorenstein in this situation). Let p > 2 be the residual

characteristic of ill. The rule ~ ~ c(~) assigning to each

prime number ~ not dividing poN the Flach class c(~) is a

Cohesive Flach System for the representation

p: G(r,),2:: -+ GL2(A)

(of depth Woli, where Ii is a congruence element for A).

Proof: We defer the proof of the following Proposition to

the next §:

Proposition ("finiteness of the Flach classes"): For

all prime numbers ~ not dividing poN, the Flach class c(~)

lies in H1(X-{~],W*) c H1(G(r,),2::U{~}'W*).

Proof of the Theorem, assuming the Proposition:

We shall check the three properties in the definition of

Cohesive Flach System (cf. Chapter 3, § 9 above).

Property 1: In fact, we shall show:

Lemma 1: For all primes ~ not dividing poN, the Chern

class of the divisor Frob-Frob# E Div(XF ~ x XF~) under the

composition of homomorphisms

(4) H2(X- xX- lL (1))GF~ =
F~ F~' P

Hs1(G(r,)~' H2(XQ~ xXQ~' lLp(2))) -+
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Hs1(G/Q~' H1(XQ~lLp(1)) @lLpH1(XQ~lLp(1))) -+

Hs1(GQ~' H @lLpH) -+ Hs1(GQ~' H @AH ) -+ Hs1(GQ~'W*),

is divisible by TJ, where the subscript "s" refers to the
singular part as in § 5 of Chapter 1.

Proof: Since the Frobenius endomorphism and its
transpose commute with the action of A, the image of the

Chern class of (Frob-Frob#) in Hs1(GQ~' H@lLpH ) =

HomG F (lLp(1), H@lL H) under the chain of
~ p

homomorphisms in (4) above lies in the submodule

(5) HomG F (lLp(1), (H@lL H) S ) C HomG F (lLp(1), HI8) lL H).
~ p ~ p

Using Lemma 1 of §7 of Chapter 7, and the diagram (13)
we get the commutative diagram

HomGF (lLp(1), (H@lL H)S) C HomG F (lLp(1),H@lL H)
~ p ~ p

(6) ~ 1 == 1

HomGF~(lLp(1),H@AH) -+ HomGF~(lLp(1),H@AH),

TJ

giving us that the image of Chern (Frob- Frob#) is
divisible by TJ, thereby establishing our Lemma and
property 1).

0

Property 2: We will now be making intensive use of
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the notation and theory of §4 of Chapter 3. For ~ E r., let

us call <p~ E Hsl(GQ~'W*) the image of the class

Chern (Frob-Frob#) E H2(Xf ~ x Xf ~' lLp(l))GF~

under the composition of homomorphisms of (4) above.
Property 2) follows from:

Lemma 2: For ~ E r., the class <p~ E Hsl(GQ~'W*) is of

depth 1"1 (i.e., is equal to 1"1 times a generator).

Proof: Fix ~ E r.. Consider the image, K ~, of the class ;
,
JChern(Frob-Frob#) under the composition of the first "

three morphisms of (4); namely:

2 GF(7) Chern(Frob-Frob#) E H (Xf~xXf~' lLp(l)) ~ =

Hsl(GQ~' H2(X~~ xX~~, lLp(2))) -+

1
Hsl(GQ ~' Hl(X ~~ lLp(l)) (8) lLpHl (X~ ~ lLp(l))) -+

K~ E Hsl(GQ~' H (8)lLpH ).

As discussed above, since the correspondence Frob
commutes with the action of A, it follows that K~ lies in

the submodule HomG F (lLp(l), (H(8)lL H)8) c
~ p

HomGF (lLp(l),H(8)lL H) = Hsl(GQn' H (8)lL H). Consider the
~ p ~ p

image of K~ E HomG F (lLp(l),H(8)lL H) under the
~ p

homomorphism,
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~: HomGF (lLp(l),HI8IlL H) -+ HomGF (lLp(l),H@AH)
~ p ~

of diagram (7) above.

If u and v are the two eigenvalues of the Hecke operator
T ~ on H we write H = Hu$Hv for the two eigenspaces.

Make the choice of a lLp-generator I!' of lLp(l) and an A-

generator x of Hu. Having made these choices find an A-
generator y for Hv such that x"'y = I!' under the Hermitian

pairing "': Hul8lHv -+ lLp(l) determined by the polarization

on H (cf. §4 of Chapter 3) In terms of these bases of Hu

and Hv, we get an A-basis of HomGF~(lLp(l), H@AH)

which, by Chapter 3, §4, (7) is identified with

(8) HomGF~(lLp(l), HuI8lAHv) $ HomGF~(lLp(l), Hv@AHu);

namely, the homomorphism {I!' ~xl8ly} is an A-basis of

HomGF~(lLp(l), Hul8lAHv ) and {I!' ~yl8lx} is an A-basis of

.HomGF~(lLp(l), Hvl8lAHu ). The image of the Chern class of

Frob in HomGF~(lLp(l), HI8IAH ) is then given by

{I!' ~ u.xl8ly $ v.yl8lx },

while that of the transpose of Frob is given by

{I!' ~ v.xl8ly $ u.yl8lx },

so that K~ is (u-v).{ I!' ~ x 181 y+y 181 x}. Since, for ~ E L, u-v is

congruent to 2 modulo the maximal ideal m of A, and
since p >2, this gives that for ~ E L, K~ is a generator of

the subspace of HomGF~(lLp(l), HI8IAH) which is fixed

under the involution that permutes the two factors H in
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4

H@AH. Since tp~ is the projection to Hs1(G(Q~'W*) of

T)'~(K~), it follows that tp~ is T) times an A-generator of

Hs1(G(Q~'W*)' It follows that c(~) has singular depth T) at ~.

0

Property 3: We shall be checking what is, in essence, a
stronger form of the "derivation property" 3); namely:

I Lemma 3: The rule

r ~ ~ cr ~ E H1(G(Q, H1( X,lLp(1)) @lLpH1(X,lLp(1)))

which, for each prime number ~ not dividing p.N, assigns
to the ~-th Hecke correspondence r~ the class cr~ (as

defined in §4 above) extends to a bilateral lLp-derivation
of the algebra G = Go@lLlLp to the G@lLpG-module

1 1 - 1 -
H (G(Q,H (X,lLp(1))@lLpH (X,lLp(1))).

Proof: The hypotheses that we have made in our
present situation give us all the hypotheses required in
the Proposition of §6 of Chapter 7; the conclusion, then, of
that Proposition gives us our Lemma. Conforming to our
notation there, let us denote the bilateral derivation

(9) [): G ~ H1(G(Q, H1(X,lLp(1))@lLpH1(X,lLp(1))).

0

It then follows from the Corollary to the Divisibility
Proposition of §7 of Chapter 7 that the bilateral
derivation [) "gives rise to" a unique derivation
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(10) 8: A --." H1(G(Q, H<8)AH)

which fits into the commutative diagram (17) of §7 of
Chapter 7. This derivation 8 has the required properties
to give us 3).

0

§6. "Finiteness" of the Flach classes.

The Proposition of §5 requires that we check that, for
all prime numbers r ~~, the restrictions of the Flach
classes land in the "finite parts" of (Qr - Galois cohomology.

These classes are unramified for primes r not dividing
p.N.~, and so it only remains to check the primes r
dividing N, and the prime r=p. We separate these two
statements as distinct lemmas, and also take the
opportunity to record a statement somewhat more
precise than is needed above, but which will be needed
later. Recall the class

(11) cr~ E H1(G(Q,2:U{~}' H1(X,7Lp(1))<8)7LpH1(X,7Lp(1)))

constructed in (2) of §4 above. For use in Chapter 11 we
want to deal with this "finer" class cr~ rather than the

Flach class c(~) E H1(G(Q,2:U{~}' W*). Note that the

statements of the Lemmas below explicitly make use of
the natural finite/singular structure on the G(Q-module

1 - 1 -
H (X,7Lp( 1)) <8) 7LpH (X,7Lp(1)).

Lemma 1: For all prime numbers ~ not dividing p.N,
and all prime number q dividing N, the restriction resq cr ~

of the class cr~ to G(Q~ lies in the finite part,

Hf1 (G(Qq' H1( X,7Lp(1)) <8) 7LpH1 (X, 7Lp(1))),

in H1(G(Q , H1(X,7L p (1))<8)7L H1(X,7Lp(1))).
q p
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Lemma 2: For all prime numbers ~ not dividing p.N,
the restriction respcr~ of the class cr~ to GQ~ lies in the

finite part, Hf1(GQ , H1(X,lL p(1))<8>lL H1(X,lLp(1))),p P
in H1(GQp' H1( X,lLp(1)) <8> lLpH1( X,lLp(1))). '

What we need, at present, of these two lemmas are the

following:

Corollary 1: For all prime numbers ~ not dividing p.N,
and all prime number q dividing N, the restriction

resqc(~) of the Flach class c(~) E H1(GQ,LU{~}'W*) to

H1(GQ ,W*) lies in the finite part, Hf1(GQ ,W*) c
q q

H1(GQ ,W*).
q

Corollary 2: For all prime numbers ~ not dividing p.N,
the restriction respc(~) of the Flach class c(~) E

H1(GQ,LU{~}'W*) to H1(GQp'W*) lies in the finite part,

Hf1(GQ ,W*) C H1(GQ ,W*).
p P

Proofs of Lemma 1 and Lemma 2: Not yet done!!

... In §8 of Chapter 6 we "measured" the ramification of

cohomology classes (denoted there cr(f;ZT'}/U T'}))

constructed from "Gersten cycles" (f, Z/U) at primes ~ of
good reduction for the ambient surface U. To deal with
Lemma 1, we must now extend this theory to measure
ramification at primes ~ of semistable reduction. At lea$t
we must do this in the particular context that we find
ourselves, namely where our surface U is X x X, for X a
curve of semistable reduction at ~.

**************
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Chapter 9. Mod ular Curves.

§ 1. A quick review of the basic geometry of
modular curves of square-free level.

References: [8], [L], Let M be a square-free positive integer. The modular

curve XO(M) IIQ is a projective smooth geometrically

irreducible curve over IQ containing an affine open usually
denoted YO(M), which is the "coarse moduli space"

classifying isomorphism classes of pairs (E,CM) where E is

an elliptic curve, and CM C E is a cyclic subgroups in E of

order M. The complement of YO(M) in XO(M) consists in

the finite set, eO(M), of "cusps" which can also be given a

"modular interpretation" as classifying isomorphism
classes of pairs (E,eM) where E is isomorphic to Gm x

lL/M.lL (a "degenerate elliptic curve"), and eM c E is

again a cyclic subgroup of order M. The points of eO(M)

are all IQ-rational and are in natural one:one
correspondence with the set, D(M), of positive divisors of
M, by the rule that a pair (E,eM) corresponds to the 1

integer d = the order of Gmn eM. There is a commutative

group of involutions acting on XO(M)/IQ, usually referred

to as "the Atkin-Lehner involutions", or "the w-operators",
the elements of which are in one:one correspondence with
D(M); let us call this group WO(M). The involution w d

which "corresponds" to d E D(M) under the one:one
correspondence D(M) f-~ WO(M) is defined by the rule

that associates to the pair (E,CM) the pair (EO,COM) where

Eo is the quotient of E by the (unique) cyclic subgroup of
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order d in CM' and C'M is the image in E' of the subgroup

in E generated by CM and the kernel of multiplication by

d.
If N is a positive divisor of M, there is a surjective
mapping defined over Q, denoted jM N: XO(M) ~ XO(N)

,
given by the rule which associates to the pair (E, CM) the

pair (E,CN) where CN C CM is the (unique) subgroup of

order N.
There are regular semi-stable (projective) models over
SpeclL, for the curves XO(M)/Q which are smooth over

Spec lL[1/M] (all square-free M ~ 1). These semistable
models have the further properties that the action of the
groups of involutions WO(M) extend to the model of XO(M)

(all square-free M ~ 1) and the morphisms jM N extend to,
yield morphisms of the semistable model of XO(M) to that

of XO(N) (all square-free M ~ 1, and positive divisors N of

M). One has:

Proposition: Let 11. denote the set of positive square-free
integers The association n ~ Xn:= XO(n) for n E 11. , with

the j's and w's given as above constitute a Hecke Tower,
in the sense of Chapter 8.

0

In fact, as confessed previously, this is the only example I
know of a Hecke Tower.

§ 2. The j's and w's acting on the set of cusps.

Let M be a multiple of N and both M,N square-free
positive integers. The Atkin-Lehner involutions and the
mappings jM N preserve cusps. The set (:O(M) is a,
principle homogeneous set under the action of Atkin-
Lehner involutions WO(M). If we use the identifications of

the sets (:O(M) and WO(M) with D(M) as described in §1,
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and compose one of these identifications with the inverse
of the other to make an identification of sets eO(M) =

'1J10(M), the action of '1J10(M) on eO(M) is then given by the

multiplication law of '1J10(M). We have a commutative

diagram
JM N ,"

,
eO(M) ~ eo(N)

=1 1=
D(M) ~ D(N)

d ~ gcd (d,N).

Lemma: The degree of the mapping JM N :,
XO(M) ~ XO(N) at the cusp cd in eO(M) identified with the

divisor d E D(M) is equal to

d/gcd (d,N).

Proof: 0

For purposes of the next §, let us draw the local picture
of the mapping JM N on cusps. Fix c E eO(N), and let,

eO(M;c) c eO(N) denote the full inverse image, JM,N-l(c).

From the previous discussion, we have an identification of
eO(M;c) with the set D(M/N) of positive divisors of M/N,

and the degree of the mapping JM N at the cusp c8 in,
eO(M;c) corresponding to the divisor 8 E D(M/N) is, by the

previous Lemma, equal to 8. Let 8* denote the integer

such that 8.8* = MIN. Then, also by the Lemma, the
degree of the mapping JM,N owM/N at the cusp c8 is

equal to 8*.

Now let us focus on the mapping of eventual interest to

us,
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(1) jM N xjM NowM/N : XO(M) ~ rM/N C X x X,
, ,

where we fix X = XO(N). As a summary of the above

discussion, we have that the image of the set of cusps
(:O(M) under the above mapping consists of the "diagonal"

in (:O(N) x (:O(N); given a diagonal cusp (c,c) E (:O(N) x (:O(N)

C X x X, the inverse image of (c,c) in XO(M) is precisely

the set (:O(M;c) ~ D(M/N), the local degree of the

projection of XO(M) to the first factor X at the cusp c8 E

(:O(M;c) corresponding to the divisor 8 E D(M/N) being

equal to 8, and the local degree of the projection to the

second factor being 8*.

§3. Modular units.

The term "modular unit" denotes a rational function f on
a modular curve (e.g., on XO(N)) such that the divisor (f)

of zeroes and poles of f is supported at cusps. For a
systematic treatment of modular units, see [K-LJ.

Now let us fix our sights on the Hecke Tower )( described
in § 1 above; i.e., for n En, the curve Xn is equal to

XO(n)/Q. Fix N E n, and put X = XN (=XO(N)) for short.

Let wEll, and let fX be a w-marking of the curve X
(equivalently, fX is a rational section of the ~

pluricanonical sheaf (QXO(N)/Q)(8)W). Recall the

construction of the functions fn on r n = r n N C X x X for
,

all n En relatively prime to N, given in §2 of Chapter 8
(see, in particular, the paragraph labelled Notation
there). Let us view the rational function fn as being a

rational function on Xn.N = XO(n.N), the normalization of
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rn = rnN. .
,

, Definition: Say that fX is a modular unit generator
(of level N and of weigh t k = 2w for w E 71) if for all n E

n which are relatively prime to N, the rational function

fn on XO(noN) is a modular unit.

Example: The classical modular form ~= qoT1(1-qn)24 of !

level 1 and weight 12, which we view as a rational

section of the sheaf {Q1XO(1)}(8)6 is a "modular unit

generator" of level 1.

Proof: Proposition: If fX is a "modular unit generator", then fX

is admissible, in the sense of Definition 2 of §2 of Chapter

8, i.e.,

(2) "ordz(fn)" = 0

for all n En be relatively prime to N, and z closed points

of r n.

Proof: Let n En be relatively prime to N, and note that

since our hypothesis gives us that the divisor of zeroes
and poles of fn on XO(noN) is supported on cusps, to check

the proposition it suffices to check (2) for points z Ern

which are images of cusps. But this comes "for free" in

view of the lengthy "summary" given at the end of §2 !

above. Here is the argument, in which we make use of the
notational conventions of § 2. Recall, in particular, that c

is a cusp of X = XO(N) and, for [) E D(M/N) we let C[) E

LO(M;c) denote the cusp projecting to c under jM N which
,

corresponds to [) under the identification D(M/N) .=

LO(M;c).
Suppose that we choose Z a local uniformizer of
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XO(M)/Q about c8, so that z= Z8 is a local uniformizer of

X=XO(N)/Q about c. Consider some local meromorphic

section 4J= zr.(dz)/8)W of (QX/Q)/8)W about c, with r, w E

lL. Putting ~8 :=jM N*«P) and ~8 :=(jM NowM/N)*(4J) both
, ,

restricted to a suitable neighborhood of c8' we use the

discussion of §2 to compute ords at c8:

(3) ordZ(~8) = r.8+w.(8-1)

ordZ(~8) = r.8*+w.(8*-1).

Returning to the mapping (1) of §2, and summing (3) ~
over all c8 E (:O(M;c), we compute 5

(4) "ord(c,c){jM,N* (4J) /8) (jM,NowM/N) * (4J)-1}" =

2: r.8+w.(8-1) - r.8*+w.(8*-1),

8E D(M/N)

and we note that the sum is zero (for any rand w).
Applying this local analysis to 4J = fX restricted to each

cusp c E (:O(N) gives (2).

0
To summarize the above, for X = XO(N) we may identify

G<Jn.(X), the group of admissible markings on X (cf.
Chapter 8, §1), with the group of "modular unit
generators" on X. The image of the degree mapping

G<Jn.(X) -+ lL

(cf. (1) of Chapter 8, §1) contains 6.7L (since ~ is an

admissible 6-marking).
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Part III Bilateral axiomatics

Chapter ten. Bilateral algebra.

§1. Bilateral derivations. All the rings and algebras
we will consider in this section are assumed to be

commutative.
Let, then, A be a noetherian (commutative) ring (with

unity).

Notation: For B a (commutative) A-algebra, consider the

A-algebra
B2 = B@AB.

We view B2 as equipped with its two natural B-algebra

structures, its "left B-algebra structure" via the ring
homomorphism b ~ b@1 and its "right B-algebra
structure" via the ring homomorphism b ~ 1@b. The
natural "diagonal" homomorphism ~:B@AB-+ B, which is a

homomorphism of B-algebras (when B2 is given either its

left or its right B-algebra structure) gives B a natural B2-

algebra structure.

Let B be a A-algebra, and M a B2-module.

Definition: A bilateral A-derivation of B to M to be

a A-homomorphism

o:B -+M

satisfying the relation o(x.y) = (1@x).oy +(y@1).ox for

all x,y
in B.

Example: For any (commutative) A-algebra B the
canonical bilateral derivation 8: B -+ B2 is defined
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by the rule S(x) = 1@x-x@1.

Remark: This notion occurs in Lemma: Let 0: B ~ M be a bilateral J\-derivation. Then

for any two elements x, y E B, S(x).o(y)=S(y).o(x).

Proof: This comes from comparing the two sides of the
equation o(x.y) = o(y.x), using the definition of bilateral
derivation. -

0

Notation:

Let rB C B2 denote the kernel of the homomorphism

~: B2~B (~: b@J\b' ~ b.b').

The sub B2-module rB is generated by the image S(B).

The canonical bilateral derivation S takes its values in rB

C B2.

If M is any B2-module let

MS := {mE M I S(x).m = 0, for all x E B};

i.e., MS is the intersection of the kernels of the B2-

endomorphisms S(X) of M where x runs through all
elements of B. Equivalently, MS = M[rB]. Since the ideal

rB annihilates MS' and since rB = ker( ~), we see that the

B2-action on the B2-submodule MS c M factors through

B. Therefore MS may be (and will be) viewed as a B-

module.
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§ 2. "Counter-algebras" and congruence ideals:

Let B be a A-algebra, and consider M = B2 viewed as

B2-module. What geometric significance does the ideal

B2 8 c B2 have, and what is the significance of the image
,

~(B2,8) c B?

Definitions: If A is any commutative ring, and B any
(commutative) A-algebra, define the A-counter-algebra

B-L of B to be the quotient B2/ B2 8, Also (following H.
,

Lenstra [L]) let us call the ideal ~(B2 8) in B the,
congruence ideal of the A-algebra B. Call the quotient
A-algebra B = B/~(B2 8) the congruence quotient

,

algebra of B.

For any A-algebra B, then, we have the natural
commutative diagram, where "lines are exact" and where
the lower right square is a Cartesian square ( of A-

algebras with surjective homomorphisms) ,

0 0

1 1
0 -+ B2 8nrB -+ rB

l' 1
(1) 0 -+ B2 8 -+ B2 -+ B-L -+ 0

,
1 1 1

0 -+ ~(B2 8) -+ B -+ B ~ 0
,

1 1 1
0 0 0 .

Carrying over some of this notation to the corresponding
affine schemes, if S = Spec A and X = Spec B, the "Spec" of

the Cartesian square above gives us a Cartesian diagram
of S-schemes (morphisms being closed immersions) which

can be denoted
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;

XxSX ~ X-L

(2) T T

x ~ x ,

where X ~ X x sX is the diagonal morphism, and X is the

scheme-theoretic intersection of X and X-L in XxSX. The

formation of the diagrams (1) B and (2) X are
IA IS

"functorial" (in an evident sense) in B I A and XIS,

respectively, and commute with base change of A and of i
S, respectively [in the sense that tensoring the diagram i

(1) B term-by-term with A' over A yields (1) B '
IA lA'

where B' = B(8)AA', and similarly for (2) X ].
IS

Examples: 1) In the special case where B is a finite
, '
eta Ie A-algebra (equivalently, X is finite etale over S) the

diagonal subscheme is open and closed in X xSX, and X-L

can easily be seen to be the complement of the diagonal
in X x SX. In this case X is empty, and diagram (2) boils

down to the assertion that there is a decomposition of
XxSX as the disjoint union:

XxSX = X 11 X-L.

We can also state this in terms of diagram (1): we have

B2,8n rB = {a}, B2,8 == ~(B2,8) = B, and

B2 == B x rB'

2) Next, consider the case where A is an integral
domain and B is a finite flat and generically etale A-
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algebra. Let K denote the fraction field of A, and put ,8=
Spec)K) and )( = Spec(B(8)AK). Then, as in 1), we have

)( x,8)( = )( 11 )(-1-,

where )( imbeds in )( x,8)( as the diagonal, and )(-1- is the

complement to the diagonal.

We also have that the diagonal X C X x SX is the Zariski-

closure of )( in XxSX, and that X-1- C XxSX is the Zariski-

closure in XxSX of the complement-to-the-diagonal )(-1- C

)( x,8)(. So the "congruence quotient scheme" X is, in this

case, the scheme-theoretic intersection of the Zariski-
closures over all of S of diagonal and complement-to-
diagonal schemes at the generic point of S. Diagram (1)
simplifies in this case, for we have:

Lemma: B2 Sn rB = {a}.
,

(Proof: Since A is an integral domain, and B2 Sn rB C,
B2 which is finite and flat over A, B2,Sn rB is contained

in K(8)A (B2 Sn rB) which vanishes),

giving us the commutative diagram (with exact straight
lines):

~
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0 0
1 = 1

r5 -+ r5
1 1

(3) 0 -+ 52 8 -+ 52 -+ 5-L -+ 0

~ l' 1 1
0 -+ ~(52 8) -+ 5 -+ 5 -+ 0

, 1 1

0 0 .

3) When 5 is Gorenstein. Making the assumptions
of 2), i.e., that 1\ is a (noetherian, commutative) integral
domain and 5 is a finite flat and generically etale 1\-
algebra, and making the further assumption that 5 is
Gorenstein, we have that ~(52 8) c 5 is a principal ideal,
generated by a (by any) congruence element T) of 5, i.e., 5
= 5/~.5. We also have that T) is a non-zero divisor in 5.
It follows from diagram (3) above (since 52 8 -+ ~(B2 8) is

, ,
an isomorphism of 5-modules) that 52 8 is a principal,
ideal of 52, generated by any lifting -f1 E 52,8 of T). Let us

refer to such a lifting -f1 as a bilateral congruence
element (in 52). Diagram (3) then reads:

0 0
1 = 1
r5 -+ r5
1 1

(4) 0 -+ (-f1) -+ 52 -+ 5-L -+ 0

~ 1 1 1
0 -+ (T)) -+ 5 -+ 5/(T)) -+ 0

1 1
0 0 .

§ 3. Annihilating ideals.
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Let rr:5 -+ A be a surjective A-homomorphism of

(commutative, as always) A-algebras, with kernel given
by the ideal I c 5. Then the kernel of the induced A-
homomorphism 52 -+ A2 is the ideal 1~5+5~1 c 52.

Let M be an A2-module, viewed as 52-module via rr;

equivalently, M is a 52-module annihilated by 1~1 and
1~1. Let a: 5 -+ M be a bilateral A-derivation of 5 to M.
Then, as proved in Part II,

Lemma: The restriction of a to I induces a
homomorphism a of A-modules,

a
1/12 -+ MS

(5) T 1 c

I c 5 -+ M.
a

0

§4. The module of bilateral differentials.

For 5 a A-algebra, consider the category of bilateral A-
derivation on 5, and let d: 5 -+ 051 A denote a universal

bilateral A-derivation (as will be constructed in the
Proposition below). Equivalently, d: 5 -+ 051 A is an

initial object of the category of bilateral A-derivations on
5. This simply means that 051 A is a 52-module, and d is-
a bilateral derivation from 5 to °51 A with the property

that given any 52-module M and bilateral derivation a:
5 -+ M, there is a unique 52-homomorphism h:OBI A -+

M such that 0= doh. We will refer to 051 A as the 52-

mod ule of bilateral differentials (relative to A). In
§ below we shall, in fact, show that for any A-algebra 5,
the canonical bilateral A-derivation s: 5 -+ rB is
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universal. But for the time being let us content ourselves
with the assertion of existence:

Proposition 1: For any A-algebra B, there exists a
universal bilateral A-derivation d: B --." OBI A.

Proof: One could simply dispose of this proposition by
making the evident construction; i.e., form the the free
B2-module generated (freely) by elements db as b runs

through all the elements of B, and then take the quotient
B2-module of that free module obtained by imposing all

the relations necessary for b~ db to be a bilateral A-
derivation. Nevertheless, here is a somewhat more
economical construction of OBI A which may be slightly

more revealing.

Construction:

Step 1: Let )( be any set, and let P denote the (free,
commutative) polynomial algebra over A generated by
the set)(. Define F)( to be the free P2-module generated

by the set of symbols dx for x E )(. Let 111)( be the
quotient P2-module of F)( obtained by imposing the
relations 8(x)ody = 8(y)odx for all x,y E)(.

Lemma 1: There is a unique bilateral derivation d: P --."

111)( which sends each x E )( to dx E 111)(.

Proof: We define d on the set mn of monomials of degree

~n in the elements of )( comprising a basis of P as A-
module proceeding inductively in n. Our inductive
hypothesis is that we have defined d on mn in such a

way so that

(6) d«X°j3) = (1@cx)dj3 + (j3@1)d<x

for any monomials CX,j3 with cxoj3 E mn. It follows that we
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also have 8«x).df3 = 8(f3).d<x for such pairs <x,f3. The
definition of d on 'JTt 1 is forced by the prescription given in

the lemma, and visibly satisfies (6) so we may assume
that d has been defined satisfying (6) on 'JTtn for some

n?:1, and we must inductively define d on 'JTtn+1 showing

that it is "well-defined", and also that it satisfies (6) on its
extended domain. Given a monomial m E 'JTtn+1 writing
m as m = x.r for some x E)( and r E 'JTtn the definition of

dm is forced on us: dm = (x(8)1).dr + (1(8)r).dx. To see that
this prescription is well-defined, imagine a different
factorization of m, m = y.s, and we must compare

(7) (x(8)1).dr + (1(8)r).dx

with

(8) (y(8)1).ds + (1(8)s).dy.

Assuming that the two factorizations are distinct, i.e.,
that x:;=y, we may write m=x.y.t with r=y.t and s = x.t,

both in 'JTtn. By induction we have

dr = (y(8)1).dt+(1(8)t).dy, ds = (x(8)1).dt+(1(8)t).dx,

and therefore (7)-(8) is given by

(9) (X(8)t).dy + (1(8)yt).dx - (y(8)t).dx - (1(8)xt).dy =

(1(8)t) { 8(x).dy - 8(y).dx }

and this vanishes since the term in brackets is one of our
relations. What we have done so far is to define d on
'JTtn+1 and to check, in fact, that (6) holds if <X or f3 is of

degree 1.

To check that (6) holds for <x,f3 of general degree with
<x.f3 E 'JTtn+1' write <X = x.a for x of degree 1 and a of
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degree ?:1, giving us, from what we have done so far, ~

that d(cx'~) = (x~1).d(a'~) + (1~a.~).dx and dcx =
(x~1).da + (1~a).dx. By induction applied to a'~ E<JTln we

also have

d(a'~) = (1~a)d~ + (~~1)da,

so we are in reasonable shape to compute the difference,

d(cx'~) - {(1 ~ cx)d~ + (~~ 1)dcx}

as being equal to

(10) (1~a) {8x.d~ -8~.dx}

which vanishes since the term in the brackets vanishes
by the inductive assumption, x.~ being in <JTln.

0

Corollary: The bilateral A-derivation d: P ~ W)( is

universal for the A-algebra P.

Proof: If 0: P ~ M is any bilateral A-derivation, then
define the P2-homomorphism h: F)( ~ M by the rule that

dx 1--+ o(x). Since 8(cx). o~ = 8(~) .ocx for any two elements
cx,~ E P, the relations 8(x).dy-8(y).dx in F)( are sent to

zero under h, and therefore h induces a homomorphism
h: W)( ~ M such that 0= hod, and clearly h is uniquely

determined by this equation.
0

Having established that d: P ~ W)( is universal for

bilateral A-derivations of P, let us rename it d: P
~ Op / A noting that in view of its universality property it

is canonically defined, independent of the basis )( chosen,
and uniquely so up to canonical isomorphism.

Step 2: Now let B be any A-algebra, and )( c B any set
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of generating elements for the A-algebra 5. Let P denote
the (free, commutative) polynomial algebra over A
genera ted by the set )(. Let I C P denote the kernel of the
natural surjection of A-algebras P ~5. 5y the lemma of

§3, the composition of mappings

P ~ °p/A ~ OP/A~P252 = OP/A I (I~AP+P~AI).OP/A

<X ~ d<x ~ 1

induces a homomorphism of 52 -modules

d: 1/12 ~ OP/A~P252

(in fact, of 5-modules! if we restrict the range to the
~

submodule (QP/A~P252)8 ).

Define 051 A to be the quotient 52-module of Op I A~P252

which fits into the exact sequence of 52-modules,

(11) 1/12 ~ Op I A~P252 ~ 051 A ~ O.

An equivalent description of the 52-module OBI A is given
as follows. Consider the subset ~ = dl +
(I<8>AP+P~AI).OP/A in °P/A' i.e., the subset of elements

/ of the form d<x + 1) where <X E I, and 1)

E(I~AP+P~AI).OP/A' Then this subset ~ forms a sub P2-
module of OP/A and °5/A is the quotient P2-module
OPI A I~ with its inherited 52-module structure.

Define d5: 5 ~ 051 A to be the universal bilateral A-

d~rivation on P, d: P ~ Op I A taken modulo ~.
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Lemma 2: The mapping d5: 5 -+ 051 A is a universal

bilateral A-derivation on 5. - ;

Proof: The mapping d5: 5 -+ 051 A is indeed well-

defined on 5, i.e. d5I = 0 since dI E~, and d5 is a bilateral

A-derivation on 5. Given any bilateral A-derivation on 5,
0:5 -+ M where M is a 52-module, we may view 0 as

giving a bilateral A-derivation on P with values in M,
viewed as P2-module. 5y universality of Op / A, we have

a unique P2-homomorphism h: OP/A -+ M such that
0= hod. It is immediate that h(~) = 0, giving our lemma, and
therefore our Proposition.

0

Corollary: Let rr: C-+ 5 be a surjection of A-algebra
with kernel equal to J c C. Then rr induces a surjective
homomorphism OCI A (8)C252 -+ 051 A of 52-modules

fitting into an exact sequence:

(12) J/J2 -+ °CI A(8)C252 -+ 051 A -+ O.

0

Remark: We will often be dealing with complete
(noetherian) local rings A and complete (noetherian) local
A-algebras 5 viewed as topological rings, and for these it
is more appropriate to deal with "continuous" bilateral
derivations and differentials. When working in this
category we let 52 denote the completed tensor square

5 I8>A5 and we consider only continuous bilateral

derivations from 5 to 52-modules. The initial object in

this category (of continuous bilateral derivations from 5
to 52-modules) we will call the module ,of continuous
bilateral differentials °5/A,cont. If m C 5 is the

maximal ideal then 05/A,cont is isomorphic to the

projective limit
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°B/A,cont = limo proj. O(B/m1J)1 A.

1J-+00

If X is a set, and P the power series ring in the variables
X with coefficients in A, then 0 PI A,con t is the P2-

module generated by X with relations 8x.dy= 8y.dx for all
x,y EX.

The previous Corollary has a direct analogue for
continuous bilateral differentials; namely: Let A be a
complete noetherian local ring, and Tr: C-+ B a surjection
of complete noetherian local A-algebras with kernel
equal to J c C. Then Tr induces a surjective
homomorphism °C/A,cont ~C2B2 -+ °B/A,cont of B2-

modules fitting into an exact sequence:

(13) JIJ2 -+ OC/ A cont~ c B2 -+ OBI A cont -+ O.
, 2 '

Remark: When we are clearly working in this category
of complete noetherian local rings and continuous
bilateral derivations and differentials (as will almost
always be the case from §6 on!), and when no confusion
can result, we will drop the subscript "cont" from the
notation.

§ 5. The projection to "plain old" differentials.

Composing any bilateral A-derivation 0: B -+ M with
the natural projection 'L: M -+M~B2B yields a A-

derivation 8= 'LOO: B-+ M~B2B (that is, a derivation in the

more usual sense, which we might call here "unilateral"
derivations) Let us say then that the bilateral A-
derivation 0 covers the "unilateral" A-derivation 8.
From the universal property of OBI A we get a canonical
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homomorphism of B-modules,

c: OBI A -+ OBI A(8)B2B.

Proposition: The homomorphism c is an isomorphism.

Proof: Using the universality property of the 52-module

051 A (for bilateral A-derivations on 5) one checks that

the B-module 051 A(8)B25 is universal for (unilateral) A-

derivations on B.
0

§ 6. The canonical homomorphism E.

Since the "canonical" bilateral A-derivation

8: 5 -+ rB

(of §1) is a bilateral A-derivation, there is a unique
homomorphism of B2-modules

E: OB/A -+rBcB2

such that Eod = 8.

(we will call E the canonical homomorphism). The
following is a Corollary of the mere existence of the

canonical homomorphism E.

Corollary: Let 0(. E B. The annihilator ideal (in B2) of

the element dO(. in 051 A is contained in the annihilator

ideal of the element 80(. in 52. If 80(. is a nonzero-divisor,

then the annihilator ideal of dO(. in 051 A is trivial.

Proof: If ~.dO(.=O, then applying E to this we get ~.80(.=O.
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0

Proposition 2: Let B be any (commutative) A-algebra.
The canonical homomorphism £: OBI A -+ rB is an

isomorphism.! The canonical bilateral A-derivation 8: B
-+ r B is universal.

Corollary 1: We have a commutative square of B2-

modules
!

"'

OB/A -+ °B/A

=1£ =1
rB -+ rB/rB2

where the upper horizontal homomorphism is the
homomorphism coming from the Proposition of §5, and
the lower one is the natural projection.

Proof of Corollary 1: The unlabelled vertical arrow in
the diagram which can be identified with £@B 1B is

2
directly seen to be the standard isomorphism °51 A =

r5/rB 2 in the theory of derivations.

0

Corollary 2: For B any (commutative) A-algebra, the
module of bilateral differentials 051 A is annihilated by

52 8 and inherits a canonical 5-L-module structure,
induced from its 52-module structure.

Proof of Corollary 2: Since 52 8 is the annihilator ideal,

1 It would be embarrassing to me if anyone knew how many weeks I walked this planet

covering blackboards and yellowpads with scribblings about bilateral differentials before I

realized that this isomorphism exists.
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in 52 of r5 the statements in the Corollary hold for the

'" 52-module r5'

0

Proof of Proposition 2:

Of course it is only the first assertion of the Proposition
that needs proof, for the second then follows. I am
thankful to 5eilinson for providing me with the following
short proof of this Proposition.

For M a 52-module, let X(M) denote the set of

isomorphism classes of pairs (E, e) consisting of extensions
.I

(E) 0 -+ M -+ E -+ 5 -+ 0

in the category of 52-modules, and liftings e E E of the
identity 1 E 5. Note that given an (E,e) E X(M) we have a
"5(8) 1-linear" section s: 5 -+ E given by s(b) = (b(8) 1)e,
allowing us to write E (viewed as "5(8)1 -module")
canonically as E = 5 E9 M; explicitly:

(14) E = s(5) E9 M (= "(5(8)1).e E9 M").

The essential structure, then, of the isomorphism class
(E,e) E X(M) is given by the 1(8)5-module structure on
(14). The 1(8)5-module structure on E, being determined
on 0 E9 M by the 52-module structure of M, and being

also determined on the projection to the first summand
B, is entirely captured by the following data: form the
bilateral derivation d:5-+M given by d(b') = 8(b').e

viewed as an element of M, where b' E 5. We may
reconstruct (E,e) from d, the prescription being

(15) (1(8)b').(b E9 m) = b'.b E9 {(1(8)b').m +(b(8)1).d(b')}

where the direct sum E9 refers to the decomposition of 14)
above.
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Moreover, given any bilaterall\-derivation d:5~ M
(15) determines a 52-module structure on (14) which

defines an isomorphism class (E,e) E X(M). This gives us a
canonical bijection

(16) X(M).= Hom52(O51 I\,M).

We also have a mapping X(M) ~ Hom52(r5,M) by

sending (E,e) to the 52-homomorphism f: r5 ~ M given
by f(~) = ~.e viewed as element of M, We can reconstruct

(E,e) from such an f by taking the image under f of the
class (Eo,eo)

in X(rB) where Eo is the exact sequence of 52-modules

{O~rB~B2~B~O} and eo is taken to be the identity i
element 1B2 E 52' Thus we have a bijection

(17) X(M) .= HomB2(rB,M),

Composing the two bijections (16) and (17) gives us a

bijection

Hom52(rB,M) .= HomB2(O511\,M)

which is directly seen to be an isomorphism of B2-

modules,
giving Proposition 2.

0

Remark about continuous bilateral differentials:
Working in the category of complete noetherian local
rings we have the analogous isomorphism OBI I\,cont .=

rB where r5 is the kernel of 5 ~I\B ~ B. Again, if we

are working squarely in this category and no confusioncan result, we will suppress the subscript "cont" and the A

from the notation.
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§ 6. Bilateral evolution.

Definition: Say that a surjective homomorphism of A-
algebras, Tr: C -+ B is a bilateral evolution if the
induced homomorphism °CI A (&/C2B2 -+ OBI A of B2-

modules is an isomorphism: ==
OCI A (&/C2B2 -+ OBI A .

Let A be a complete noetherian local ring with residue
field k, and let us now work exclusively in the category of
complete noetherian local A-algebras with residue field k.
Th us if B, C are objects of this category then B (&/ A C will
mean completed tensor product, B2 will mean B @AB,

and we will drop the "cont" from the subscript in the
notation for the module OBI A,cont of continuous

bilateral differentials.

Proposition: If A is a complete local noetherian ring
with residue field k, and Tr: C -+B is a surjective bilateral
evolution of complete local noetherian A-algebras with
residue field k and such that B is flat over A, then Tr is an

isomorphism.

Proof: I am thankful, again, to Beilinson for providing me
with the following simple proof of this. First, using
Proposition 2 of §5, one can check directly that a
surjective homomorphism Tr: C-+ B is a bilateral evolution

if and only if TorC21(B2,C) vanishes. Secondly, for C-

modules M, N that are flat over A one also directly checks
that there is a natural isomorphism of A-modules,

TorCl(M,N) == TorC21(M(&/AN,C). Taking M=N=B the

above facts mean that we are merely required to show

the vanishing of TorCl(B,B), which follows from
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(sur jectivity of Tr, and) Nakayama's lemma.

0
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Chapter eleven. Bilateral Flach Derivations

§ 1. The basic set-up for this Chapter.

In part II we showed (subject to the clearing up a list
of "loose ends") that Flach's construction yields a "Cohesive
Flach System" in the terminology of Chapter 5. In fact, a

reader of that Chapter will notice that, to obtain this
result, we did not really make the maximal use of the
cohomology classes of Flach's construction. We now wish
to provide a system of axioms that sharpens the notion of

"cohesive Flach system" and that records a bit less
profligately the type of information given to us by Flach's

construction.

Let p be a prime number> 2. Let A be a local, finite flat
reduced lLp-algebra and H a free A-module of rank two

endowed with an A-linear GtQ,~-action (for ~ a finite set

of primes containing p). We assume that H satisfies the

running hypotheses of §1 of Chapter 5. In particular, it

satisfies the p-cyclotomic determinant condition.
Denoting by p: GtQ,~ -+ A utA (H) .= GL2 (A) the

representation determined by this action, and p the

associated residual representation, we assume that

Sym2(p) is absolutely irreducible and that p is cleanly
ramified at all primes of ~ different from p, that p is
semi-stably ramified at these primes, and that p is
Barsotti-Tate at p. For prime numbers ~ not in ~, let T ~

E A denote the "~-th Hecke operator" as defined in Part I,
i.e., T~ is the A-Trace of the element p(Frob~) E GL2(A)

where Frob~ is any choice of ~-Frobenius element. Let G

denote the free lLp-algebra on the generating set {T ~}~ fi ~

and let G-+ A denote the natural homomorphism of lLp-

algebras. Make the hypothesis that G -+ A is surjective.

[Remark: Looking ahead, one may want to define,
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in certain contexts, an element T pEA and include

a "corresponding generator" Tp in the algebra G,

but let's not bother to do that now.]

We also assume that the H possesses a principal
polarization with respect to which the action of A is
Hermitian. In particular, A is a Gorenstein ring
(Corollary 2 of §2 of Chapter 3). Let 1") be a congruence
element for A.

§2. The A(8)lL A-module H(8)lL H and its cohomology-
p p

Using the notation A2 = A(8)lL A of Chapter 10, we have
p

that H(8) lL H is a free A2-module of rank 4. Although this
p

may seem a bit strained, let us give the following new
notation for the A2[G~ 2:]-module H(8)lL H.~, P

New notation: Put W*:= H(8) lL H, and let W denote the
p

A2[G(Q,2:]-module which is Cartier dual to W*, i.e.,

W:= HomlL (H(8)lL H, ~).
p p

We want to think of W* and W as refjnements of the

Cartier dual A[G(Q,2:]-modules W* and W of Part I of

these notes. We have natural surjections

(1) W* ~ W* (8) A ~ W*A2 '

and natural injections,

(2) W ~ HomlL (H(8)AH, ~) ~ W*.
P
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From diagram (4) of §2 of Chapter 10, we have the exact

sequence of A2-modules,

0 -+ (.,) -+ A2 -+ A -L -+ 0,

which, when tensored with H@lL H, yields an exact
p

sequence

0 -+ (H@lL H)S -+ H@lL H -+(H@lL H)@A 2A-L -+ 0
P P p

(3) = 1 = 1 = 1

0 -+ .,oW* -+ W* -+ W*/.,oW* -+ o.

The A-L[G(Q,)::]-module W*/.,oW* = (H@lLpH)@A2A-L is,

of course, free of rank 4. [Recall, though, that ., is
usually not a non-zero-divisor in A2 ]

Notation: Given any bilateral lLp-derivation,

u) : G. -+ Hl(G(Q, W*),

we denote by

S[): G. -+ Hl(G(Q, W*)

the "unilateral" lLp-derivation of G. obtained by composing

the bilateral lLp-derivation [): G. -+ Hl(G(Q, W*), with

the homomorphism on cohomology induced by the

surjection W*-+W* of (1).
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§ 3. (Bilateral) Flach Derivations connected to
Galois representations.

Fix a prime number p > 2 and a square-free positive
integer N. Let <E denote the (non-noetherian) lLp-algebra
of polynomials in a countable number of variables, these
variables being denoted by the symbols t Q where Q runs

through all prime numbers not dividing p.N.

<E = lLp [..., t~, ].

Let
p: GQ,2; -+ GL2(A) = AutA(H)

be a Galois representation satisfying the hypotheses of § 1.
We may view A as a <E-algebra, via the mapping <E -+ A
of lLp-algebras which sends t ~ to the "Hecke operator" T Q E
A. In particular, we have a natural <E-module structure
on H induced from its A-module structure, and we have a
natural <E2 = <E(&JlL <E-module structure on H@lL H.

p p

We shall make two definitions. The point of the first

definition is to formulate a relatively loose catch-all
notion. The point of the second is to capture the precise

structures we have already constructed.

Definition 1: A (Bilateral) Flach Derivation for p is a
bila teral lL p-deriva tion

ID : <E -+ H1(GQ, W*) = H1(GQ, H(&JlL H)
p

with the following two properties.

1) For prime numbers r =I Q the restriction of the
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cohomology class 'T~ : =O)(t~) to the decomposition group at

r, GIf"'\ is "finite", i.e., lies in Hf 1(GIf"'\ ,H(8)lL H).
IIo/r' IIo/r p

2) For all ~ t/ L the restriction of the class

'T~=O)(t~) E H1(G(Q, H(8)lL H) to the decomposition group at
p

~, res~'T~ E H1(G(Qn' H(8)lL H)= HomG F (lLp(1), H@lL H), lies
~ p ~ p

in the submodule

HomG F (lLp(1), (H(8)lL H)S) c HomG F (lLp(1), H@lL H).
~ p ~ p

Proposition: To give a Bilateral Flach Derivation for p, it
is equivalent to give, for each prime number ~ different
from p, a class 'T~ in the 'B2 = 'B(8)lL 'B -module

p
H1(G(Q, W*) = H1(G(Q, H(8)lLpH) such that the classes 'T~

(~;o!:p) satisfy properties 1) and 2) of Definition 1, and such

that, we have the further relation

3) St~1.'T~2 = St~2.'T~1

for any pair ~1' ~2 of prime numbers different from p.

Proof: The connection between the classes 'T~ described

in our Proposition and Bilateral Flach Derivations is, of
course, as follows: Given a Bilateral Flach Derivation 0),
the classes 'T~ = lD(t~) satisfy the Properties of our

Proposition, where 3) follows from the Lemma of § 1 of
Chapter 10. Given a system of classes 'T~ as in the

statement of the Proposition, that there is a unique
Bilateral Flach Derivation 0) such that lD(t~)= 'T~ for all

~;o!:p follows from Lemma 1 of §4 of Chapter 10.
D
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Any finite linear combination of Bilateral Flach
Derivations attached to p with coefficents in A2 = A (8) lL A

p

is again a Bilateral Flach Derivation attached to p.

Notation: Denote by BFD(p) the A2 -module of all

Bilateral Flach Derivations attached to p.

Definition 2: Let cx E A be a nonzero-divisor. A
(Bilateral) Flach Derivation,

[) : G -+ Hl(GQ, W*)

for the representation p will be said to have singular
depth cx if the rule assigning to each ~ not in 2: the class
S[)(t~) E Hl(GQ, W*) is a Cohesive Flach System of depth

cx for p.

Pedantic Remark: In discussing singular depth it is
convenient to be able to talk, as well, of the degenerate
case of "Bilateral Flach Derivations of singular
depth 0", these being Bilateral Flach Derivations such
that for all prime numbers r (i.e., including r=~) the
restriction of the cohomology class S[)(t~) to the

decomposition group at r lies in Hfl(GQr' W *).

The proof of the Theorem of §5 in Chapter 8 actually
constructs (given a w-marking fX) a Bilateral Flach

Derivation of singular depth cx =W.T) (in the sense just
axiomatized) attached to the representations p dealt with
in that §. To be more explicit at the expense of being
redundant, Let G denote the lLp-algebra of geometric self-

correspondences of X as defined in § 6 of Chapter 7. We
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view a as B-algebra by sending t~ E B to r~ E a, for all

prime numbers ~ ~p.

Theorem: Let N be a square-free positive integer. Let X
=XO(N), and let fX be a modular unit generator on X of

degree w E 7L. Let ill be an admissible maximal ideal and
A its associated Gorenstein ring as discussed in Chapter 8,
Let T) be a congruence element of A. Let

p: G(Q,L:: ~ GL2(A)

be the associated Galois representation. The construction
given by formula (9) of §5 of Chapter 8 projects to a
Bilateral Flach Derivation of singular depth W-T) attached
to the Galois representation p, which factors through the

B-algebra a,

U) : B ~a ~ Hl(G(Q, W*)

0

§4. Are the Bilateral Flach Derivations that we
have constructed "canonical" ?

Fixing X = XO(N) and an admissible maximal ideal ill, the

construction of the Theorem above gives us a rule, call it
~= ~N m' which assigns to any modular unit generator fX,-
of degree w a Bilateral Flach Derivation attached to the
Galois representation p associated to ill. The mapping ~ is
a homomorphism of the group of modular unit generators
of level N (equivalently: of "admissible markings" on X) to
the underlying additive group of the A2-module of

Bilateral Flach Derivations for p,

~N m : aTh(X) ~ BFD(p),,-

and recall that the singular depth of ~(fX) is equal to W-T).
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It follows from the last phrase above that the kernel of ~
is contained in the kernel of the degree mapping,

degree: am(X) ~ 71.

Question: Is the kernel of ~ equal to the kernel of the

degree mapping?

An affirmative answer to this question would be
equivalent to the statement that the Bilateral Flach
Derivations constructed here are "essentially" independent
of the modular unit generator fX: they are dependent

only upon the degree w of fX. If the answer to this

question is "yes", one would be tempted, given p and a
suitable "degree" w E 71, to look for a more direct definition
of, or perhaps a characterization of, the Bilateral Flach
Derivation of depth won we have constructed for p?

§5. The bilateral derivation of A associated to a
Bilateral Flach Derivation.

Remaining in the context of §1, let

ID : ~ ~ H1(G(Q, W*)

be a Bilateral Flach Derivation attached to the
representation p. Letting I denote the kernel of ~~A, we

have, from Chapter 10, that the restriction ID of ID to 1/12

is an A-homomorphism,

(4) ID: 1/12 ~ H1(G(Q, H(8)71 H)o'
p

We now make the hypothesis that no subquotient
A(8)71 A-module of H(8)71 H has nontrivial G(Q-invariant

p p
elements, and therefore we have an associated exact
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sequence of cohomology,
(5) 0-+ Hl(G~, (H@7L H)S) -+ Hl(G~,H@7L H)-+Hl(G~,W*/r)'oW*),

p p

and also, by the Lemma of §7 of Chapter 7, we have the

isomorphism

Hl(GQ, H07L H)S ~ Hl(G~, (H@7L H)S),
p p

so we may view (4) as giving us an A07L A-
p .

homomorphism

(6) 1fJ: 1/12 -+ Hl(G~, (H(8)7L H)S). -
P

From (5) and (6) we see that [) induces a bilateral 7Lp-

derivation from A to the A.J..-module Hl(GQ,2;,W*/r)'oW*);

this bilateral 7Lp-derivation we will call

(7) [).J..: A -+ Hl(GIQ,L,W*/noW*) = H1CX-S,W*/r')oW*),

where the "X" that appears in (7) is Spec 7L, following the
conventions of Part 1 of these notes.

Proposition: The image of [).J.. lies in the submodule

H1(X,W*/noW*) C H1(X-S,W*/noW*).

Proof: This uses Lemmas 1 and 2 of §6 of Chapter 8.

[But recall that proofs for these have not yet been
written down]

Specifically, ****************
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Corollary: The btlateral derivation DJ.. induces an A.L
~ tc

homomorphi$mch which fits int~ the commUtative
~

diagram

h
Hl(X-L,W*/i)oW*)

~

1 !(8),
h

Hi CX :.t;W::--/1) ~:W -;. )'-'J

'where the A-homomorphism h is the one associated to

the derivation e: A -+ H1(X,W*/noW*) coming from
the Cohesive Flach System f +d(Tt), and where the
vertical arrows are given by the natural mappings.

a
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