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Write down a random polynomial equation in two or more variables with coefficients in the ring of
integers, e.g.,

3X3 + 4Y 3 + 5Z3 = 0

and—chances are— it will be very tricky to find all its solutions; often you will be quite challenged by
the question of whether or not it has solutions.

Hilbert spurred mathematicians to systematically investigate the general question:

How solvable are such Diophantine equations?

I will talk about this, and its relevance to specific number theoretic projects, and then aim towards some
recent work, joint with Karl Rubin.

Here is a close translation of Hilbert’s formulation of the problem:

Given a Diophantine equation with any number of unknown quantities and with rational integral
numerical coefficients: To devise a process according to which it can be determined in a finite
number of operations whether the equation is solvable in rational integers.

.

I wonder what Hilbert meant by a Diophantine equation and process. There is a vagueness in the
quantification: are we allowed a different algorithm for each equation, are we expected to find single processes
that work even allowing for variation of the exponents involved? (As in Catalan’s Problem, or Fermat’s Last
Theorem). There is a specificity, though, in the type of solutions (rational integers). Nowadays one has a
large number of different processes in our experience (i.e., successes). From algorithms to find the maxima of
functions on convex polytopes (e.g.: Linear programming) to procedures for factoring numbers into product
of primes. The basic questions we tend to ask about these have to do with running time.

We also have quite a number of guaranteed non-successes:

• There is no finite algorithm to determine, given a finite presentation of a group, whether or not the
group is trivial. Or whether two finite presentations present isomorphic groups.

• The recognition problem for manifolds in dimension four or higher is unsolvable (it being related
directly to the recognition problem for finitely presented groups).

And even when one looks for interesting Diophantine examples, they often come in formats somewhat
different from the way Hilbert’s Problem is posed. For example,

• we have a (deep) decision procedure to determine whether any given elliptic curve over the rational
field Q has finitely many or infinitely many solutions. But this distinction

finitely many ↔ infinitely many

is not a distinction that Hilbert formulates.
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• And, sometimes, we’re interested not in answering this question for any single elliptic curve but, for
whole families of them.

For example, the congruent number problem is the problem of determining those positive integers n
that can be expressed as the area of a right triangle with three rational number sides. This turns out
to be equivalent to asking that the elliptic curve

y2 = x3 − n2x

have infinitely many rational points.

• And, as mentioned above, we sometimes try to find single processes that work even allowing for
variation of the exponents involved. As in:

1. Catalan-type Problems

For a given integer k find all perfect powers that differ by k.

Y n −Xm = k

Example: the only two consecutive perfect powers are:

8 = 23 and 9 = 32,

or as in:

2. Fermat’s Last Theorem.

So you might ask why—except for historical reasons—might one be interested in pursuing the question
as Hilbert posed it. The answer (which is already enough to spark my interest) is that it is a problem that
has led to the most magnificent developments in mathematical logic, and in the intersection of mathematical
logic and number theory. But also, thanks to relatively recent work (of Denef, Denef-Lipschitz, Pheidas,
Shalapentokh and Poonen) Hilbert’s Problem calls for the answers to new kinds of questions in number
theory, and specifically in the arithmetic of elliptic curves.

So, back to Hilbert’s Tenth Problem!

In considering “Hilbert’s 10th Problem” we often specifically interpret Diophantine equation, process and
sometimes generalize the type of solutions being considered. We then end up with a question roughly of the
following form:

Let A be a commutative ring. Does there exist a finite algorithm to determine whether any finite
system of polynomial equations in finitely many variables with coefficients in A has a solution in
A or not?

One standard way of refining the above question is to “set” it as a problem related to listable sets and
Diophantine sets. The next two sections discuss this.
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1 Listable sets of integers

I’ll start with some examples of sets that are easy to “list”

•
2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

•
2!, 3!, 4!, 5!, . . .

Discuss what is meant by easy.

See [M] and [Sh100b] for good expository accounts of this notion listable. Naively,

• a listable subset of Z (synonyms: recursively enumerable, computably enumerable) is a subset L ⊂ Z for
which there exists a finite computer program whose output gives a sequence α1, α2, α3, . . . of integers
such that the set L is precisely this collection of numbers; i.e.,

L = {α1, α2, α3 . . . }.

A computer algorithm that does job this will be called a computer algorithm that “lists L.”

Note, though, that the ordering in which the integers in L come via the computer’s list may be helter-
skelter in terms of absolute values. Therefore if you suspect that a given number, say 2, is not in L and
need to have a definite guarantee of the truth of your suspicion, well (. . . if you are right!) running
the helter-skelter computer algorithm for any finite length of time will be of no help to you.

• A more useful finite computer program might be, for example, a program that for each integer N will,
after some guaranteed time (e.g., no greater than NN ...N

hours1) actually produces a complete list of
all integers of absolute value ≤ N that are in L. (Call such a program a deluxe program.)

• Somewhat intermediary to the above two types of computer programs (helter-skelter, and deluxe)
would be a pair of computer programs, one of which spits out the elements of L and the other spits of
the elements of the complement of L. Supplied with such a pair of programs you might, at the very
least, run the first program by day, and the second by night, for then you are guaranteed to know—in
some (perhaps unspecified, but) finite time whether or not 2 is in your set L.

2 The Halting Problem

As mentioned, a set L that is listable by a finite computer algorithm will be referred to as listable or
recursively enumerable. And a set L that has the property that it and its complement are both listable is
called recursive. What we will be using below is the fact (cf. [Sm]) that there exist recursively enumerable
sets that are not recursive. (The computer algorithms that list such sets are necessarily quite helter-skelter!)
The existence of recursively enumerable sets that are not recursive is a consequence of the famous 1936
theorem of Alan Turing that was phrased in terms of the halting problem for algorithms. Turing showed that
there exists no universal algorithm to tell you whether or not any finite computer algorithm will terminate
finitely, when run. More specifically, the so-called halting set

H := {The set of couples (P, x) where P is a program and x is a possible input to program P and

1N successive exponentials, or choose any recursively formulatable estimate you like
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such that Program P will eventually halt if run with input x}

is recursively enumerable, (i.e., there is fairly evidently a computable function that lists all of the pairs (P, x)
it contains) but the complement of this set is not recursively enumerable.

3 Diophantine sets

Roughly, a Diophantine subset of integers (or of natural numbers) is a subset that can be defined using
the seemingly very restricted vocabulary of polynomials. For the classical notion of Diophantine subset
of a commutative ring see [DL78], [Den80]. Here is one way of formulating this concept. Let A be a
commutative noetherian integral domain, the main example being A = Z.

Definition 3.1 Let D ⊂ A be a subset of the ring A.
Say that D is Diophantine in A if there exists a finite set of polynomials with coefficients in A, in finitely
many variables

fi(T ;X1, X2, . . . , Xn) ∈ A[T,X1, X2, . . . , Xn]

(i = 1, 2, . . . ,m) such that when specializing to some value T = α ∈ A we have that the system of polynomial
equations

fi(α;X1, X2, . . . , Xn) = 0

(for i = 1, 2, . . . ,m) has a simultaneous solution

(X1, X2, . . . , Xn) = (a1, a2, . . . , an) ∈ An

if and only if

α ∈ D ⊂ A.

If this happens say that the set of polynomials cut out D.

Notice the evident proposition:

Proposition 3.2 If A = Z (or, more, generally, a countable ring) and D ⊂ A is Diophantine, then D is
listable. Moreover, any set of polynomials {fi(α;X1, X2, . . . , Xn)}i (for i = 1, 2, . . . ,m) that “cut out” L
leads to a computer algorithm that lists L.

Proof: Choose some ordering of An+1 (e.g., lexicographical based on an ordering of A; if A = Z my preference
is for the evident ordering of Z: that is, −n precedes +n and otherwise it is nondecreasing in the absolute
value of n) and run through the n + 1-tuples (α; a1, a2, . . . , an) ∈ An+1 computing fi(α; a1, a2, . . . , an) for
i = 1, 2, . . . : every time you get a hit—i.e., every time that fi(α; a1, a2, . . . , an) = 0 for i = 1, 2, . . . you
record the “α” if it hasn’t been previously recorded giving a (possibly empty, of course) sequence α1, α2, . . .
listing D.

Remarks: (1) The collection of Diophantine subsets of an integral domain A is closed under finite union
and intersection.

Proof: It suffices to do this for two Diophantine sets D,E ⊂ A: if the systems of polynomials
{fi(t;X1, . . . )}i and {gj(t;Y1, . . . )}j cut out D and E respectively, then the “union” of the two systems,
(viewed as polynomials in t and the independent variables Xµ and Yν) cuts out D ∩ E while the system
given by {fi(t;X1, . . . ) · gj(t;Y1, . . . )}i,j cuts out DS ∪ E.

(2) A more general (and, perhaps, algebro-geometrically more natural) way of thinking of Diophantine
set is the following:
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Let S be an integral noetherian scheme—say an affine scheme S = Spec(A) where A is a noetherian
integral domain— and T an S-scheme of finite type. Let T = T (S) the set of S-valued points of the S-
scheme T . A subset D ⊂ T is Diophantine if there is a morphism of S-schemes of finite type f : X → T
such that

D = f(X(S)) ⊂ T (S) = T .

To relate the above to the previous definition let S = Spec(A) and let T = Spec(A[t]) denote the affine
line over Spec(A). So the set T of A-rational points of T , i.e.,

T = T (A) = HomA(A[t], A).

is simply the set A. Diophantine subsets of the ring A are nothing more than the images of the sets of
A-rational points,

X(A) −→ T (A) = A,

where X → T range through all morphisms of finite type of A-schemes (of finite type) X.
A vague, but general question, then for any scheme T of finite type over such a base S would be:

To give a useful algorithmic characterization of the subsets D ⊂ T that are Diophantine.

(3) For us the most important ring is A = Z, and scheme T is the affine line. In this context you can
replace any finite system of polynomials {fi(t;X1, . . . )}i that “cut out” a set D by a single polynomial

Σifi(t;X1, . . . )2.

Here is a list of subsets of Z that are Diophantine (and easily proven to be).

1. Lagrange proved that any positive whole number is expressible as a sum of four squares.

E.g
401 = (20)2 + 12 + 02 + 02

well . . . that might have been too easy an example . . .

Lagrange’s Theorem says, in our vocabulary, that the polynomial

f(t;X1, X2, X3, X4) := t− Σ4
i=1X

2
j

cuts out the set of positive integers; so the set of positive numbers is Diophantine.

2. Therefore it follows, by easy steps, that these sets are too:

• the set of numbers ≥ a for any given a ∈ Z,

• the set of numbers ≤ b for any given b ∈ Z,

• any finite subset of Z,

• the complement of any finite subset of Z.

3. So, if D is Diophantine, then any set obtained from D by removing and adding finite sets is also
Diophantine.
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4. Arithmetic progressions are Diophantine; as are the set of all squares, all cubes, all n-th powers for
any given n.

5. Composite numbers.

6. For any fixed (say, nonsquare, positive) integer d, consider the set of integers t that come in solutions
of the Pell equation

t2 − ds2 = 1

(this being a set that grows roughly exponentially).

4 Davis/(Julia) Robinson/Putnam/ Matiyasevich

Here, in a nutshell, is the general status of this question we inherited from Hilbert and from “classical
work” of Martin Davis, Julia Robinson, Hillary Putnam and Yuri Matiyasevich. The culminating theorem
is Matiyasevich’s:

Theorem 4.1 Every listable subset of Z is Diophantine.

Thus listable and Diophantine are equivalent conditions for subsets of Z. Since there exist listable subsets
of Z that are not recursive—i.., such that their complements are not listable, Theorem 4.1 gives a negative
answer to Hilbert’s question above, but does far more than just that.

For example:

1. It certainly shows that there are systems of polynomials over Z that admit no “deluxe computer
program” as described.

2. The result also implies that relatively benign subsets of Z can be Diophantinely described, as well.
This is not as clear as one might think even for the most familiar subsets. For example:

• There is a system of polynomials that cut out the set of factorials 1!, 2!, 3! . . . The fact that this
set is Diophantine played a big role in the development of the subject2.
The factorial operation has quite a powerful effect if one allows it to be used as a piece of equipment
to generate recursively enumerable sets. For example, the set of positive numbers α such that the
expression

(α+ 1) ·X1 + α! ·X2 = 1

has a zero for integers X1, X2 is precisely the set of prime numbers. But regarding prime numbers,
more relevant for our story is the fact that. . .

• There is a polynomial over Z whose set of positive values is the set of exactly all prime numbers
for integral substitution of its variables. A specific such polynomial3 is given in [JSWW76]:

(k + 2){1− [wz + h+ jq]2 − [(gk + 2g + k + 1)(h+ j) + hz]2 − [2n+ p+ q + ze]2[16(k + 1)3(k +
2)(n+ 1)2 + 1f2]2− [e3(e+ 2)(a+ 1)2 + 1o2]2− [(a21)y2 + 1−x2]2x− [16r2y4(a2− 1) + 1−u2]2−
[((a+ u2(u2 − a))2 − 1)(n+ 4dy)2 + 1− (x+ cu)2]2 − [n+ l+ vy]2 − [(a2 − 1)l2 + 1−m2]2 − [ai+
k + 1− l− i]2 − [p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m]2 − [q + y(a− p− 1) + s(2ap+
2a− p2 − 2p− 2)− x]2 − [z + pl(a− p) + t(2ap− p2 − 1)− pm]2}

2To get such a polynomial one starts by finding a Diophantine way of expressing the binomial coefficients
`n
m

´
and then

dealing with the—to me surprisingly unpromising—formula

m! = lim
n→∞

nm`n
m

´ .

3As you’ll see from its equation, this is not the most efficacious way of finding prime numbers, but . . .
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5 Comments on the History

For a historical (and basic mathematical) account of this work it would be difficult, I think, to do
better than the very informative wikipedia entry on Hilbert’s tenth Problem which has a chart listing
work ranging from 1944 when Emil Post said that Hilbert’s tenth problem “begs for an unsolvability
proof” to 1970 when Matijasevic clinched the theorem.

On the way to the final formulation of the theorem there is Martin Davis’s formulation of what I’ll, for
reference, call Davis Sets, these being sets of natural numbers ∆ such that there exists a polynomial
with integral coefficients

P (T,K, Y,X1, X2, . . . , Xn)

in independent variables T,K, Y,X1, X2, . . . , Xn for some n, such that a ∈ A if and only if there is a non-
negative integer y such that for all nonnegative integers k < y the polynomial P (a, k, y,X1, X2, . . . , Xn)
has a solution in natural numbers X1 = a1, X2 = a2, . . . , Xn = an. Now Davis sets are fairly clearly
recursively enumerable. In 1949 Davis proved the converse: that every recursively enumerable subset
of the set of natural numbers has the above form; i.e., is Davis.

A year later, working independently, Julia Robinson formulated her hypothesis that asserts that—
roughly speaking—there exists some function

“Exp : ”N −→ N

that behaves at least vaguely like an exponential function and whose graph is Diophantine (a sloppy
exponential would be enough). Her hypothesis that came to be known as “J.R.” and explicitly is:

Hypothesis J.R.: There exists a Diophantine set F of couples (a, b) in N×N with two properties:

(a) If (a, b) ∈ F then a < bb.

(b) For each positive integer k there is an (a, b) ∈ D with b > ak.

Using hypothesis J.R., Robinson shows that the set EXP of triples (a, b, c) with a = bc is Diophantine,
and from this that the set of primes, and the set of factorials is Diophantine as well.

In 1959 Martin Davis and Hillary Putnam showed—assuming that there were arbitrarily long arith-
metic progressions of prime numbers—that Hypothesis J.R. implies the equivalence of Diophantine and
recursively enumerable, and thereby conditionally establishing a solution to Hilbert’s Tenth Problem
(the “conditions” being the existence of arbitrarily long arithmetic progressions of primes, and J.R.).

A year later, Robinson showed how to avoid the use of the hypothesis that arbitrarily long arithmetic
progressions of primes exist, thereby showing that J.R. alone implies a solution to Hilbert’s Tenth
Problem.

In 1970, Matiyasevich provides a Diophantine definition of a set F as required by J.R.: he defined his
F to be the collection of pairs (a, b) such that

b = F2a

where Fn is the nth Fibonacci number, thereby completing the proof that all recursively enumerable
sets are Diophantine and establishing the fact that Hilbert’s tenth problem (over Z) is unsolvable.
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6 Some comments by Matiyasevich

(I find this quotation of Matiyasevich illuminating:)

“The idea was as follows. A universal computer science tool for representing information uses
words rather than numbers. However, there are many ways to represent words by numbers. One
such method is naturally related to Diophantine equations. Namely, it is not difficult to show
that every 2× 2 matrix (

m11 m12

m21 m22

)
with the m’s being non-negative integers and the determinant m11m22 −m12m21 equal to 1 can
be represented, in a unique way, as a product of matrices

M0 :=
(

1 1
0 1

)
and

M1 :=
(

1 0
1 1

)
.

It is evident that any product of such matrices has non-negative integer elements and the deter-
minant equals 1. This implies that we can uniquely represent a word in the two-letter alphabet
M0,M1 by the four-tuple

(m11,m12,m21,m22)

such that the numbers evidently satisfy the Diophantine equation

m11m22 −m12m21 = 1.

Under this representation of words by matrices, the operation of concatenation-of-words corre-
sponds to matrix multiplication and thus can be easily expressed as a system of Diophantine
equations, opening up a way of transforming an arbitrary system of word equations into “equiva-
lent” Diophantine equations. Many decision problems about words had been shown undecidable,
so it was quite natural to try to attack Hilbert’s tenth problem by proving the undecidability of
systems of word equations.

My next attempt was to consider a broader class of word equations with additional predicates.
Since the ultimate goal was always Hilbert’s tenth problem, I could consider only such predicates,
which (under suitable coding) would be represented by Diophantine equations. In this way I
came to what I have called equations in words and length. Reduction of such equations was
based on the celebrated Fibonacci numbers. It is well known that every natural number can be
represented, in an almost unique way, as the sum of different Fibonacci numbers, none of which
are consecutive4 (this is the so called Zeckendorf representation). Thus we can look at natural
numbers as words in a two-letter alphabet {0, 1} with the additional constraint that there cannot
be two consecutive 1’s. I managed to show that under this representation of words by numbers
both the concatenation of words and the equality of the length of two words can be expressed by
Diophantine equations.”

4E.g., 30 = 1 + 8 + 21.
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7 Unsolvability over the rings of integers of number fields

More recent work (Denef/Denef-Lipschitz/Pheidas/Shalpentokh/Poonen) developed ideas that culminated
in the following result:

Theorem 7.1 Let K be a number field and let OK be the ring of integers in K.
If a certain stability result in the arithmetic of elliptic curves that we’ll be discussing in detail in the next

section holds5 over K, then every recursively enumerable subset of OK is Diophantine in OK (in the sense
of Definition 3.1 above).

Karl Rubin and I have recently shown that this stability result holds if you assume the 2-primary part
of the classical Shafarevich-Tate Conjecture [MR09]. As a consequence we have shown that, conditional on
the 2-primary part of the Shafarevich-Tate Conjecture, Hilbert’s Tenth problem has a negative answer for
the ring of integers in any number field.

Since Kirsten Eisenträger has, in her thesis, related Hilbert’s Tenth Problem over rings of integers in
number fields to a much more general class of rings, one gets—thanks to her work:

Theorem 7.2 Conditional on the 2-primary part of the Shafarevich-Tate Conjecture, Hilbert’s Tenth prob-
lem has a negative answer for any commutative ring A that is of infinite cardinality, and is finitely generated
over Z.

8 Integral points on plane curves of genus one

Here one has a striking explicit result, thanks to Baker’s method. Let f(X1, X2) ∈ Z[X1, X2] be an absolutely
irreducible polynomial such that the associated projective curve f = 0 has genus one. Let n := the (total)
degree of f(X1, X2) and let H := the maximum of the (ordinary) absolute values of the coefficients of
f(X1, X2). Then there are finitely many integral solutions (a1, a2) of the equation f(X1, X2) = 0 and they
are bounded explicitly by the inequality

max{|a1|, |a2|} < exp exp exp {2H10n10
}.

For discussion about this, see section 4.4 of [B75].

9 The focus on cubics!

Here is a list of contexts for which there are algorithms to decide whether or not solutions exist over Z:

• Systems of arbitrarily many polynomials in arbitrary degrees, but in one variable

• Systems of arbitrarily many linear polynomials in many variables

• A single quadratic polynomial in many variables

Here are contexts for which we know there is no algorithm to decide whether or not solutions exist over
Z.There is no algorithm that works for every:

5Specifically the stability result asserts that for every prime degree Galois extension of number fields L/K there exists an
elliptic curve E over K with

rankE(K) = rankE(L) > 0.
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• system of arbitrarily many polynomials in many variables of degree ≤ 2

• single polynomial of degree 4.

Some of the big unresolved questions for systems of polynomials with coefficients in Z, then, focus on
degree three,6 and—for example—include:

1. Is there an algorithm to determine whether any given single degree three polynomial in many variables
has a solution or not?

2. Is there an algorithm to determine all solutions of a single cubic homogenous polynomial in two
variables?

I know what I “want the answer to be” (i.e., I want there to be such an algorithm: why not?) but
I can’t give any compelling reason for my optimism at least for the first of these questions. For the
second question, the answer would be yes if some standard conjectures are true.

A proof of the Shafarevich-Tate Conjecture7 would provide a proof that a certain algorithm works for
general third degree polynomials F (X,Y ) and—more generally—finds rational points on curves of genus
one. The algorithm itself is currently known, and used quite extensively. If it (always) works, then it gives
an answer to the question posed above, and indeed allows us to find the rational points. But we don’t
know whether it will always terminate (in finite time) to provide us with an answer. The Shafarevich-Tate
Conjecture would guarantee termination in finite time. This is a huge subject (the arithmetic theory of
elliptic curves) and it would be good to understand it as well as we can possibly understand it. Note the
curious irony in the formulation of Theorem 7.2:

If we have a proof of the (2-primary part of the) Shafarevich-Tate conjecture

—i.e., colloquially speaking: if the algorithm that enables us to deal with arithmetic of cubic plane
curves can be proved to work—

then we have a proof of the non-existence of a general algorithm for the ring of integers over any
number field.

10 An Open Question

Gerald Sacks once suggested that solvability or unsolvability may be only one of a number of different ways
of framing questions regarding Diophantine algorithms. I agree, and have always liked Serge Lang’s attitude
towards these matters, who—in effect—focussed much attention to the question of determining whether

6It is interesting how our lack of understanding of cubics seems to color lots of mathematics, from the ancient concerns in
the “one-variable case” having to do with “two mean proportionals,” and Archimedes’ Prop.4 of Book II of The Sphere and
Cylinder and Eutocius’ commentaries on this, and–of course—the Italian 16c early algebraists.

7In fact, just, the p-primary part of the Shafarevich-Tate Conjecture, for any single prime number p will do it.
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there are finitely many, as opposed to infinitely many, solutions 8 and asked algebro-geometric questions
about structure of the infinitely many solutions when they exist.

In this spirit allow me to formulate a question—without prejudice—that seems worth contemplating even
if it is a bit premature to try to make much headway with it.

If V is an algebraic variety over Q let X(V ; Q) ⊂ V be the Zariski closure in V of the set V (Q) of
Q-rational points of V .

Define D(V ) = D(V ; Q) := the number of irreducible components of X(V ; Q).

Suppose that we set out to find upper bounds for this function from algebraic varieties to natural numbers:

V 7→ D(V ).

Consider, for example, the case where V is an irreducible curve.

• If V is of genus 0, then D(V ) is either 0 or 1 depending upon whether V has a rational point or not.

• If V is of genus one, then

– D(V ) is 0 if V has no rational points,

– D(V ) is 1 if V has infinitely many rational points, and

– D(V ) is the order of the Mordell-Weil group of V over Q, if that group is finite.

In all cases for V of genus one, then, (using [M77]) we get that D(V ) ≤ 16.

• If V is of genus > 1, by Faltings’ Theorem D(V ) is the (finite) number of rational points of V .
Conditional on a conjecture of Lang, Caparoso, Harris and I have shown that D(V ) is bounded by a
function that depends only on the genus of V .

In sum, we have that (conditional on a conjecture of Lang) for all algebraic varieties V of dimension one,

D(V ) is bounded from above by a function F (|VC|) that depends only on the homotopy type
|VC| of the complex analytic space associated to V .

Is the above statement true or false for algebraic surfaces? Or, more generally, for algebraic varieties of
arbitrary dimension?

11 Unsolvability in Algebraic Geometry and some implications

One is not yet finished mining this theorem or concrete versions of “unsolvable problems” but it clearly will
give us a wealth of such problems. See, for example, recent postings of Harvey Friedman; these have possible
relations to Mnëv’s (1988) result that any scheme over Z can be expressed as a moduli space classifying
configurations9 of finite points in P2. Harvey Friedman poses nine different “Families of Problems” regarding
configurations of rational lines in the Euclidean plane, These problems ask for existence or nonexistence of
integral intersections (with various properties) of linear configurations. Friedman discusses whether the

8rather than existence or nonexistence of solutions
9By a configuration type let us mean a number N and a collection of subsets S1, S2, . . . Sn of the set [1, 2, . . . , N ]. The

configuration space associated to such a type is the space of all ordered sets of N points in P2 subject to the requirement that
the points corresponding to S1 are collinear, and ditto for S2, . . . , Sn.
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problems in each of these families can be done in ZFC or whether there are examples of problems in that
family that cannot: apparently three of Friedman’s problem-families can be solved in ZFC, three cannot,
and for the remaining three—if Hilbert’s Tenth Problem (over Q) is undecidable—then these cannot be done
in ZFC.

Part II: Elliptic Curves

I will be discussing joint work with Karl Rubin10. One of the goals of our project is (assuming the
Shafarevich-Tate Conjecture) to construct examples of elliptic curves E over arbitrary number fields K with
specifically prescribed behavior of their Mordell-Weil rank11 this being useful for the applications discussed
in Part I.

12 A brief introduction to the arithmetic of elliptic curves

Take a typical elliptic curve with rational coefficients such as:

E : Y 2 +XY + Y = X3 −X2−

20067762415575526585033208209338542750930230312178956502X

+

34481611795030556467032985690390720374855

944359319180361266008296291939448732243429

We call the (smooth) projective curve over Q cut out by this equation or by any of its more general
companions, which in usual notation are written:

Y 2 + a1XY + a3Y = X3 + a2X
2a4X + a6

with ai ∈ Z and having discriminant nonzero, elliptic curves. They are, in a natural way, algebraic groups:
the classical chord-and-tangent-process endows the set of (rational) points on such an elliptic curve E (over
any number field K) with the structure of an abelian group (called the Mordell-Weil group of E over K and
denoted E(K). This group is known to be finitely generated (a theorem almost a century old due to Mordell
in the case of K = Q and generalized by Weil for arbitrary global fields). So

E(K) ≈ Zr ⊕ T(E,K)

where r = r(E,K) is called the Mordell-Weil rank of E over K and T (E,K) is the (finite) torsion
subgroup of the Mordell-Weil group.

The structure of the torsion subgroup part of the Mordell-Weil group is relatively more understood than
the rank; for example, any T (E,K) is isomorphic to a subgroup of Q/Z×Q/Z; and for any given K there
are only finitely possible isomorphism types for the T (E,K)’s that can occur; and for K = Q the list of
these finitely possible isomorphism types is explicitly known.

In contrast, very little is known of a general nature regarding the behavior of r(E,K), for varying E and
K. I don’t know, for example, whether

supE,K
r(E,K)
[K : Q]

10regarding the 2-Selmer rank in families of quadratic twists of elliptic curves over arbitrary number fields
11

rank E(K) := dimQ E(K)⊗Q.
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is finite when E/K runs over all elliptic curves over all number fields. (I bet no!).

In the case of the elliptic curve E displayed at the beginning of this section, it was shown (by Noam
Elkies, 2006) that (it has trivial torsion over Q) and its Mordell-Weil rank over Q is at least 28— this being,
to my knowledge, the current world’s record for Mordell-Weil ranks over Q. If you are curious to see 28
linear independent rational points on this curve, here they are:

Independent points of infinite order:

P1 = [-2124150091254381073292137463, 259854492051899599030515511070780628911531]

P2 = [2334509866034701756884754537, 18872004195494469180868316552803627931531]

P3 = [-1671736054062369063879038663, 251709377261144287808506947241319126049131]

P4 = [2139130260139156666492982137, 36639509171439729202421459692941297527531]

P5 = [1534706764467120723885477337, 85429585346017694289021032862781072799531]

P6 = [-2731079487875677033341575063, 262521815484332191641284072623902143387531]

P7 = [2775726266844571649705458537, 12845755474014060248869487699082640369931]

P8 = [1494385729327188957541833817, 88486605527733405986116494514049233411451]

P9 = [1868438228620887358509065257, 59237403214437708712725140393059358589131]

P10 = [2008945108825743774866542537, 47690677880125552882151750781541424711531]

P11 = [2348360540918025169651632937, 17492930006200557857340332476448804363531]

P12 = [-1472084007090481174470008663, 246643450653503714199947441549759798469131]

P13 = [2924128607708061213363288937, 28350264431488878501488356474767375899531]

P14 = [5374993891066061893293934537, 286188908427263386451175031916479893731531]

P15 = [1709690768233354523334008557, 71898834974686089466159700529215980921631]

P16 = [2450954011353593144072595187, 4445228173532634357049262550610714736531]

P17 = [2969254709273559167464674937, 32766893075366270801333682543160469687531]

P18 = [2711914934941692601332882937, 2068436612778381698650413981506590613531]

P19 = [20078586077996854528778328937, 2779608541137806604656051725624624030091531]

P20 = [2158082450240734774317810697, 34994373401964026809969662241800901254731]

P21 = [2004645458247059022403224937, 48049329780704645522439866999888475467531]

P22 = [2975749450947996264947091337, 33398989826075322320208934410104857869131]

P23 = [-2102490467686285150147347863, 259576391459875789571677393171687203227531]

P24 = [311583179915063034902194537, 168104385229980603540109472915660153473931]

P25 = [2773931008341865231443771817, 12632162834649921002414116273769275813451]

P26 = [2156581188143768409363461387, 35125092964022908897004150516375178087331]

P27 = [3866330499872412508815659137, 121197755655944226293036926715025847322531]

P28 = [2230868289773576023778678737, 28558760030597485663387020600768640028531]

13 Descent

The standard method—perhaps the only method—of finding upper bounds for r(E,K) for specific elliptic
curves E over specific fields K is called the method of descent that seems to have been already present in
some arguments due to Fermat and has been elaborated and refined ever since. Rather than say, in any
specificity what this method is (for which you can consult the undergraduate text [S-T] and the graduate
text [Silv]) in a few words, here is the “shape” of the descent method as it has evolved in present times.

Fix the elliptic curve E and the number field K. For each integer N > 1 one constructs a certain finite
abelian group of exponent N called the N -Selmer group SN (E,K) (this is given by a construction related
to Galois cohomology) which has two key properties:
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• SN (E,K) is �computable in theory; i.e., there is indeed a finite algorithm that computes it. Also for
N = 2 or for certain choice triples (N,E,K), there is an elaborate technology for actually managing
to compute it12.

• There is a canonical injective homomorphism

E(K)/NE(K) ↪→ SN (E,K)

A consequence is that we may obtain—thanks to the above two items—a computable upper bound for the
Mordell-Weil rank r(E,K) and indeed, a computation of the N -Selmer group SN (E,K) for any N ≥ 2
provides us with some finite upper bound for r(E,K); specifically:

r(E,K) ≤ logN |SN (E,K)|.

Let
N ⊂ N

be any unbounded set of natural numbers.

Conjecture 13.1 By the N -Shafarevich-Tate Conjecture—for (E,K)—we mean the claim that the
cardinalities of the cokernel of the injective homomorphisms

E(K)/NE(K) ↪→ SN (E,K)

admit a (finite) upper bound for all N ∈ N . It is evidently equivalent to ask that the numbers

|SN (E,K)|
|E(K)/NE(K)|

admit such a finite upper bound. Or—also equivalently—

|SN (E,K)| = Nr(E,K) × O(1)

for all N ∈ N .

Clearly if for any single unbounded set of natural numbers N the N -Shafarevich-Tate Conjecture held
for (E,K) we would have something better than a mere upper bound for the Mordell-Weil rank of E over
K: the above formula gives us a precise expression for r(E,K), and it would even be nicely computable13 if
one could—in addition—bound the “O(1)” occurring in this formula.

By the Shafarevich-Tate Conjecture for (E,K) with no prefix we’ll mean the N-Shafarevich-Tate Con-
jecture. This is indeed eponymously conjectured and this conjecture visibly implies the N - Shafarevich-Tate
Conjecture for anyN . By the p-adic Shafarevich-Tate Conjecture for (E,K) we mean the P-Shafarevich-Tate
Conjecture for (E,K) where P is the set of all powers of the prime number p.

We do have other methods for determining r(E,K) either in special situations (via Heegner points and
similar constructions) and we have other expressions for r(E,K) conditional on various standard conjectures
(as the order of vanishing of the L-function L(E,K; s) at s = 1) or (conditional, again) formulas for it in
terms of more intricate relationships (as in mean values of biases).

But a perfectly general method for determining r(E,K) is to
12There was just a SAGE DAYS workshop at the Clay Mathematics Institute in Cambridge, where some fast methods were

featured.
13I.e.,

r(E, K) = lim
N∈N

blogN |SN (E, K)|c.
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• by day: search for rational points, say by increasing heights, and work out their possible dependence
relations, getting a monotone increasing sequence of lower bounds for r(E,K) and

• by night: compute logN |SN (E,K)| for a chosen succession of increase values of N getting a monotone
decreasing sequence of upper bounds for r(E,K), and

• hope: that one day or one night the upper and lower bounds will be equal, giving you a perfectly
unconditional computation of r(E,K).

The effect of the Shafarevich-Tate Conjecture (for any single unbounded set N ) is to make the claim
that the above strategy will always succeed if one lives long enough. It would be very very interesting
to quantify—conjecturally—how long one has to live to see this conjectured algorithm terminate—as an
elementary function of the basic numerical data of the input (E,K).

14 Mordell-Weil Stability

The following types of questions, interesting in their own right, seem never to have been focused on by
number theorists until it was shown that their answers bear interesting consequences for mathematical logic.

Definition 14.1 Let L/K be an extension (of finite degree) of number fields and let E be an elliptic curve
over K. Say that E has stable Mordell-Weil rank r for L/K if (it does; i.e., if:)

r = r(E,K) = r(E,L).

Question 14.2 Let L/K be any extension of number fields and r ≥ 0. Does there exist an elliptic curve E
defined over K with stable rank r for L/K?

It isn’t entirely unnatural that such a question might be put to useful purposes in attempting to negotiate
between recursively enumerable sets expressed in a Diophantine way over alternatively OL and OK , although
—to my mind—it is still quite a surprise (thanks to important work of Poonen, Shlapentokh, and others)
that an affirmative answer to this question for positive r can be made to imply that OK is Diophantine in
OL and therefore that a negative solution to Hilbert’s Tenth Problem for OK implies a similarly negative
solution for OL. We shall discuss this in the next section.

15 Hilbert’s Tenth problem relative to L/K

Let, as above, L/K denote a (finite degree) extension of number fields and OL/OK the induced extension
of rings of integers. It would be pretty elegant if we could just put our finger on a simple finite system
of polynomial equations over OL that cleanly cut out OK as a Diophantine subset of OL. The actual
constructions, though, are somewhat more complicated, and more sophisticated. The constructions (in the
work of Matiyasevich, Denef, Denef-Lipschitz, Pheidas) start with a particularly manageable system (not
exactly “stable” in the above sense) of Pell-type equations (i.e., systems built with equations of the shape
X2 − dY 2 = ±1) to construct their Diophantine language to relate OL to OK , but only for da special class
of number fields K). The work of Poonen and Shlapentokh works more generally over any number field K
but requires a Mordell-Weil stability result:

Theorem 15.1 (Poonen, Shlapentokh) Assume there exists an elliptic curve E defined over K with stable
rank r > 0 for L/K. Then if every recursively enumerable subset of OK is Diophantine, then every recursively
enumerable subset of OL is Diophantine.

A fairly elementary exercise, discussed in the appendix (we are indebted to Poonen for pointing this out
to us) allows us to reduce the question of (integral!!) ) Diophantine-ness of recursively enumerable sets over
arbitrary rings of integers to the following question in the arithmetic theory of elliptic curves (which Karl
Rubin and I find wonderful):
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Theorem 15.2 If for every Galois (cyclic) extension of number fields L/K of prime degree there exists
an L/K-stable elliptic curve, then for any number field K any recursively enumerable subset of OK is
Diophantine over OK .

It would follow that Hilbert’s Tenth Problem would have a negative solution for the ring of integers in any
number field.

As mentioned, then, in a previous section, Karl Rubin and I assume a classical conjecture (or at least a
part of it) called the 2-adic Shafarevich-Tate Conjecture and—conditional on that conjecture—we prove, for
every prime degree Galois extension L/K of number fields there is an L/K-stable elliptic curve. Hence—
again “modulo 2-adic Shafarevich-Tate”—we establish the negative result for Hilbert’s Tenth Problem over
the ring of integers of an arbitrary number field. A fairly elementary exercise, discussed in the appendix
(we are indebted to Poonen for pointing this out to us) allows us to reduce the question of (integral!!) )
Diophantine-ness of recursively enumerable sets over arbitrary rings of integers to the following question in
the arithmetic theory of elliptic curves (which Karl Rubin and I find wonderful):

Theorem 15.3 If for every Galois (cyclic) extension of number fields L/K of prime degree there exists
an L/K-stable elliptic curve, then for any number field K any recursively enumerable subset of OK is
Diophantine over OK .

It would follow that Hilbert’s Tenth Problem would have a negative solution for the ring of integers in any
number field.

Theorem 15.4 (Conditional on the 2-adic Shafarevich-Tate conjecture14) For any cyclic extension of num-
ber fields L/K of prime degree, there exists an elliptic curve E over K such that

0 < rank E(K) = rank E(L) = 1.

Slightly more specifically,

Theorem 15.5 Suppose that the kernel of multiplication by 2 in the Shafarevich-Tate group of any elliptic
curve over any number field has even dimension over F2 (as would be implied if the 2-primary part of the
Shafarevich-Tate conjecture were true).

Then for any number field K there is no finite decision procedure that allows as its input any finite system
of polynomial equations with many variables, and with coefficients in OK and that has as output the answer
to the question: does this finite system of equations have a simultaneous solution over OK?

In order to prove the results described, Rubin and I were led to develop sharp methods to control 2-Selmer
rank, and these methods have some side consequences that answer—also raise—some natural questions. Here
is an example of two such results that we prove unconditionally:

Theorem 15.6 Given any number field K there is an elliptic curve E over K such that there are many
quadratic characters χ of K such that the twisted elliptic curve Eχ has no nontrivial rational points over K.

Note: We can even take E to be the base change to K of an elliptic curve over Q.

Theorem 15.7 If K is not totally imaginary, and E is any elliptic curve over K with no nontrivial K-
rational 2-torsion, there are many quadratic characters χ of K such that the twisted elliptic curve Eχ has
no nontrivial rational points over K.

Notes:

• By many quadratic characters we only mean to say that the number of characters χ withNK/QcondK(χ) <
X that gives the conclusion of the theorem is >> X/ loga(X) for some positive number15 a.

14Really we only use the following consequence of that conjecture: the 2-rank of the Shafarevich-Tate group is even.
15This number a = 2/3 or a = 1/3 according as the action of the Galois group on E[2] is GL2(F2) or cyclic of order three.
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• Over the field K = Q Ono-Skinner have proven (using Kolyvagin et al) a similar result to Theorem 15.7
by showing the analogous statement for central values of L functions.

• The lower bound “>> X/ loga(X)” is unfortunately weak: it is expected that the set of χ’s satisfying
the conclusion of Theorem 15.7 is of positive density, and—in fact—of density 1/2.

As hinted above, our method is to study the 2-Selmer group of an elliptic curve, and more specifically to see
how tightly we can control changes in the rank (i.e., dimension over F2) of the 2-Selmer group as one twists
the original elliptic curve by quadratic characters. (In the Number Theory Seminar–Feb. 3—I’ll discuss
these methods in slightly more technical detail.

But allow me to end with two questions we still don’t know the answer to:

Given any elliptic curve E over a number field K and any finite extension L/K. Is there a quadratic
twist of E that has Mordell-Weil stability for L/K and Mordell-Weil rank ≤ 1?

Which hyperelliptic curves over a number field K have the property that for any finite extension L/K
they possess quadratic twists C over K that

C(L) = C(K) 6= 6 0?

APPENDIX

16 Collections of field extensions

Let K be a field and K̄/K an algebraic closure of K. By a small subextension of K̄/K let us mean a field
extension M/L where K ⊂ L ⊂M ⊂ K̄ and such that [M : K] is finite.

Let D be a collection of small subextensions of K̄/K. Suppose that D is closed under these three
operations.

1. intersection : if M/L1,M/L2 are in D then M/L1 ∩ L2 is in D.

2. smaller sub-extensions with the same base: If L ⊂ N ⊂M and M/L is in D then so is N/L.

3. composition: If M/N and N/L are in D, so is M/L.

Lemma 16.1 If D is a collection of small subextensions of K̄/K closed under the above three operations,
then D consists of all small subextensions if and only if D contains all small subextensions M/L that are
cyclic of prime degree.

Proof. Note first that if D contains all small subextensions M/L that are cyclic of prime degree—i.e., if
D satisfies the hypotheses of Lemma 16.1— and if D is closed under composition (item (3)) above) then D
contains all cyclic extensions. Assume this.

Now let M/L be an arbitrary Galois small subextension. Since D contains all cyclic small subextensions,
for every element σ ∈ G := Gal(M/L) we have that M/Mσ is in D, (here Mσ is the fixed subfield of σ).
Since L = ∩σ∈GMσ and since D is closed under intersection (item (1)) above) we have that M/L is in D. It
then follows that for any small subextension M/L its Galois closure over L is in D. Consequently since D is
closed under smaller sub-extensions with the same base (item (2)) above) M/L is also in D.
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16.1 Diophantine subsets

Recall the discussion in section 3 above. Here is one way of formulating this concept. If A is a commutative
ring with unit, consider the category CA of pairs (B, b) where B is an A-algebra of finite presentation and
b ∈ B is an element. Call these pointed A-algebras where the finite presentation condition will be assumed
as a running hypothesis. The initial object in this category is the polynomial ring (A[t], t). The category
CA is closed under direct sum and tensor product. Given a pointed A-algebra (B, b) we have a natural
set-theoretic mapping

η(B,b) : HomAalg(B,A) −→ A

that sends h ∈ HomAalg(B,A) to h(b) ∈ A. Let D(B, b) ⊂ A be the image of η(B,b). By a Diophantine
subset of A we mean a subset D ⊂ A that is equal to D(B, b) for some pointed A-algebra (B, b). If this is
the case we will say that (B, b) defines D. If (Bi, bi) defines Di for i = 1, 2, . . . , s then the direct sum and
the tensor product (both taken in the category CA) of the (Bi, bi) define ∪iDi and ∩iDi respectively.

It follows from this that the collection of Diophantine subsets of A is closed under finite union and finite
intersection.

Proposition 16.2 Let φ : Ao → A be a ring homomorphism with these properties:

• A is an Ao-algebra of finite presentation,

• φ is injective, so Ao ⊂ A,

• Ao is a Diophantine subset of A.

Then every Diophantine subset of Ao is a Diophantine subset of A.

[. . . proof to be included]

Definition 16.3 If the conclusion of Proposition 16.2 holds for an injection of rings Ao ↪→ A we will say
that Ao is Diophantine in A.

16.2 Rings of algebraic integers

Put K = Q. From now on, by small subextension with no further qualifier we mean small subextension
of Q̄/Q. For L/K let OL denote the ring of integers in L. Say that a small subextension M/L is inte-
grally Diophantine if OL is Diophantine in OM . Let D be the collection of integrally Diophantine small
subextensions.

Proposition 16.4 The collection D of integrally Diophantine small subextensions is closed under the oper-
ations (1), (2), (3) listed in subsection 16 above.

Proof. Closure under the operation (1) follows since an intersection of Diophantine sets is Diophantine.
As for closure under (2) and (3) [. . . proof to be included].
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