
Hilbert’s Hotel and other encounters with infinity

Barry Mazur



How do we measure infinity?

How do we compare infinite sets?

If someone tells you that

“it is equally likely for a prime number to have residue
+1 as it is likely for it to have residue −1 modulo 4”

In how many ways might one formulate (correct) rigorous
mathematical statements that are in accord with that claim?

forgetting, for the moment, any proof of this claim . . .



Density Questions

infinite set −→ S ⊂ T ←− infinite set

What might the density of a subset contained in an infinite set
mean?

Of course a related, perhaps prior, question is:

What is an infinite set?



Infinite Real Estate

Oh the virtues of that unending corridor1 of rooms in Hilbert’s
Hotel!

1https://thechristcollegemathblog.wordpress.com/2014/12/

03/hilberts-hotel/

https://thechristcollegemathblog.wordpress.com/2014/12/03/hilberts-hotel/
https://thechristcollegemathblog.wordpress.com/2014/12/03/hilberts-hotel/


Hotel Hilbert

Even if every room is occupied and some new guest arrives
looking for a room: no problem. The manager “just” asks all
the guests to move to the next room in the corridor,

1 → 2 → 3 → 4 → 5 → . . .

leaving the first room free for the new guest.



Defining Infinity:

Here are four possible definitions of infinite set—they are all
minor variants of one another. (The first is due to Dedekind
and resonates with that curious corridor in Hilbert’s Hotel.)

What do we think is the difference between the following four
possible definitions of infinite set?

First, recall the concepts: injective and surjective map:



Injective

A map f : X −→ Y is injective (synonym: “one-one into”)
if f sends no two different elements of the set X to the same
element of the set Y .

I.e., if for x , x ′ ∈ X we have

{x 6= x ′} =⇒ {f (x) 6= f (x ′)}.

I.e., no collapsing:
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An example:

Figure: injective



Surjective

A map f : X −→ Y is surjective (synonym: “onto”) if every
element y ∈ Y is in the image of X under the map f .

I.e.,
∀y ∈ Y ∃x ∈ X such that f (x) = y .

An example:

Figure: surjective



Surjective

A map f : X −→ Y is surjective (synonym: “onto”) if every
element y ∈ Y is in the image of X under the map f .

I.e.,
∀y ∈ Y ∃x ∈ X such that f (x) = y .

An example:

Figure: surjective



Now for the four different candidate-definitions of

this concept “infinite set”:

Definition ∞1 :

A set S is infinite if there exists an injective mapping
f : S → S (i.e., from the set S to itself) that is not surjective
(equivalently: injective but not a one:one correspondence
between the set S and itself).

This definition is given in Richard Dedekind’s (1888) essay:

“Was sind und was sollen die Zahlen?”
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Definition ∞2 :

A set S is infinite if there exists a surjective mapping
f : S → S (i.e., from the set S to itself) that is not injective
(equivalently: surjective but not a one:one correspondence
between the set S and itself).



Definition ∞3 :

A set S is infinite if there exists an injective mapping of the
set N of natural numbers into S .

(The set of natural numbers is what you think it is:

N := {1, 2, 3, 4, . . . },

even though the ancients were dubious about the number 1 as
being in the same category as the other whole numbers.

To actually define this set N without making use of the
dot-dot-dots requires some apparatus—e.g., mathematical
induction.)
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Definition ∞4 :

A set S is infinite if there exists an surjective mapping of the
set S onto N.

We could also pass the buck by defining an infinite set as
simply. . . an in-finite set, i.e., a non-finite set.

E.g., it is a set S such that any finite subset of S has a
non-empty complement in S .

So, what is a finite set?
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Definition or Characterization?

Within the appropriate axiomatic set-theoretic context, the
four definitions of “infinite set” are equivalent, so we have a
choice:

I We can choose one of them as our primary definition, and
the other three can be thought of as ‘characterizations’ of
the then-defined concept—infinite set.

I We can simply say: these are all equivalent and any one
can serve as “the” definition.



The relationship between these choices

depend on the ambient axiomatic context in which are
working. For example, if you accept the ‘Axiom of Choice’
then if a set is infinite following Definition ∞2 it is also infinite
following Definition ∞1.2

2For an excellent account of the issues that Dedekind confronted in
his essay see Notes on Richard Dedekind’s “Was sind und was sollen die
Zahlen?” by David Joyce,
https: // mathcs. clarku. edu/ ~ djoyce/ numbers/ dedekind. pdf

https://mathcs.clarku.edu/~djoyce/numbers/dedekind.pdf 


Definition versus Characterization?

The question, then, (What is an infinite set?) depends on the
choice: definition versus characterization. The same holds for
the question:

What are3 Prime Numbers?

3‘and what should be’—following the tone of Dedekind’s “Was sind
und was sollen die Zahlen?”



Two possible definitions

A prime number p is a (whole) number greater than one

1. that is not expressible as the product of two smaller
numbers. (Unfactorable.)

or

2. that has the property that if it divides a product of two
numbers, it divides one of them.
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1. that is not expressible as the product of two smaller
numbers. (Unfactorable.)

or

2. that has the property that if it divides a product of two
numbers, it divides one of them.



Your Choice!

If you choose (2) (p is prime if ’whenever’ it divides a product
it divides one of the factors ) as the fundamental definition. . .

you are actually placing the notion of prime number in the
broader context of ‘prime’-ness as it applies to number
systems more general than the ring of ordinary numbers—

and more specifically framing it in the context of prime ideals
of a general ring.
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Moreover, choosing (2) as your definition

casts (1) (that primes are numbers that are ’unfactorable’) as
a specific feature that characterizes prime numbers, thanks to
the theorem that guarantees the equivalence of these two
formulations.



Going the other route—

i.e., focusing on (1), the unfactorable quality of prime
number,

would then cast (2) as simply a more general feature
also characterizing prime-ness (within the larger context of
commutative rings with identity element).
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What prime numbers are there?

New primes are discovered every few days. . . Two weeks
ago today: A record prime of 50001 digits was computed:

1050000 + 65859

is the smallest prime with 50001 digits.4

4https:

//www.multiprecision.org/downloads/ecpp/cert-50000.bz2 in
PARI/GP format and https://www.multiprecision.org/downloads/

ecpp/cert-50000.primo.bz2 in Primo format as converted by
PARI/GP code written by J. Asuncion, who is also the author of the
fastECPP implementation in PARI/GP.

https://www.multiprecision.org/downloads/ecpp/cert-50000.bz2
https://www.multiprecision.org/downloads/ecpp/cert-50000.bz2
 https://www.multiprecision.org/downloads/ecpp/cert-50000.primo.bz2
 https://www.multiprecision.org/downloads/ecpp/cert-50000.primo.bz2


Proofs that there are infinitely many primes

The classical proof: . . . is the one in Euclid’s Elements5.

It proves that the set of prime numbers is “non-finite.” E.g., if
you already know that 2, 3, 5, 7, and 11 are primes, for
example, then Euclid’s proof notes that there exists yet
another prime

≤ 2 · 3 · 5 · 7 · 11 + 1 = 2311.

Well, 2311 is, in fact, a prime not on your list, but. . . so is 13.

5 “Elements” —‘Στoιχει̂α’—is quite a stark title. “Elements” of
what?



Far out proofs:

Following Euler, the Riemann zeta function ζ(s) which has its
additive and multiplicative formats—for Re(s) > 1:

ζ(s) :=
∞∑
n=1

1

ns
=

∏
p prime

(
1− 1

ps
)−1

.

unique factorization theorem

OO



The values of ζ(s) at positive even integers

For s = 2n (with n any positive integer) Euler proved that

ζ(2n) =
∏

p prime

(
1− 1

p2n
)−1

= rn · π2n (0.1)

where rn is some (positive) rational number.

rn := (−1)n+1 22n−1

(2n)!
· B2n

where B2n = the 2nth Bernoulli number.
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What if there were only finitely many prime

numbers?

Now,

I If there were only finitely many prime numbers, then

∏
p prime

(
1− 1

p2n
)−1

(0.2)

would be a rational number.



Contradiction!

Comparing

ζ(2n) =
∏

p prime

(
1− 1

p2n
)−1

= rn · π2n (0.3)

with:

Theorem: (Lindemann-Weierstrass) π is transcendental,
and

choosing n to be some positive number you like:
n = 1 or n = 2, or . . . n = a million, we get a contradiction,
since the central term in this equation (0.3) would be
rational. . . but rn · π2n is irrational.



For any choice of n we get:

Corollary (Proof{n})

There are infinitely many prime numbers.

Query

1. Assuming that these proofs aren’t circular (and I’m
guessing that they aren’t) would you consider them to
actually be different proofs for different choices of
positive integer n?

2. Which, if any, of the definitions we listed above of the
concept “infinite” do these proofs rely on?



Prime Number Races

==

That is the title of a wonderful article6 by Andrew Granville
and Greg Martin that explains in detail the race between, for
example, the team of prime numbers congruent to 1 mod 4
(color them blue) and the team congruent to −1 mod 4 (color
them red).

6https://arxiv.org/pdf/math/0408319.pdf

https://arxiv.org/pdf/math/0408319.pdf


Red versus Blue

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

Primes congruent to 1 mod 4 (blue)
—versus—

Primes congruent to −1 mod 4 (red)



Score:

{ Score for primes < 100}: 11 to 13

The race is very close, but the team of Primes congruent to
−1 mod 4 is ahead. This is often the case for larger packets of
prime numbers:

{ Score for primes < 100, 000}: 4783 to 4808



Flipping a coin

If you choose a prime ‘at random’ and ask what the probability
is that you’ve got a ‘red’ prime or a ’blue’ prime the answer is
1/2 thanks to a theorem of Dirichlet.

That is, the ratio

|{red primes < X}|

to

|{blue primes < X}|

tends to 1 as X tends to ∞.
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So, the race is tight

It is even tighter given:

1. a conjecture7 that for 100% of the positive integers X the
number of red primes less than X exceeds the number of
blue primes less than X ,

and

2. a theorem of Littlewood that says that there will be
cutoffs X arbitrarily large for which the number of blue
primes less than X exceeds the number of red primes less
than X .

7beginning with some comments of Tschebyscheff in a letter to the
mathematician Fuss. This was sharpened and made explicit as a
conjecture in 1962 by Knapowski and Turán. See the discussion in the
article Prime Number Races of Granville and Martin cited above.



This discussion might lead us to the general

question:

What ways are there to measure the ‘density’ of a subset S of
the set P of prime numbers?

Such a notion, density should be defined on lots of (but not

necessarily all) subsets S of P ,

S 7→ δ(S) ∈ [0, 1] ⊂ R,

and should at least have these basic properties:



Requirements for a ‘density function’

1. The density of the full set of primes P is 1 and

2. the density of any finite set of primes is 0.

3. Density is finitely additive: Let S1, S2 ⊂ P be disjoint
subsets of primes and S3 := S1 ∪ S2 their union. If two
out of the three subsets S1, S2, S3 have defined densities
then the third one has a defined density too: and

δ(S1) + δ(S2) = δ(S3).



Natural Density:

The most natural definition one can think of that might be
called the density of a subset S of primes is:

δnatural(S) := lim
X→∞

|{p ∈ S ; p ≤ X}|
|{p ∈ P ; p ≤ X}|

, (0.5)

if that limit exists.

And δnatural satisfies all the requirements in the axioms above.



Natural Density depends on very little:

Note that “natural density” depends only on the structure of
P viewed as an (‘abstract’) ordered set, and not at all on the
placement of the prime numbers within the set of real
numbers.

Also if you are willing to replace “lim” by “liminf” you have a
definition of ‘proportion’ δ(T ) of any subset T ⊂ N of natural
numbers N:

δ(T ) := lim inf
X→∞

|{n ∈ T ; n ≤ X}|
X

, (0.6)
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Here’s something that’s not yet a density:

It’s fascinating to compare this natural concept of proportion
of subsets of prime numbers in the set of all prime numbers
with notions of ‘density’ that do, in fact, depend on the actual
positions of primes on the number line:

For each real number x > 1 and any set of primes S , let’s
define the “x-Density” of S to be

δx(S) :=

∑
p∈S p

−x∑
p∈P p

−x (0.7)
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What’s neat about “x-Density”:

δx(S) :=

∑
p∈S p

−x∑
p∈P p

−x (0.8)

is that (for any x > 1) δx(S) is defined for every subset
S ⊂ P , and is finitely additive.

It has the defect, though, of assigning a non zero density to
absolutely every nonempty subset—including finite subsets.



Dirichlet Density

Here’s a way, due to Dirichlet, of correcting that defect:

Define the Dirichlet density, δDirichlet(S), of a subset S ⊂ P
to be the limit of its x-Density (as x tends to 1)—if that limit
exists.

δDirichlet(S) := lim
x→1

δx(S) (0.9)
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Note that if S is any finite subset of P the numerator,∑
p∈S

p−x ,

of the equation ∑
p∈S p

−x∑
p∈P p

−x

has a finite limit as x tends to 1, while:

Lemma: The denominator,∑
p∈P

p−x

tends to infinity as x tends to 1



So,

the Dirichlet density of any finite set of primes is 0.

Dirichlet density then satisfies all three requirements desired
for a ’density’ listed above.



The relationship between Natural and Dirichlet

Density

Theorem

If a subset S ⊂ P has a Natural density, then S also has a
Dirichlet density, and the two densities are the same.



The non-correlation of prime numbers and

congruence

Dirichlet’s Theorem tells us that if we pick primes at random
we’ll get primes of residue of +1 (rather than −1) mod 4 fifty
percent of the time.

Therefore the other way too, of course: it has a residue of −1
(rather than +1) mod 4 fifty percent of the time.

The same sort of thing is true (proved again by Dirichlet)
more generally for any other reasonable congruence condition.
I.e., distinguishing primes by how they “behave’ modulo m for
a fixed integer m.
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Take m any positive number.

Let x 7→ Φ(x) be Euler’s Phi-function. There are Φ(m)
congruence classes mod m containing elements relatively prime
to m.

Given such a congruence class, Dirichlet showed that the
probability that a ‘random prime’ falls into that congruence
class is

1

Φ(m)
,

i.e., the primes are uniformly distributed over those congruence
classes mod m.



A very new result about proportions of numbers

having interesting properties

Question
What is the proportion of integers that are the sum of two
rational cubes?

This happens frequently; e.g.. . .

1, 2, 6, 7, 8, 9, 12, 13, 15, 16, 17, 19, 20, 22, 26, 27, 28, 30, 31, 33, 34, 35, . . .

For example:
6 = (17/21)3 + (37/21)3



Is it as ‘likely’ that an integer is the sum of two

rational cubes as not?

A very recent result of Levent Alpöge, Manjul Bhargava and
Ari Shnidman—with full proofs forthcoming is an important
advance in that direction:

Theorem
(Alpöge, Bhargava, Shnidman) , A positive proportion of
integers are not8 the sum of two rational cubes, and a positive
proportion of integers are9.

8See —
9proof forthcoming



Welcome to Arithmetic Statistics!

These kinds of questions are both utterly traditional. . . but
also are in a currently burgeoning, rapid-moving, part of
number theory where the aim is to get the (statistical) ‘lay of
the land’ regarding basic issues in number theory.


