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What is a Basic Notion?

It’s exciting to be giving a basic notions seminar—a seminar
offering a type of reflection about mathematics that David
Kazhdan introduced at Harvard many years ago.

The idea was not to offer the latest results, so much as to take
one single notion or construction, or inspiring analogy, or
heuristic, and show how it pervades different areas of
mathematics.

I remember that Serre did that, giving one basic notions
seminar, starting off with the word homotopy.

I suppose Hermann Weyl could well have given a basic notions
seminar in the spirit of his book Symmetry.
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Basic Notions

Kazhdan’s sense that basic notions are a crucial gateway to
mathematical truth is coupled with his clear commitment to
friendship as being essential for the best mathematical
practice, so—in my lectures— I’m happy to touch on three
projects with close mathematical friends—that connect to
heuristics in arithmetic; first, commenting on work with:

I Lucia Caporaso and Joe Harris; then with

I Karl Rubin; and the final part with

I Karl Rubin and Sasha Shlapentokh.



Reasoning from Randomness

You ask yourself a question about some mathematical set-up
and want to know how many instances of this set-up exist.

You make a list of everything you know about the structure of
it, and then. . .

if everything else is random. . .

you just compute—to get an estimate, which you then
conjecture to be the actual estimate.

It’s more hubristic than heuristic, since it seems to be making
the assumption that your knowledge extends to all relevant
structure (and everything else is random).
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A Heuristic of Non-correlation and

the Self-Contradictory Heuristic:

Are the operations of ‘Addition’ and ‘Multiplication”

Correlated?

There’s a natural (statistical) way of asking this
question—leading to an empirical (and theoretical) project:

Is there any serious correlational structure regarding the
multiplicative features (e.g., “roundness”) of three whole
numbers A,B ,C if they are subject to the additive constraint:

A+B= C?

For example:
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Let a, b, c be a triple of positive integers; these

will play the role as exponents.

Consider the diophantine equation

A + B = C

where:

I A is allowed to be any positive integer that is a perfect
a-th power,

I B a perfect b-th power and

I C a perfect c-th power.

So, for example, if
a = b = c = 2

then we’re considering Pythagorean triples.



Counting these solutions:

Let X be a large positive integer, and N(X ) be the number of
solutions of our diophantine equation

A + B = C

with C ≤ X . What can we say about the behavior of N(X ) as
a function of the bound X?

An optimistic heuristic—a sort of null hypothesis—is that the
basic statistical behavior of N(X ) is dictated by the
constraints on it that we already know.



Counting these solutions:

Let X be a large positive integer, and N(X ) be the number of
solutions of our diophantine equation

A + B = C

with C ≤ X . What can we say about the behavior of N(X ) as
a function of the bound X?

An optimistic heuristic—a sort of null hypothesis—is that the
basic statistical behavior of N(X ) is dictated by the
constraints on it that we already know.



The two sides, A + B and C , of our diophantine

problem:

A + B = C

are assumed “random,” except, of course, for all our “prior”
knowledge about them. So we must take an inventory of what
we actually know:

I Is there an systematic structure to the collection of
solutions?

Well, if d is the least common multiple of the exponents
a, b, c and (A,B ,C ) is a solution to our problem, i.e., a
contributor to the number N(X ),
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then for every integer

k = 1, 2, 3, . . .
(
X/C )

1
d

we have that

I
(kd · A, kd · B , kd · C )

is also a solution.



Hypothesizing the systematic structure away:

Change our problem, and ask questions about the behavior of
the function

No(X ) := the number of relatively prime triples (A,B ,C )

that are solutions to our problem.

Of course this will affect the collection of (A,B ,C )’s that are
in the game, but as we will see, not by much.



Formulating the probabilistic event:

We get a “hit,” i.e., a solution to A + B = C every time we
get that the number A + B − C is zero.

But—and this is the big assumption—

Viewing A + B − C as randomly roaming through the
allowable range which is roughly of size X as we run through
our allowable triples (A,B ,C ),
the probability that any A + B − C is zero is roughly X−1.

So we do have (roughly)

X
1
a · X

1
b · X

1
c = X

1
a+ 1

b+ 1
c

shots at this.



So the expected number of successes will be 1
X

times X
1
a

+ 1
b

+ 1
c ,

Or:

X
1
a+ 1

b+ 1
c−1.



To blur things a bit

given that we have been arguing quite naively, we might
conjecture:

I When
1

a
+

1

b
+

1

c
> 1,

we should get:

Conjecture

X
1
a+ 1

b+ 1
c−1−ε < No(X ) < X

1
a+ 1

b+ 1
c−1+ε

for any ε > 0, and for X >> 0 (with the implied constant in
“>>” depending on ε).



The Self-contradictory Heuristic
When

1

a
+

1

b
+

1

c
< 1,

the above estimate would give us a decreasing number of hits
as X tends to infinity; which doesn’t make much sense at all.
Call it:

The Self-contradictory Heuristic
and interpret it as:

Conjecture
Fixing exponents a, b, c satisfying the inequality

1

a
+

1

b
+

1

c
< 1,

there are only finitely many solutions to the diophantine
problem

Ua + V b = W c

with (U ,V ,W ) relatively prime positive numbers.
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FLT, ABC

Of course, the classical Last Theorem of Fermat specifies a
good deal more precise information than the above conjecture
for the cases a = b = c > 3.

This illustrates the structural
shortcoming of this probabilistic heuristic: it is quintessentially
probabilistic, and (it alone) could not get one to guess as
precise a conjecture as Fermat’s Last Theorem, even though it
might offer, as plausible guess, some affirmation of the
qualitative aspect of that Theorem.
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The border line case: when 1
a + 1

b + 1
c = 1

This involves just a handful of possibilities:
(3, 3, 3), (2, 3, 6), (2, 4, 4) and their permutations; each of
them have interesting stories.

All this motivates the work of Masser and Oesterlé with their
wonderful, sweeping, ABC conjecture.



Non-Correlation

And all this above is motivated by the sentiment that
relationships like

I A + B = C—or broadly put: the operation of
addition—-and properties such as

I powerfulness or roundness—or broadly put:
multiplicative properties

are statistically uncorrelated. . .

at least once one takes into
account certain elementary and evident correlations.
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Hidden correlations: Artin’s Conjecture about

Primitive Root densities

The integer a 6= 0,±1 is a primitive root for p (a prime not
dividing a) if and only if for no prime q both:

1. p ≡ 1 mod q, and

2. a
p−1
q ≡ 1 mod p

are true. Artin first assumed that for different primes q
conditions (1) and (2) are independent. . . making a density
conjecture on the basis of this assumption. This was wrong
(as illustrated by computations of Lehmer).

So. . . Artin took into account the dependence and revised his
conjecture. . . and the revised conjecture remain unsolved.
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Structural versus Statistical

Compare the conjectures we’ve just discussed with the
statement of any structural theorem such as the Pythagorean
Theorem, or Unique Factorization for Z. Nothing could be
more different! (qualitative versus structural)



Versions of the ABC conjecture with ABC-like

non-correlations

guaranteeing multiplicative properties and additive properties
are ’independent,’ give evidence for, e.g.:

I The (generalized) Catalan problem where one looks for

whole number solutions of

xn − ym = c (1)

in the variables (x , y , n,m) with x , y > 0

and where c ∈ Z is a constant.



A simple application of the‘optimistic heuristic’

offers the guess that there should be on the order of

X
1
n+ 1

m−1+o(1)

solutions of Equation 2 for a fixed value of c .



Catalan

So when n,m > 2 we are facing the weird ‘guess’ that the
expected number of solutions decreases as X increases: i.e.,
again the self-contradictory heuristic and again we interpret it
as suggesting that we conjecture that:

Conjecture
(for such a choice of values of m and n) there are only finitely
many solutions of

xn − ym = c (2)

for any given c .



Classical Catalan

In particular, the classical Catalan Problem (1844) asks for
pairs of consecutive perfect powers, and the answer (provided
by Preda Mihâilescu in 2002) is that there is only one such
pair, namely:

8 = 23 and 9 = 32.



‘Reverse Engineering’ the Conjecture of Mordell

The general effect of the ’optimistic conjecture’ is to press the
possibility that there are relatively few solutions of whatever
problem is being considered. For example, let’s try our rough
calculus on the following problem:

For a polynomial g(x) ∈ Q[x ] of degree d with ra-
tional coefficients and no multiple roots, how often is
one of its values g(a) for a ∈ Q a square in Q?



‘Reverse Engineering’ the Conjecture of Mordell

There are roughly X 2 rational numbers of height ≤ X and
roughly X of them are squares. Roughly X

2
d rational numbers

of height ≤ X are in the image of g(Q).

Our heuristic gets us to expect

X 1+ 2
d−2

‘hits’ of height ≤ X . So, if d ≤ 2, if there are no obvious
other constraints, the heuristic tells us to expect infinitely
many, while if d >> 2, finitely many.
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The borderline cases d = 3, 4

are clearly problematic, for indeed there are elliptic curves with
infinitely many rational points; but—of course— here there is
a fundamental feature that has to be taken account of;
namely, the group structure.

The fact that the Mordell-Weil group is finitely generated
seems to be the excuse for our rough calculus misbehaving for
this case. More about this, in a moment.
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When d > 4

there is no other corresponding structure that contributes to
an infinity of rational points, and—indeed—our rough calculus
is on target: if d > 4 this naive heuristic predicts that the
(hyperelliptic) curve

y 2 = g(x)

has only finitely many rational points. In fact they do only
have finitely many rational points—



—since these curves (d > 4) are of genus > 1, and all curves
of genus > 1 were conjectured by Mordell (1922) to have only
finitely many rational points, this being proved by Faltings (six
decades later).

Moreover, a theorem of Manjul Bhargava, Benedict H. Gross,
and Xiaoheng Wang may be roughly interpreted as showing
that most hyperelliptic curves of high genus have relatively few
rational points.
(Pencils of quadrics and the arithmetic of hyperelliptic curves:
http://arxiv.org/abs/1310.7692)
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The Challenge:

Can one find a formulation of some ’non-correlation
conjecture’ that implies (all of) Mordell’s Conjecture?

Noam Elkies’ Response:

“Mordell’s Conjecture is as easy as ABC”

N. Elkies, ABC =⇒ Mordell’s Conjecture, International
Mathematics Research Notices 1991, No. 7)
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Random Matrix Heuristics

Every mathematician must have some favorite applications of
reasoning from randomness. In number theory, my current
favorite is the Cohen-Lenstra heuristic that began the great
discussion about guesses for the average values of ideal class
groups over various ranges of number fields.

I Cohen-Lenstra: quadratic imaginary fields

I Cohen-Martinet-Malle and others:—a more general
framework—where roots of unity are the sticking point(s).
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Thought-Experiment

The Cohen-Lenstra heuristic arises by imagining the
thought-experiment of fabricating an ideal class group by a
random process in terms of its generators and relations,
subject to the prior constraints that reflect everything we know
about the way in which the ideal class group appears—

e.g., as if some random spirit entertained him-or-her self by
building these ideal class groups, randomly in a devil-may-care
manner dreaming them up as quotients of an abstract model
of “an” idele class group.
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Any Random matrix heuristic

applied to finding statistics for the structure of some general

group invariant A (attached to a category of ‘things,’) will

always start with a thought-experiment that imagines how

that group invariant is constructed. E.g., is it a quotient

Zm M→ Zn → A→ 0?

where M is some matrix—constrained to have particular
features to make the cokernels look like such A’s?

If so, assume that such M ’s are random but constrained to
have those properties and then. . . compute.
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Random graphs and “sandpile groups”

Z[Vertices]
Laplacian−→ Z[Vertices] −→ Cokernel → 0



That cokernel has many names:

Cokernel = “Sandpile group” = “Jacobian” = “Picard group”

of the graph



What is the probability that an “Erdos-Rényi” graph on n
vertices with independent edge-probabilities q has its sandpile
group isomorphic to a group group G?

—Cohen-Lenstra-type heuristics, again—

Melanie Wood: gives precise answer (for p-Sylow subgroups)



Graphs with nodes= elliptic curves; and

edges= isogenies

I’m thankful to Ari Shnidman for emailing me yesterday about
a result of Nathaniël Munier and his, where for p and q
distinct primes, they consider Xp,q, the (q + 1)-regular graph
whose nodes are supersingular elliptic curves over the prime
field Fp and whose edges are q-isogenies.

For fixed p, they show that the `-Sylow subgroup of the
sandpile group (of Xp,q (as q tends to infinity) disagrees with
the Cohen-Lenstra heuristic in this context. This is neat, and I
hope Ari can say more about this!
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Empirical Number Theory

Whether the Cohen-Lenstra heuristics work or not, they do
have a firm place in the toolkit of conjectures that might be
informative (one way or other) as guides for reflections and
experiments in that empirical branch of number theory.



Some words about elliptic curves, abelian varieties

Abelian varieties are projective algebraic varieties that have
an algebraically defined group structure—(surprisingly) these
are all commutative.

In dimension one, they’re called elliptic curves and any of
these can be represented as plane cubics, with a unique point
at infinity (taken to be the origin of their group structure). An
old-fashioned phrase alluding to, and explaining, their group
structure is the chord-and-tangent-process.
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Mordell-Weil groups

If an abelian variety A is defined over a field K its set of
K -rational points A(K ) is a (naturally) a commutative
group—called it’s Mordell-Weil group.

If K is a number field, then A(K ) is a finitely generated
abelian group—

thanks to Mordell (who proved this for elliptic curves over
Q)—

and to Weil (who proved the general statement)—

The rank of A(K ) rank is called the MW-rank of A over K .
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A heuristic for boundedness of ranks of elliptic

curves

This is the title of an article by Jennifer Park, Bjorn Poonen,
John Voight, and Melanie Matchett Wood which contains a
random matrix heuristic argument leading to the remarkable
guess that:
there is a finite upper bound to the Mordell-Weil ranks of all
elliptic curves over Q.

This guess was originally made by Honda only for families of
quadratic twists of a single elliptic curve—and that was not
even believed at the time by all number theorists for that
special case!
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The heuristic offers a guess for an explicit bound

Park, Poonen, Voight and Wood conjecture that: The number

of elliptic curves with ‘naive’ height H and Mordell-Weil-rank

≥ r is no greater than

H
21−r

24 +o(1)

save for possibly finitely many elliptic curves.



The self-contradictory heuristic, again

The conjecture of Park, Poonen, Voight and Wood reads,
when r > 21, as the weird statement that:

the number of elliptic curves with ‘naive’ height H and
Mordell-Weil-rank ≥ r is declining as H is growing.

This is quite naturally interpreted as offering courage to:

Conjecture
There are only finitely many elliptic curves defined over Q with
Mordell-Weil rank > 21.



Record MW-ranks under the above estimate:



rank ≥ year Author(s)

3 1938 Billing
4 1945 Wiman
6 1974 Penney − Pomerance
7 1975 Penney − Pomerance
8 1977 Grunewald − Zimmert
9 1977 Brumer − Kramer

12 1982 Mestre
14 1986 Mestre
15 1992 Mestre
17 1992 Nagao
19 1992 Fermigier
20 1993 Nagao
21 1994 Nagao − Kouya





Record MW-ranks above the above estimate:


rank ≥ year Author(s)

22 1997 Fermigier

23 1998 Martin −McMillen

24 2000 Martin −McMillen

28 2006 Elkies





Noam Elkies’ elliptic curve with MW-rank ≥ 28:

Elkies (2006)
y2 + xy + y =

x3 − x2−

20067762415575526585033208209338542750930230312178956502x+

+34481611795030556467032985690390720374855944359

319180361266008296291939448732243429



Serge Lang’s minimalist View:

Rational Points are Rare!

Conjectures (and some results) suggest that, on the whole,
algebraic varieties over a number field K tend not to have all
that many K -rational points unless either

I there is some specific algebraic geometric structure
generating them, e.g., a group structure could ‘produce’
loads of rational points from a few of them.

I For example, (nontrivial) Algebraic groups over a number
field have Zariski-dense K -rational points for some
number field K containing the field over which they are
defined.

Hence: infinitely many of them.



Or possibly, and this is a bit more mysterious:

I a functional equation (proved, or conjectured) and a
corresponding root number computation predicts the
parity of the rank of a Mordell-Weil group (which in many
cases allows one to expect the existence of more rational
points than is in evidence without this prediction).



But lacking either reason for rational points to be

abundant, the sense is that they are scarce.

For example, if V is an algebraic variety defined over Q̄, that
admits a non-constant mapping G → V of where G is a
connected positive dimensional algebraic group, then there is a
number field K over which V is defined and possesses
infinitely many K -rational points.

Conjecture

(Serge Lang) Otherwise not!



The “Strong Lang Conjecture”

There are variants of such conjectures, one of them known as
SLC: the “Strong Lang Conjecture”.

An implication of the Strong Lang Conjecture (SLC) is

Conjecture
Any algebraic variety V over Q̄ that does not contain a
positive-dimensional image of an algebraic group (over Q̄)
possesses only finitely many K -rational points over any
number field K (over which it is defined).



Strong uniformity

Assuming the Strong Lang Conjecture, Lucia Caporaso, Joe
Harris and I proved the following consequence:

Theorem
Let g > 1. The Strong Lang Conjecture implies that there is a
(finite) bound N(g) with the property that for every number
field K only finitely many curves of genus g defined over K
have more than N(g) K -rational points.



The curious point here is that N(g) doesn’t even

depend on the field K .

Of course, such a consequence of SLC might force one to have
second thoughts about the likelihood of SLC being true. But
let us continue this discussion supposing that SLC does hold,
and so the following limit is finite:

N(g) := max
K⊂Q̄

lim sup
C : curves/K of genus g

|C (K )|.



Lower bounds for N(g)

It is easy to see that

N(g) ≥ 2g + 2 if g > 1,

but not much more is known in the way of lower bounds.
Less, of course, is known in the way of upper bounds.

The record lower bounds for genus 2 and 3, so far are:

I N(2) ≥ 226 (Genya Zaytman) and

I N(3) ≥ 100 (Noam Elkies).



Even stronger uniformity?

My co-authors (Lucia Caporaso, and Joe Harris) and I wonder
whether even more uniformity might not be the case: we feel
that the right ‘parameter’ to consider is:

Definition
N∗ := lim infg→∞N(g)/g .

Definition
N ∗ := lim supg→∞N(g)/g .



Higher lower bounds

Curves in P1 × P1 of bidegree (2, g + 1) are of arithmetic
genus g . They form a linear system of dimension 3(g + 2)− 1.

Given 3(g + 2)− 1 general points

p1, . . . , p3g+5 ∈ P1 × P1(Q),

accordingly, there will be a smooth curve C defined over Q
and passing through them.

And since C is a general hyperelliptic curve, its automorphism
group is equal to Z/2, consisting of the identity and the
hyperelliptic involution; and since no two of the points pi lie in
the same fiber of P1 × P1 over P1, no two are conjugate under
the automorphism group of C .



We have accordingly:

3 ≤ N∗ ≤ N ∗. (3)



Some natural questions:

I Is N ∗, or perhaps only N∗, or neither of them, finite?

I Are both inequalities in

3 ≤ N∗ ≤ N ∗

equalities? (or is one of them, or neither)?



Uniformity in moduli parameters?

I Let M∗g ,n denote the moduli space of projective smooth
curves of genus g with n distinct marked rigid points.

For K a number field let dg ,n(K ) denote the dimension of
the Zariski-closure in M∗g ,n of the set of K -rational points
M∗g ,n(K ).

Now define

dg ,n := max
K

dg ,n(K )

where the maximum is taken over all number fields K .



Uniformity in moduli parameters?

Conjecture SLC implies that:

For fixed g ≥ 2—if n�g 0, then

dg ,n = 0.

Might dg ,n be decreasing (albeit not necessarily strictly) for
fixed g and increasing n?

Here is a far-out question:

Question
Call a curve of genus g defined over K a K -outlier if it has
more than N(g) K -rational points. Is there anything waiting
to be said about the number of K -outliers as a function of K?



What about quadratic uniformity?

Quadratic Points

A K -quadratic point of a curve C over a field K is a rational
point of C over a quadratic field extension L/K .

There are two ways for a curve C of genus > 1 defined over a
number field K to have loads (i.e., infinitely many) of
quadratic points (over K ):

I C could be hyperelliptic meaning that it is a degree two
cover of the projective line.

I C could be bielliptic meaning that it is a degree two cover
of an elliptic curve that happens to have infinitely many
K -rational points.



Faltings’ Theorem

If it is neither hyperelliptic nor bielliptic (and of genus
> 1)—then Faltings has proved that C has only finitely many
K -quadratic points.

So. . . how many?



Is there ‘quadratic uniformity” independent of the

base number field?

Conjecture: There’s a finite upper bound N2(g) such that for
any number field K there are only finite many curves defined
over K that are of genus g > 1 and neither hyperelliptic nor
bielliptic and have more than N2(g) K -quadratic points.



Quadratic advances. . .

Dan Abramovich tells me that the argument of Caporaso,
Harris and myself, coupled with his paper with José Voloch

Lang’s conjectures, fibered powers, and uniformity. New York J.

Math. 2 (1996), 20-34

should prove:

Theorem
SLC also implies the above Conjecture.



1. This theorem isn’t explicitly written down; so a neat
project to be done.

2. Thinking about possible projects: More generally, say
that a curve has bi-gonality d if every mapping to P1

(alias: rational function) or to an elliptic curve has degree
≥ d . (This is a neologism.)



Degree d rational points

Conjecture: There’s a finite upper bound Nd(g) such that for
any number field K there are only finite many curves defined
over K that are of genus g > 1 and are of bi-gonality > d
have more than Nd(g) points rational in field extensions of
degree ≤ d over K .

1. Another neat project: to show that SLC implies this
conjecture. (?)

2. Comment on the very recent determination of all
Q-quadratic isogenies of elliptic curves (defined over Q).
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Heuristics in Arithmetic—and randomness

Basic Notions Lecture: Dec 9

Barry Mazur



What is a ‘heuristic’ in Mathematics?

I’m thankful to Yuval Flicker for asking that question in our
chat after my lecture last Thursday. I said that I’d take this as
homework and would bring it to my lecture today. It—or least
a start to it— is attached in the chat.



No new Rational Points

With Karl Rubin, I’ve been considering a ‘relative question’
that has a field extension in the game:

Definition
Let V be a variety defined over K .

1. V is diophantine stable for the field extension L/K if
V (L) = V (K ); that is, if V acquires no new rational
points when one extends the base field from K to L.

2. A field extension L/K belongs to V if there is an
L-rational point of V that is not defined over any properly
smaller field containing K .



Fixing the field extension L/K

Proposition
(Suppose SLC.) Fix g > 1 and let L/K be any number field
extension of degree larger than N(g).

Then L/K belongs to only finitely many (isomorphism classes
of) curves C over K of genus g .

Question
Let X and Y be two absolutely irreducible curves defined over
K that have the same set of field extensions L/K belonging to
them.

Is it true that X is birationally equivalent to Y over the
algebraic closure K̄?



Fixing the curve—or fixing an abelian variety

The “minimalist philosophy” leads us to the following
question.

Question
If C is a curve of genus > 0 (resp: if A is an abelian variety)
over K , ` is an odd prime number, and m is a positive integer,
is it the case that

(among all cyclic Galois extensions of K of degree `m, ordered
by conductor)

the cyclic Galois extensions of K of degree `m that are
diophantine stable for C (resp. A) are of density 1 ?



Focusing on abelian varieties

Karl Rubin and I proved the following embarrassingly weak
theorem in the direction of answering this question

Theorem
If A/K is a simple abelian variety such that
EndK̄ (A) = EndK (A), then:

there is a set S of prime numbers of positive density such that
for all ` ∈ S and for all positive integers m there are infinitely
many cyclic Galois extensions of K of degree `m that are
diophantine stable for A.



The weakness of the theorem

Unfortunately we cannot replace the phrase “infinitely many’’
in the statement of our theorem by “a positive proportion”
(where ‘proportion’ is defined by organizing these cyclic
extensions by size of conductor).

If we order the extensions by size of conductor and consider
what we have proved for a given `m, among the first X of
these we get at least—

X/ logα X

of them as X →∞ (for a small, but positive, α).
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Unfortunately we cannot replace the phrase “infinitely many’’
in the statement of our theorem by “a positive proportion”
(where ‘proportion’ is defined by organizing these cyclic
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If we order the extensions by size of conductor and consider
what we have proved for a given `m, among the first X of
these we get at least—

X/ logα X

of them as X →∞ (for a small, but positive, α).



A comment:

When K/Q is quadratic, the cyclic `m extensions of K that are
Galois dihedral extensions of Q are potentially a source of
systematic diophantine instability but they are of density 0 in
all cyclic `m extensions of K .



Random Matrix Heuristics again

The following conjectures and predictions about elliptic curves
E over Q are suggested by the random matrix heuristic.

This
involves work of

I Conrey, Keating, Rubinstein, and Snaith for p = 2, and

I David, Fearnley, and Kisilevsky and also Fearnley,
Kisilevsky, and Kuwata for p odd.

For f (X ), g(X ) functions of a real variable X , we write
f (X ) ∼ g(X ) if

lim
X→∞

f (X )

g(X )
= 1.
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Conjecture (DFKK)

Fix E an elliptic curve over Q.

For a prime p > 2, and X a positive number, define:

NE ,p(X ) = Np(X ) := the number of cyclic degree p extensions
L/Q of conductor ≤ X that are diophantine un-stable for E .

Then there are nonzero constants bE ,p, cE ,p for which

I NE ,3(X ) ∼ bE ,3
√
X log(X )cE ,3 ,

I NE ,5(X ) ∼ bE ,5 log(X )cE ,5 ,

and . . .



For p ≥ 7

I NE ,p(X ) is bounded independently of X if p ≥ 7.

(I.e., there are only finitely many diophantine unstable
cyclic p-extensions L/Q (for E ) if p ≥ 7.)



Towards a“modular symbol” heuristic

In contemplating (in effect) how weak our diophantine stability
theorem was—and inspired by the random matrix prediction of
David, Fearnley and Kisilevsky—Karl Rubin and I turned to
the structure of modular symbols as determining special values
of L-functions relevant—conditional on standard
conjectures—to diophantine stability.



We have lectured about this before so here I will jump to the
essential part of our heuristic, which:

I is a strikingly weak statistical hypothesis supported by the
substantial relevant data already available, and

I makes predictions that are of significantly broader
generality than the random matrix heuristics stated
above, but that are in agreement with them, in the cases
where they overlap.
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The essential part of our heuristic

Fix a ‘pair’ (E , d) where E is an elliptic curve over Q and d is
a positive integer (> 1).

For a real number X we want to consider the set

L(X )

of all cyclic extensions L/Q of order d of conductor mL < X .

Put

L = ∪X<∞L(X ),

i.e., the set of all cyclic extensions L/Q of order d .



Rational integer “Theta-values”

coming from the “analytic number theory of

elliptic curves”

(That is, coming from special values of L-functions attached
to elliptic curves)

For any elliptic curve E over Q and cyclic Galois extension
L/Q in L there is an integral valued function

θE ,d ;L/Q = θ : Gal(L/Q) → Z

with the following property:



For any injective homomorphism

χ : Gal(L/Q) ↪→ C∗

(viewed as primitive Dirichlet character of conductor m)
we have that:
the special value of the L-function of E , twisted by χ at s = 1:

L(E , χ, 1)

is (up to a nonvanishing, and elementary, factor) equal to∑
γ∈Gal(L/Q)

χ(γ)θ(γ).



A Consequence, conditional on a standard

conjecture (BSD):

Let L/Q be the cyclic extension of degree d and conductor m
‘cut out by the Dirichlet character χ, then:

L/Q is diophantine unstable for E

BSD↔∑
γ∈Gal(L/Q) χ(γ) · θE (γ) = 0.



Hence, for example, if d = p, a prime:

L/Q is diophantine unstable for E

BSD↔

The values ΘE ;L/Q(γ) are the same for all γ ∈ Gal(L/Q)



Because. . .

Lemma
We have ∑

γ∈G

χ(γ)θ(γ) = 0 ⇐⇒ θ(γ) = θ(σ)

for all γ, σ ∈ Gal(L/Q).

Proof.
The only Q-linear relation among the values of χ (i.e., the
p-th roots of unity) is that their sum is zero. It follows that
the sum over γ is zero if and only if all the ‘theta-values’ θ(γ)
are equal.



Distributions of θ-values

Consider real cyclic extensions L/Q of fixed degree d ≥ 3 and
varying conductor m.

The Theta-values θ(γ) for (say, odd) degree d and conductor
m are a sum of O(ϕ(m)) modular symbols

[a/m]E ∈ Z

which (in average; taken over all m and d) have a Gaussian
distribution.
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SO: if these “Theta-values” θ(γ) were the sums of O(ϕ(m))
randomly chosen modular symbols one would expect that:

(?) The distribution of (elementarily normalized) theta-values
ranging over all cyclic Galois extensions of Q of degree d
should also be Gaussian. . . at least for large d . (?)

But. . .
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Calculations do not support this expectation, at

least not for small values of d .

However, calculations do support (thankfully) our weaker
conjecture that I will describe later this lecture (after I show
some of our data) and which:

is more than strong enough for our purposes.

Define the normalized θ-coefficient

θ̃E ;L/Q(γ) = θ̃(γ) :=
θ(γ)
√
d√

ϕ(m) log(m)
.
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Some Data

For each of the three elliptic curves 11A1, 37A1, and 32A1
(in the notation of Cremona’s tables) and for five (prime)
values of d , we computed the first (approximately) 50,000
normalized θ-coefficients θ̃(γ), with L/Q ordered by conductor
and γ generic [ this involves a detail which we can discuss].

The resulting maybe-distributions are shown in Figures 1
through 3 below.

As d grows these maybe-distributions

ΛE ,d

approach the “expected” normal distribution, shown as the
dashed line in each figure.
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Figure: Distribution of normalized θ-coefficients for E = 11A1 and
varying d .
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Figure: Distribution of normalized θ-coefficients for E = 37A1 and
varying d .
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Figure: Distribution of normalized θ-coefficients for E = 32A1 and
varying d .



What are these ‘maybe–distributions’ ΛE ,d?

We need not (and do not) conjecture that the distributions

ΛE ;d ,m for fixed d and increasing m

even converge as m tends to infinity!

BUT: for large enough d do they, in fact, converge? If so what
are these distributions? As d , and m tend to infinity do these
values converge to a Gaussian distribution?



A weak conjecture suffices

All we conjecture, and all we need to conjecture—for the
consequences we draw—is that

I there is a mild upper bound for these data sets, and

I the most minimal type of non-correlation between theta
coefficients attached to a given L/Q.



Data sets

For
d ≥ 3,

α, β ∈ R, and
X ∈ R>0,

let Σd ,α,β(X ) be the collection of data (counted with
multiplicity) defined as follows:



Σd ,α,β(X ) :=

the set of values

{
θ̃(γ)mα

L log(mL)β
}

where γ ∈ Gal(F/Q) and L/Q runs through real, cyclic
extensions of degree d and conductor < X .



Uniform boundedness

Conjecture
There is a (uniform!) upper bound BE > 0 and for every
d ≥ 3 there are ) ‘exponents’ αd , βd ∈ R such that

1. for every real open interval (a, b),

lim sup
X→∞

#{Σd ,αd ,βd (X ) ∩ (a, b)}
#Σd ,αd ,βd (X )

< BE (b − a),

2. {αdϕ(d) : d ≥ 3} is bounded, and limd→∞ βd = 0.



Random matrix theory heuristics

(alluded to) suggest that for d = 3 and every real open
interval (a, b),

lim sup
X→∞

#{Σd ,αd ,βd (X ) ∩ (a, b)}
#Σd ,αd ,βd (X )

< Bd(b − a), (4)

with α3 = 0, β3 = 3/4 and a sufficiently large B3.



Empirical data suggest (4) holds for all d

with

I αd = 0,

I βd converging to zero for large d and

I Bd bounded for large d .

Taking BE to be the maximum of the Bd leads to the
statement of our conjecture.



Here is a heuristic shorthand description of the

above Conjecture

There is an upper bound BE > 0 such that for

I every cyclic extension F/Q of degree d ≥ 3,

I but we exclude the (few) elements γ ∈ Gal(F/Q) that we
call special− in our paper; and

I every real interval (a, b) . . .



we conjecture an upper measures for ‘likelihood’

We define the “upper measure for the likelihood that the
Theta values θ̃(γ) associated to some extension L/Q lies
in the interval (a, b),” to be

BE (b − a)mαd
L log(mL)βd ,

where BE , αd , βd are as in our Conjecture.

Explain how this is used.
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“Log-noncorrelation”

Recall: If d = p, a prime:

L/Q is diophantine unstable for E

BSD↔

the Theta-values ΘE ;L/Q(γ) are the same for all γ ∈ Gal(L/Q)

SO: if p >> 0 there must be a lot of correlation to get
diophantine un-stability!



“Log-noncorrelation”

That is, if the probability that two Theta-values are equal is
1

10
and if there is complete non-correlation the probability that

all p − 1 Theta-values are equal would be 1
10p−2 .

We don’t need such full “non-correlation:’ All we need is that
the probability be no greater than something on the order of:

1

10O(log(p)
.

It is this type of hypothesis, which we call

“Log-noncorrelation”

which we assume—together with our empirical data, plus
belief in BSD—that gets Karl Rubin and me to conjecture the
following:
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Ranks of elliptic curves over Large abelian

algebraic number fields

Conjecture: Suppose E is an elliptic

curve over Q, and L ⊂ Qab is a real

abelian field that contains only finitely

many extensions of Q of degree 2, 3,

or 5. Then E (L) is finitely generated.



For example, we can take the field L in this

conjecture to be

I the cyclotomic Zp-extension of Q for any prime p, in
which case the conjecture is known to be true by work of
Kato and Rohrlich. [In fact, any abelian extension of Q
unramified outside finitely many primes.]

I the compositum of all these Zp-extensions (i.e., for all p)
in which case this was previously conjectured by Coates,

I the maximal abelian `-extension of Q for any ` ≥ 7.

I the compositum of all of the above.
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Hilbert’s Tenth Problem over rings of algebraic

integers

The original “Hilbert’s Tenth Problem” was one of 23
problems posed over a century ago by David Hilbert in the
ICM, at the Sorbonne, in Paris:

Problem
Is there an algorithm which when given an arbitrary
polynomial equation in several variables over Z, answers the
question of whether that equation has solutions in Z?



This question has been answered negatively

in the work of M. Davis, H. Putnam, J. Robinson and Yu.
Matijasevich. Similar questions have been raised for other
fields and rings: For what fields or rings of algebraic numbers
does HTP have a negative answer?

Note: there is extensive literature on this, and all the
references relevant to what I’m about to say are given in the
paper in preparation: Existential Definability and Diophantine
Stability (by Karl Rubin, Alexandra Shlapentokh and me).

This paper also contains the results we are about to discuss.



Diophantine definitions of rings of integers

Let L/K be an extension of number fields.
Suppose given a set of m polynomial equations in n + 1
variables with coefficients in OK :

F := {Fi(t, x1, x2, . . . , xn)} for i = 1, 2, . . . ,m

where we have ‘singled out’ the variable t.



Say that F provides a diophantine definition of OK in OL if

1. Every simultaneous solution of the equations

Fi(t, x1, x2, . . . , xn) = 0; i = 1, 2, . . . ,m

where t and all the xi take values in OL, the variable t
takes its value in OK , and

2. Every element of OK occurs as such a value (of t).



Diophantine definitions of rings of integers for

people who like schemes:

The same definition:

Let L/K be an extension of number fields, and:

V := Spec (OK [t; x1, x2, . . . , xn]/(f1, f2, . . . , fm))

Let Aff1 = Spec (OK [t]) be 1-dimensional affine space, viewed
as (an affine) scheme over OK .



The natural homomorphism:

OK [t] −→
{
OK [t; x1, x2, . . . , xn]/(f1, f2, . . . , fm)

}
induced by sending t 7→ t can be viewed as an OK -morphism:

V
t−→ Aff1

which in turn induces a map on OL-valued points

V (OL) −→ OL.



Diophantine definitions of rings of integers

This morphism of affine schemes:

V
t−→ Aff1

will be called a Diophantine definition of OK in OL if the

image of V (OL) −→ OL is precisely

OK ⊂ OL.



The Category of all Diophantine definitions of OK

in OL

There are loads of open questions worth examining about the
category of diophantine definitions related to number field
extensions!

(E.g., given the existence of a Diophantine definition, what is
the affine scheme of smallest dimension providing a
Diophantine definition of OK in OL?)



The Category of all Diophantine definitions of OK

in OL

There are loads of open questions worth examining about the
category of diophantine definitions related to number field
extensions!

(E.g., given the existence of a Diophantine definition, what is
the affine scheme of smallest dimension providing a
Diophantine definition of OK in OL?)



Diophantine definitions and HTP

Let L/K be an extension of number fields. If

I HTP has a negative answer for OK the ring of integers in
K

and if

I there is a diophantine definition of OK in OL,

then

I HTP has a negative answer for OL.



Bootstrap up:

Since HTP has a negative answer for Z (thanks to Yuri
Matiyasevich, Martin Davis, et al)

—we can try to show that HTP has a negative answer for the
ring of integers in any number field, by finding

—maybe—

diophantine definitions of OK in OL for every number field
extension.



Bootstrapping up to any totally real number field!
(J. Denef, L. Lipshitz, Diophantine Sets over Some Rings of

Algebraic Integers Journal of the London Mathematical Society, 18

1978 (385-391))

Recall that a “number field,’ means a field of finite degree
over Q. We’ll get to large algebraic numbers fields—i.e., fields
of algebraic numbers of infinite degree later.

Theorem
The ring of (rational) integers has a Diophantine definition in
the ring of integers in any totally real number field.

Corollary
HTP has a negative answer any totally real number field L.

Say a word about the method of proof—making use of unit
equations in quadratic extensions of L; and its connection with a
similar argument of Martin Davis. . .



Transporting diophantine definitions of rings of

integers

(Using work of Cornelissen-Pheidas-Zahidi, Poonen,
Shlapentokh.)

Let K ⊂ L be number fields. If there exists an elliptic curve E
over K having (a) infinitely many rational points over K

and

(b) the diophantine-stability property for the extension L/K :

E (K ) = E (L).

Then there is a diophantine definition of OK in OL.



Abelian varieties, more generally

Sasha, Karl and I recently proved, more generally:

Theorem
Let L/K be a number field extension with OL/OK the
corresponding extension of their rings of integers. Let A be an
abelian variety defined over K such that
rank A(L) = rank A(K) ≥ 1.

Then OK has a diophantine definition over OL. Further, if L is
a totally real field or a quadratic extension of a totally real
field, this diophantine definition can be made uniform in the
degree of L over Q.



Diophantine definitions and Diophantine Stability

Mention: this generalizes to arbitrary smooth group schemes
over rings of integers.

And mention the query about whether diophantine stability
can (or must?) always take a role in any diophantine definition
of the rings of integers within number field extensions.



Diophantine Stability for Large fields

Is OQab = Z[µ] diophantine undecidable?

Here is what our heuristic gets us to conjecture:

Suppose our conjecture holds. Let p = 7 or 11. Then we
construct:



I a real abelian field L with [Qab+ : L] = p, and

I an abelian variety A/Q such that rank A(Q) > 0 and
A(L) is finitely generated.

If the Birch and Swinnerton-Dyer conjecture holds for elliptic
curves, then the same statement holds for p = 13.

It will follow from our heuristic, then, (plus standard
conjectures) that—

for all such fields L, the ring Z has a diophantine definition in OL

and therefore OL is diophantine undecidable.



What about OQab itself?

We’re at some sort of border here in the sense that we don’t
even have a ‘heuristic’ to nudge us to guess whether or not
OQab is diophantine undecidable—

Note that elliptic curves, at least, can’t play much of a role in
a diophantine definition of Z in OQab

Thanks for listening, and. . .

I hope I’ve left enough time for Nati Linial and Yuval Peled to
present their data for the neat statistical and ’non-correlational
heuristic’ problem they are currently working on.
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