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1 Introduction

Recall the almost tautological—but very useful—way we have of dealing with an irreducible poly-
nomial over a field. For example, in the case of X5 −X + 1, irreducible over the rational field Q,
we happily adjoin a root to our base field by merely forming L := the quotient of the polynomial
ring Q[X] modulo the ideal generated by X5−X + 1. Then L is a field (of algebraic numbers) and
the image of X is indeed a root of X5 −X + 1 in L.

This method is serviceable, as far as it goes1, but sometimes the field extensions that we are in-
terested in, the field extensions that we expect—thanks to some heuristic or other—should exist,
would not be readily constructible this way. Moreover, once constructed, they might not be under-
standable, nor treatable, this way: i.e., in terms of polynomials whose roots generate them, even
if those polynomials were readily available. Such is the case, for the most part, for the abelian
extensions alluded to in the title above.

This article is based on a talk I gave entitled Construction of abelian extensions following Ken Ribet
at the 60th Birthday Conference for Ken Ribet (held at the University of California at Berkeley
and MSRI June 28 - July 2, 2008)2. My mission was to focus on Ribet’s method of construction of
abelian Galois extensions of cyclotomic fields—one of Ken’s great early achievements—and to hint
at the vast influence this work has had in the later development of our subject3.

The central topic of this article is the theorem referred to nowadays simply as The Herbrand-Ribet
Theorem.

The first thing to know about this theorem is that Ken’s 11-page paper [49] from which much of
this mathematics stems is as worth reading today as it was over three decades ago, and is eminently

1and on occasion, works quite nicely, as in the construction of cyclotomic fields in Section 2 below
2I want to thank Joël Belläıche, Gaëtan Chenevier, Chandan Dalawat, Ralph Greenberg, Michael Harris, William

Stein, Eric Urban, and the referee who have helped me with comments and corrections regarding early drafts of this
article. My thanks, as well, to Sasha Makarova for help with the figures.

3It was fun to do that, and it was a particular pleasure to me; one of the joys of doing mathematics is that you
get people like Ken Ribet as friends and colleagues.
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readable. For this reason, one aim of this article is not to give a proof of the theorem (I don’t) but
rather to try to explain why the ideas behind the theorem have played such an inspirational role
in the subject, and why they will continue to do so.

The second thing to know is that the Herbrand-Ribet Theorem for a prime number p concerns six
slightly different facets of number theory, specifically as they are related to p, and weaves them
together in a striking way.
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This article is divided into four parts and two appendices.

Part I is a general introduction to the hexagon above and a discussion of how its vertices are linked
together. We will do this by circumnavigating it three times:

• In the first round we merely give some preliminary hints about some of these facets of number
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theory and their connection to each other.

• The second circuit will be a more precise run-through using the prime p = 691 as an example.
Here we will be highlighting six specific objects (or specific computations) occurring in the
parts of number theory that correspond to each of our vertices. The fact that these six
phenomena are related and that the linked chain that they form provides us with a powerful
way of understanding each of them—and indeed constructing some of them—offers yet more
evidence if we ever needed it that mathematics is an indivisible whole.

• After some discussion of background material we do the third lap around the hexagon, to
formulate the Herbrand-Ribet Theorem for the general prime number p.

I hope that people who wish to get the general flavor of the number theory involved in this hexagon
will be able to do so whether or not they work through some of the more detailed issues discussed
in the later parts of this article.

Part II discusses results that give us interesting Galois representations that are (a) managed effi-
ciently by knowledge of Frobenius eigenvalues and (b) arise from Algebraic Geometry.

Part III takes up these ideas more explicitly and discusses some of the issues that relate to what I
call Ribet’s “wrench.”

Part IV hints at how the ‘Ribet philosophy,’ taken broadly, is continuing to inspire current work in
the area.

The appendices deal with some of the finer structure of the packages of modular forms related to
these questions.

Part I: About the Herbrand-Ribet Theorem

2 Cyclotomic Number Fields and their arithmetic

To launch into my topic, the “basic number fields” referred to in the title are the cyclotomic number
fields. A cyclotomic number field is a field generated over the rational field Q by the adjunction of
a primitive N -th root of unity, for some N . For example, we can view this field as the subfield of
the field of complex numbers generated by e2πi/N .

The “first two” of these cyclotomic number fields—i.e. Q(e2πi/N ) for N = 3, 4—are thoroughly
familiar to many mathematicians: they are the quadratic number fields Q(

√
−3) and Q(

√
−1)

sitting nicely in the complex plane and have the property that their rings of integers represent
elegantly symmetric lattices in the complex plane: for N = 3 one gets a hexagonal lattice; for
N = 4, where the ring of integers in the cyclotomic field Q(

√
−1) is the ring of gaussian integers
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{a + ib | a, b ∈ Z}, the corresponding lattice is the square lattice. The “next” cyclotomic field
in turn, i.e. for N = 5 also has had a great role to play in our subject in that it is a quadratic
extension of the (quadratic) number field generated over Q by the “golden mean;” it is the field
relevant for the classical construction of the regular pentagon.

But perhaps I shouldn’t be going—one by one—through the list of these cyclotomic number fields,
for the totality of them have played a crucial role in the development of mathematics in general,
and arithmetic in particular. Their importance was certainly recognized by Gauss, where the field
extension Q(e2πi/N )/Q was seen to be related to the construction of the regular N -gon, and to
be a key to the fuller understanding of all quadratic number fields. By the latter part of the
nineteenth century, thanks to the work of Kummer, it was known that the fine arithmetic features
of these fields gave powerful methods to view (systematically) abelian extensions of number fields
as generated by radicals, and to approach Fermat’s Last Theorem for regular4 prime exponents.
The modern arithmetic of cyclotomic fields per se is enriched by two fundamental theories, each
with its own powerful viewpoints:

1. The earlier of the two theories is Class Field Theory as initially established by Takagi, Artin,
and Chevalley (cf.[1], [12]) which establishes a canonical identification between the Galois
groups of abelian extensions of a number field K and certain quotient groups of groups of
fractional ideals in K. For more about this, see Chapter VII of [12] (and Subsection 4.1
below).

2. The theory due to Iwasawa who surmised a certain profound connection between

• the structure of the ideal class groups5—or equivalently via Class Field Theory—of
abelian everywhere unramified extensions—of cyclotomic number fields, and

• a p-adic interpolation of analytic number theory; more specifically, the p-adic version
of Dirichlet L-functions as constructed by Kubota and Leopoldt6. For more on this see
[74].

In view of all this, one can see why Serge Lang once referred to the arithmetic theory of cyclotomic
fields as the “backbone of algebraic number theory.”

3 Six facets of Number Theory

Here again are labels for the six topics:
4and some irregular

5—more specifically—for p a prime number, the p-primary components of the ideal class groups of cyclotomic
fields obtained by the extraction of N -th roots of unity where N is a power of p.

6The seeds for such a program occurs already in the latter part of the 19th century in the work of E. Kummer,
and the foundations for this program occurs in the work of Hensel.
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and here is a cartoon of how they get connected to each other:
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In a sentence, Ken Ribet managed to pass from

• properties of Bernoulli numbers to

• note a consequence about Eisenstein series which

• allows him to construct certain cuspidal modular forms related to these Eisenstein series, and
in turn to
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• construct, using these cuspforms, a certain homomorphism of the automorphism group of Q̄,
the field of algebraic numbers, to the group of upper triangular matrices in GL2(Fp) so that
he may then

• form the number field L ⊂ Q̄ consisting of all the algebraic numbers fixed by the subgroup
of automorphisms comprising the kernel of this homomorphism,

• this L being the abelian extension of the cyclotomic field that was desired to be constructed
and whose properties were to be verified,

thereby completing the circuit of the second figure.

4 A few words about some of the stations and how they are con-
nected to each other

4.1 Abelian extensions of number fields and ideal class groups

That there is a connection between these two arithmetic objects is seen already in Gauss’s Dis-
quisitiones Arithmeticae. It has subsequently been a theme threading through work of Dirichlet,
Dedekind, Kummer, Hilbert, leading to the more complete contemporary versions of Class Field
Theory ([12], [1]).

For K a number field, Class Field Theory offers us a construction of the category of abelian
Galois extensions of K in relatively concrete terms7. An important special case of this is the
isomorphism that Class Field Theory provides, between Gal(H/K), the Galois group of the maximal
abelian everywhere unramified Galois extension H of K, and the ideal class group, Cl(K), of K.
A consequence of this isomorphism for us is that the problem of constructing quotient groups of
the ideal class group of K with certain properties translates to constructing abelian unramified
extensions of K with the corresponding properties. That is, it provides us with a link between
stations 2 and 3 .

7Class Field Theory provides us with an isomorphism between the abelianization of GK and the profinite com-
pletion of the (group of connected components of the) idele class group of K. It is no accident, though, that abelian
Galois extensions are more amenable to detailed study than more general Galois extensions, and this is not only
because abelian groups are easier to study than more general groups. Just as, in algebraic topology one must specify
a base point to explicitly define the fundamental group of a connected space, but one needn’t do this to define its
homology group, so too—with a field K one must specify a separable algebraic closure, Ksep, of K to explicitly define
the full Galois group GK := Gal(Ksep/K). Without such a specification, GK is only defined “up to conjugation”
(which is why it is particularly fitting to study the structure of GK via its linear representations—which are them-
selves only defined up to conjugation). But one has no need to specify a separable algebraic closure of K to define
the abelianization of GK ,

Gab
K := GK/G

′
K .

(here G′K is the closed normal subgroup generated by commutators) whose quotients by closed subgroups of finite
index provide us with the Galois groups of all finite abelian extensions of K. One can even “name” particular elements
in Gab

K merely by giving appropriate data taken from the base field K.
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4.2 “Constructing” Galois extensions and Galois representations

Let us review the standard way of studying the cyclotomic field L obtained by adjoining a primitive
N -th root of unity to the rational field. This number field can be thought of as the splitting field
of the polynomial XN − 1 over Q. If µN denotes the group (under multiplication) of all N -th roots
of unity in this splitting field we have that µN is a cyclic group of order N , and it is the set of all
roots of XN − 1. More precisely,

XN − 1 =
∏
ζ∈µN

(X − ζ).

If G := Gal(L/Q) denotes the Galois group of L over Q, then G preserves the set of roots of XN−1,
and thus can be thought of as a subgroup of the group of permutations of the set µN . Even better,
since the action of G commutes with multiplication, G acts as a group of automorphisms of the
cyclic group µN . So we get a natural imbedding

Gal(L/Q) ↪→ Autgp(µN ) = (Z/NZ)∗ = GL1(Z/NZ).

Note that the middle equality is given by the canonical isomorphism8 of (Z/NZ)∗—the group of
units in the ring Z/NZ—with the group of automorphisms of the cyclic group µN . Thanks to
a theorem of Gauss the first inclusion is an isomorphism, giving us one of the most venerable
surjective Galois representations in the history of the subject:

ωN : Gal(L/Q) '−→ GL1(Z/NZ),

a faithful degree one representation of Gal(L/Q) over the ring Z/NZ.

It is standard, nowadays, to construct Galois extensions over a field K by finding natural continuous
actions of GK := Gal(Ksep/K) on vector spaces or on modules over rings—these coming to us
usually as cohomology modules. Here Ksep is a separable (algebraic) closure of K.

For example, if a module H, free of rank d over a finite ring R, is endowed with a continuous
R-linear GK-action we would then get a representation

ρ : GK → AutR(H) ' GLd(R).

Call these things Galois representations (two such representations being viewed as equivalent if they
can be brought, one to another, by conjugation with an element of GLd(R)). Since we have assumed
that our ring R is finite, the image of ρ is finite, and therefore there is a unique finite-degree Galois
extension L/K with L ⊂ Ksep such that ρ factors through the injective homomorphism

GK → Gal(L/K) ↪→ GLd(R).

It is in this sense that our Galois representation ρ has “constructed” L/K (together with a faithful
degree d representation of Gal(L/K) over the ring R).

When we get to station 4 of the above diagram, we’ll be touching on such constructions again; in
particular, in Section 9 below.

8Associate to α ∈ (Z/NZ)∗ the automorphism ζ 7→ ζα for ζ ∈ µN .
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4.3 Abelian extensions and two-dimensional Galois representations

Our desired abelian extension L (as in station 3 in the diagram above) will in fact be cyclic of
degree p over the cyclotomic number field Q(e2πi/p), but decidedly non-abelian over Q, the field
of rational numbers. Although it might seem odd at first glance, it is natural to construct these
extensions by first constructing a non-abelian (two-dimensional) indecomposable representation
of GQ, the Galois group of an algebraic closure of Q, into GL2(Fp). One then gets the required
extension field as the field cut out by this degree two representation over Fp, in the manner discussed
in Subsection 4.2 above. This type of argument will be giving us a link between stations 3 and
4 .

4.4 Modular forms and the two-dimensional Galois representations that are
associated to them

Cuspforms9 come into play, for they are a very convenient source of irreducible continuous two-
dimensional GQ representations over the field of p-adic numbers, Qp, and over finite degree exten-
sions of Qp, for any prime p. For some introductory discussion about this see Sections 7 and 8 below.
For a slightly more descriptive discussion of the passage from cuspforms to Galois representations
via Deligne’s Theorem see Section 9.

By suitably reducing these GQ representations to characteristic p, one gets a supply of continuous
two-dimensional GQ representations over finite fields k of characteristic p; for p > 2 all the repre-
sentations so obtained have the further property that the complex conjugation involution does not
act as a scalar. The conjecture of Serre ([59]), recently proved by Khare and Wintenberger ([36],
[33], [35]) asserts that every irreducible continuous two-dimensional GQ representation over a finite
field in which complex conjugation involution does not act as a scalar comes, in this manner, from
a cuspform10.

4.5 The Ribet wrench: first encounter

Ribet’s goal is to find certain reducible-but-indecomposable two-dimensional Galois representations
over finite fields, say over Fp. By choosing a suitable basis of the two-dimensional Fp-vector space,
such a representation can be given by a homomorphism

GQ → Upper triangular matrices ⊂ GL2(Fp),

g 7→
(
χ1(g) b(g)

0 χ2(g)

)
9More specifically, in this article we will only be interested in eigenforms for the Hecke operators. For a fine

introduction to this material and its connection to L-functions and modular curves, see Rohrlich’s [52]. For an
introduction to the subject that focuses on computation, see [67].

10For an introductory survey of Serre’s Conjecture and related material, see [51].
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where χ1 and χ2 are characters of the Galois group with values in F∗p. More succinctly we evoke
such a representation by the following matrix picture:

(
χ1 ∗
0 χ2

)
.

The intersection of the kernels of these two characters defines–in the usual manner of Galois theory—
an abelian field extensionM of the rational field Q; that is, M is the smallest subfield of the algebraic
closure Q̄ such that the restriction of those characters to the subgroup Gal(Q̄/M) ⊂ Gal(Q̄/Q) is
trivial. Thus M is the smallest field extension for which the above representation, when restricted
to Gal(Q̄/M), has the shape:

(
1 ∗
0 1

)
.

In the theory we are presenting, the field M is usually the p-cyclotomic field Q(e2πi/p).

If the representation restricted to Gal(Q̄/Q(e2πi/p)) is nontrivial then the image of Gal(Q̄/Q(e2πi/p))
in GL2(Fp) is isomorphic to the group of unipotent upper triangular matrices displayed above, and
hence is a cyclic group of order p cutting out a cyclic Galois extension N/Q(e2πi/p). So if we have
an explicit understanding of the initial two-dimensional representation of GQ we have, in similar
explicit terms, “constructed” the cyclic degree p extension N of the p-cyclotomic field.

Ribet achieves this aim by

• initially finding an irreducible two-dimensional Galois representation over a field of charac-
teristic 0, say over the field Qp of p-adic numbers; that is, a continuous homomorphism

ρ : GQ → AutQp(V ) ≈ GL2(Qp)

where V is a two-dimensional Qp-vector space, and the action of GQ preserves no line.

• He then appropriately reduces this Galois representation modulo p. To do this, though, he
must choose a Zp-lattice Ω ⊂ V that is stabilized by the action of GQ (such a lattice always
exists) and then pass to the action of GQ on V̄ := Ω/pΩ.

In this manner you get a representation mod p, which we will call the residual representation
obtained from the lattice Ω:

ρ̄ : GQ → AutFp(V̄ ) ≈ GL2(Fp).

A priori, the equivalence class of the representation ρ̄ depends on the choice of lattice Ω. Now,
there are many such lattices Ω that are stabilized by the GQ-action so we need to discuss
how many inequivalent representations ρ̄ might be obtained by varying the choice of Ω. For
a start, multiplying any such lattice by a nonzero scalar provides another stable lattice, but
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it is evident that the corresponding residual representations of lattices that differ by scalar
change are isomorphic.

There are, however, situations where the residual representation may change (a bit) depending
upon the lattice Ω that is chosen. What is independent of the lattice chosen is the semi-
simplification of the residual representation ρ̄. In particular, if the residual representation
associated to one lattice stabilized by the action of GQ is reducible, then it is so for all such
lattices, and the two one-dimensional representations—i.e., characters—into which the two
dimensional residual representation decomposes are independent of the lattice chosen. But
the two-dimensional reducible residual representation ρ̄ itself may indeed depend upon the
lattice.

• The key to Ribet’s construction is to start with representations ρ that are irreducible, and yet
have residual representations that are reducible; that is, in the terminology of the discussion
above, the residual representations have matrix pictures looking like:(

χ1 ∗
0 χ2

)
and where, again as in the discussion above, one has constructed a cyclic p-extension if the
corresponding residual representation, when restricted to Gal(Q̄/M), that has the shape:(

1 ∗
0 1

)
is nontrivial.

• In the above situation one can always change the lattice Ω suitably11 to guarantee that the
above representation is nontrivial.

• The irreducibility of his initial representation is crucial to his method. In its later mani-
festations this type of strategy can be framed as follows: you are looking for a “somewhat
degenerate object” (e.g., a reducible representation) and you hope to get it as a “degenerate”
member of, say, a one-parameter family of nondegenerate objects (e.g., irreducible represen-
tations). We will be calling such reducible representations that are obtained as limits of
irreducible ones liminal.

This manner of reasoning is how one will be passing from station 4 to station 3 .

4.6 Herbrand’s Theorem; regular primes, properly irregular primes, and im-
properly irregular primes

A consequence of the Herbrand Theorem is that if an odd prime number p does not divide (the
numerators of) any of the Bernoulli numbers B2k for 2k = 2, 4, . . . , p − 3 then p does not divide
the class number of the cyclotomic field Q(e2πi/p). The bare bones of the argument for this is the

11I envision it as a kind of “wrenching action.”
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following: first one constructs a specific element θ in the integral group ring of the Galois group
Gal(Q(e2πi/p)/Q) that annihilates the p-primary component of the ideal class group of Q(e2πi/p)
and then one shows that under the hypotheses above, this element θ is a unit in the integral group
ring. See Chapter 6 of Larry Washington’s Introduction to cyclotomic fields [74].

A prime number p that does not divide the class number of the cyclotomic field Q(e2πi/p) is called
a regular prime. It is known that there are infinitely many irregular primes. But even now, after
much thought has been devoted to this area of mathematics, it is unknown whether or not there
are infinitely many regular primes. For the story of conjectures regarding this (and conjectural
ideas about the related statistics) see [74]. If a prime p is irregular, but does not divide the class
number of the maximal totally real subfield, Q(e2πi/p + e−2πi/p), of Q(e2πi/p), then p is called
properly irregular. A conjecture of Vandiver ([73]; see also Section 10.3 in [74]) is that all
irregular primes are properly irregular. Vandiver’s conjecture has the advantage of being verified
for p < 163, 000, 000 ([10]; also compare with computations for p < 12, 000, 000 [9]) and has strong
consequences, so even if there exist improperly irregular primes, proper irregularity is a useful
condition to bear in mind. What is of interest, specifically for our story, is that the existence of
the Galois extensions constructed by Ribet was already known to be true for any properly irregular
prime p. For such properly irregular primes, the sought-for extensions can be generated over
Q(e2πi/p) by adjoining p-th roots of appropriate cyclotomic units12. But even for these primes, the
“construction-method” we are describing illuminates the landscape: it reveals a deep connection
between seemingly disparate mathematical objects.

5 Rounding the circuit with the prime 691

Here is a taste of the “six facets” discussed above, as they manifest themselves for the prime 691.
Since 691 is properly irregular, as mentioned above, the bald existence of a Galois extension with
the properties that Ribet’s theorem guarantees is not at issue: the desired Galois extension has
been known to exist for quite a long time. Even more to the point—as we shall get to, later—for
this very example, Serre had suggested exactly where to find the desired Galois extension, and
unpublished work of Greenberg and Monsky did indeed find it, and in essentially the same context
that we will be reviewing, all this happening before Ribet’s work.

Here, rather, we will have our sights on Ribet’s general method of construction for all (irreg-
ular) primes p, but we concentrate on this well-studied p = 691. We will make the circuit
and for each of the six vertices of our hexagon we will be signaling an explicit piece of number
theory—a computation—related to that vertex. These six phenomena are—as we indicated in the
introduction—essentially linked together.

1 Divisibility of the numerator of Bernoulli numbers modulo p.

12See footnote 16 below. For a discussion (by Joe Buhler and and David Harvey) of the likeliness of anyone being
able to find (in our lifetime) an example of an improperly irregular prime—even if Vandiver’s Conjecture is false—see
Appendix II below.
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Let Bk be the k-th Bernoulli number as in Jacob Bernoulli’s Ars Conjectandi13: For odd integers
k > 1, Bk vanishes. For even integers 2k the Bernoulli number B2k is the coefficient of x2k/2k! in
the power series expansion

x

ex − 1
= 1− x

2
+
∞∑
k=1

(−1)k+1B2k
x2k

2k!
.

We moderns have (as Bernoulli himself also had) easy methods for its computation, and here is a
list of the first few B2k

4k .

B2/4 = +1/24

B4/8 = −1/240

B6/12 = +1/504

B8/16 = −1/480

B10/20 = +1/264

which might lead us to make a rash conjecture about the numerator of these numbers, if not for
the next case:

B12/24 = −691/65520.

The prime p = 691, then, divides the numerator of B12/24. Hold that thought!

2 The ideal class group taken modulo p of the cyclotomic field Q(e2πi/p).

For a number field K the set of nonzero ideals in its ring of integers, viewed with the multiplicative
structure that it naturally has (multiplication of ideals)—but taken modulo the equivalence relation
generated by requiring that any principal ideal is trivial—forms a finite abelian group, called the
ideal class group of K.

Keep to p = 691 but in the body of this discussion we will revert to denoting 691 simply by the
letter p. Take K to be the cyclotomic field Q(e2πi/p). The automorphism group of this field—that
is, the Galois group Gal(Q(e2πi/p)/Q)—is canonically isomorphic to F∗p, the multiplicative group
of the prime field of characteristic p. Denote this canonical isomorphism by:

ι : Gal(Q(e2πi/p)/Q) −→ F∗p.

Form X := the ideal class group of K modulo p(= 691). The finite abelian group X has a natural
action of Gal(Q(e2πi/p)/Q) which we denote (α, x) 7→ α(x) for α ∈ Gal(Q(e2πi/p)/Q) = F∗p and
x ∈ X.

13An English translation of this extraordinary work has recently been published [7] with extensive introductory
material.
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What is the abelian group X (which is convenient to think of as an Fp-vector space) and what is
this action?

The answer is that X is nontrivial14. Hold that thought!

In passing, we might note that the nontriviality of X already signals that the elementary strategy
for proving Fermat’s Last Theorem—the method used for the prime exponent 3 by Euler15—will
not work for the exponent 691.

The group X viewed as vector space over Fp is, in fact, of dimension two, and has a basis {x, y} of
eigenvectors for the action of

Gal
(
Q(e2πi/p)/Q

) ι−→ F∗p

such that for α ∈ Gal
(
Q(e2πi/p)/Q

)
we have the formulas

α(x) = ι(α)691−12 · x = ι(α)−11 · x
α(y) = ι(α)691−200 · y = ι(α)−199 · y

Though both of these “lines” in the two-dimensional Fp vector space X are interesting, the discus-
sion about each of them is somewhat similar, so for specificity we sometimes concentrate, below, a
bit more on the line x · Fp in X admitting an action by Gal

(
Q(e2πi/p/Q) via the character ι−11.

3 Abelian unramified extensions of degree 691 over the cyclotomic field K = Q(e2πi/691)

There are field extensions L/K that are (cyclic) of degree 691, that are everywhere unramified
and that have the further property that L/Q is Galois16 and furthermore—there are precisely two
such field extensions L/K; call them L{12} and L{200}. These two extensions are distinguished

14A natural impulse, then, is to seek a construction of specific nonprincipal ideals whose p-th powers are principal.
This is—in effect—elegantly done for us, somehow, by “Herbrand-Ribet” both in our particular case (p = 691) and
(the analogous task is done) in the general case of irregular primes p.

15Ernst Kummer already understood the deep arithmetic consequences that follows from knowledge of the vanishing
of the ideal class group modulo p of the cyclotomic number field Q(e2πi/p). (If this happens, then “enough” of the
fundamental theorem of arithmetic holds in the ring of integers of Q(e2πi/p) to allow one to prove Fermat’s Last
Theorem for the equation xp + yp = zp.)

16Kummer knew that for p a prime number and for any field F of characteristic different from p that contained
a primitive p-th root of unity, the cyclic field extensions of F of degree p are obtained by extracting p-th roots of
elements of F ; moreover, these cyclic field extensions are in one:one correspondence with the Fp-lines in the Fp–
vector space F ∗/(F ∗)p (although he would express this knowledge via completely different vocabulary). So—for
example—there are infinitely many cyclic extensions of degree 691 over the cyclotomic field K = Q(e2πi/691). One
way, then, of pinpointing the everywhere unramified cyclic extensions of degree 691—there being exactly two such
extensions that are Galois over Q—would be to exhibit elements υ1, υ2 in K∗ = Q(e2πi/691)∗ such that the field
extensions obtained by extracting a 691-th root of these elements are the ones you want. This can be done in the
case p = 691. It can be done more generally for properly irregular primes p; moreover, in the properly irregular
case the elements whose p-th roots generate the sought-for everywhere unramfied extensions can be taken to be
cyclotomic units. For a discussion of the basic theory behind all this, see [74] and specifically read about cyclotomic
units in Section 1 in Chapter 8 (especially Theorem 8.2); and read about the so-called Reflection Theorems and
their consequences for Vandiver’s conjecture in 10.2, 10.3 of loc. cit. For a one-page recollection of this theory, see
http://mathoverflow.net/questions/37880/kummer-generator-for-the-ribet-extension/37951#37951. As we shall see,
however, the method we are discussing—which works for the full class of irregular primes, whether they be properly
irregular or not—does not exhibit these extensions in that way.
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by the nature of the action by conjugation; that is, by the conjugation-action of any lifting α̃ of
α ∈ Gal(K/Q) to Gal(L/Q) on elements γ ∈ Gal(L/K) ⊂ Gal(L/Q). This conjugation-action is
given for L = L{12} by the formula:

α̃γα̃−1 = ι(α)691−12 · γ = ι(α)−11 · γ,

and for L = L{200} it is given by:

α̃γα̃−1 = ι(α)691−200 · γ = ι(α)−199 · γ.

4 Galois representations into GL2(F691)

For each of these two extensions L/Q (i.e., L = L{12} or L{200}) the equations above allow us to
view Gal(L/Q) as a semi-direct product

Gal(L/Q) = Gal(L/K) o Gal(K/Q).

From each of these extensions L/Q we will now describe corresponding two-dimensional represen-
tations of the Galois group of the rational field Q, and—as we shall see—these “Galois representa-
tions” deserve our attention.

For example, take L := L{12}. Let ψ : Gal(L/K) ' F+
p be a choice of isomorphism. Then form the

representation
ρ̄ : Gal(L/Q) −→ GL2(Fp)

by sending γ · α to (
1 ψ(γ)
0 ι(α)11

)

The displayed equations above show that this is indeed a homomorphism. Working similarly with
L{200} in this way, we get two Galois representations for our two choices of L; call them ρ{12} and
ρ{200} respectively. The equivalence class17 of each of these representations ρ̄ is independent of our
choices.

Remember these representations!

5 The cuspform ∆ of level 1 and weight 12.

I’m referring to that very intensely studied infinite product

∆(q) = q
∞∏
n=1

(1− qn)24 = 0 +
∞∑
n=1

τ(n)qn

17As previously mentioned, for any commutative ring with unit, R, and any group G, two homomorphisms h1, h2 :
G → GLN (R) are said to define equivalent representations if there is an element γ ∈ GLN (R) such that h2 is
the composition of h1 with the automorphism of GLN (R) given by conjugation by γ.
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which can be directly thought of as it is presented here, namely, a power series in the variable q;
or: putting q = e2πiz we may view it as an analytic function of the variable z in the upper half-
plane, where it is shown to satisfy the symmetry ∆(−1/z) = z12∆(z) (i.e., ∆ is a modular form of
level 1 and weight 12). Its Fourier series coefficients, τ(n) (for n = 1, 2, . . . ) have been brilliantly
analyzed by generations of mathematicians—including Ramanujan. Simple recurrence relations
(first described by Mordell) allow you to “retrieve” the Ramanujan “tau”-function n 7→ τ(n) from
the values ` 7→ τ(`) for all prime numbers `.

A congruence due to Ramanujan ([47])18 gives us that

τ(n) ≡
∑

0<d | n

d11 mod 691

for every positive integer n. In particular,

τ(`) ≡ 1 + `11 mod 691

for every prime number `.

Remember this!

There is also a unique cuspform—call it ∆{200}—of level 1 and weight 200 with Fourier coefficients
n 7→ τ{200}(n) ∈ Q691 that enjoys a similar congruence19:

τ{200}(n) ≡
∑

0<d | n

d199 mod 691

for every positive integer n. In particular,

τ{200}(`) ≡ 1 + `199 mod 691

for every prime number `.

6 The Eisenstein series E12 of level 1 and weight 12, modulo p = 691.

The Fourier expansion of this modular form is given by

E12(q) = −B12/24 +
∞∑
n=1

( ∑
0<d | n

d11
)
qn.

18For a list of similar congruences that the Fourier coefficients of ∆ satisfy modulo powers of the primes 2, 3, 5, 7
and modulo 23 (which, along with 691 comprise the set of “exceptional primes” for ∆), see [68].

19I’m thankful to William Stein for computing this: he tells me that the Fourier coefficients {τ{200}(n)}n generate
a field of degree 16 over Q and the primes dividing 691 in this field have degrees 1, 1, 2, 2, and 10; completion at one
of those primes of degree 1 gives us the cuspform ∆{200} with Fourier coefficients in Q691 enjoying the congruences
we are describing.
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As we’ve mentioned in 1 , (i.e., we are coming full circle) B12/24 = −691/65520. So B12/24 ≡ 0
modulo 691 and therefore our Eisenstein series has zero as its constant term modulo 691. Since, as
we’ve mentioned in 5 ,

τ(n) ≡
∑

0<d | n

d11 mod 691

we get that the Eisenstein series E12 has exactly the same Fourier expansion, modulo 691, as ∆.

Similarly, the Eisenstein series E200 of level 1 and weight 200 given by

E200(q) = −B200/400 +
∞∑
n=1

( ∑
0<d | n

d199
)
qn

has the property that the numerator of −B200/400, its constant term20, is divisible by the prime
691. So, again, the Fourier series of the Eisenstein series E200 taken modulo 691 has zero as constant
term21.

The Herbrand-Ribet Theorem assures us that these six arithmetic events are not mere coincidences,
and that there are implications of a very similar sort going all the way around the hexagon for any
prime number p.

6 Rounding the circuit again: a statement of the Herbrand-Ribet
Theorem

Theorem 1. (Herbrand-Ribet) Let p be a prime number and 2k an even integer greater than 2 and
less than p− 1. These are equivalent:

1 The numerator of the “Bernoulli number” B2k
4k is divisible by p. In Kummer’s terminology, this

is what is meant by p being an irregular prime number22.

6 The constant term in the Fourier expansion of the Eisenstein series E2k of weight 2k and level
1 is congruent to zero modulo p. (Colloquially we can say: the Fourier expansion of E2k “looks
cuspidal modulo p.”)

20which, if you’re curious, is: 389 · 691 · 5370056528687 times this 204-digit prime number:
3452690329392158031464109281736967404068448156842396721012992064214519445919256941544565276067662360108 ∼
74972724155570842527652727868776362959519620872735612200601036506871681124610986596878180738901486527

21In fact, E200 has exactly the same Fourier expansion, modulo 691, as a certain cuspform of weight 200—that we
called ∆{200}—has. This is meant in the sense that the Fourier coefficients of ∆{200} lie in the ring of integers of a
number field that has a degree one prime ideal whose residue field is F691; when reduced modulo this prime ideal one
has ∆{200} ≡ E200.

22therefore—as someone mentioned after my lecture—in contrast to what happens in elementary geometry, our
hexagon is only of special interest when it is irregular. . .

16



5 For some—or, equivalently, for every—integer 2 ≤ w <∞ there exist the following objects:

• a number field Fw ⊂ Q̄. Let Ow ⊂ Fw denote the ring of integers in Fw.

• A prime ideal Pw ⊂ Ow such that Ow/Pw = Fp.

• A power series

Φw = 0 + q +
∞∑
n=2

tw(n)qn

with coefficients tw(n) ∈ Ow, such that

– when viewed as a power series in q = e2πiz with coefficients in C via any imbedding Fw ↪→
C this power series is the Fourier series of a cuspidal eigenform (alias: “newform”) on
Γ1(p) of weight w;

– when reduced modulo the prime ideal Pw and viewed as a power series with coefficients
in the prime field Fp we have, for each integer n ≥ 0, the congruence:

tw(n) ≡
∑

0<d | n

d2k−1.

In more colloquial vocabulary, the Fourier expansion of Φw is congruent to the Fourier
expansion of E2k modulo p.

4 There exist the following objects:

• a number field F ⊂ Q̄. Let O ⊂ F denote the ring of integers in F .

• A prime ideal P ⊂ O such that O/P = Fp. Let OP ⊂ FP be the completion of O ⊂ F at P .
Let πP ∈ OP denote a uniformizer of the discrete valuation ring OP .

• An abelian variety A defined over Q with the following properties:

– The ring of integers O acts as a ring of endomorphisms of A over Q.
– Letting A[P ν ] ⊂ A(Q̄) denote the intersection of the kernels of all the endomorphisms

of A that lie in the ideal P ν and noting that πP : A[P ν+1] → A[P ν ] is a surjective
homomorphism, consider the projective system

· · · → A[P ν+1]→ A[P ν ]→ · · ·A[P ].

The projective limit TP (A) := limν A[P ν ] has a natural OP [GQ]-action. Form the FP -
vector space V := VP (A) = TP (A)⊗OP FP . This FP vector space is of dimension two.

– There is an OP -lattice23 Ω ⊂ V stable under the action of GQ for which the representa-
tion

GQ −→ Aut(Ω/πPΩ) ∼= GL2(Fp)
23A finitely generated OP -submodule Ω ⊂ V is called an OP -lattice if the natural OP -homomorphism

Ω⊗OP FP → V

is an isomorphism.
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is indecomposable but reducible and whose semisimplification consists of two characters

1, ω2k−1
p : GQ −→ GL1(Fp) = F∗p

where 1 is the trivial character and ωp is the basic “p-cyclotomic” character introduced
in Subsection 4.2 above.

– A has good reduction at all primes different from p.

– A achieves good reduction at all primes when the base field is extended to the maximal
real subfield Q(e2πi/p + e−2πi/p) in the p-cyclotomic field.

3 Let K be the cyclotomic field K = Q(e2πi/p). There is a field extension L/K that is cyclic
of degree p, that is everywhere unramified, and that has the further property that L/Q is Galois,
and furthermore the action by conjugation of any lifting α̃ of α ∈ Gal(K/Q) to Gal(L/Q) on any
element y ∈ Gal(L/K) ⊂ Gal(L/Q) is given by the formula:

α̃yα̃−1 = ι(α)p−2k · y = ι(α)1−2k · y.

2 There is a cyclic subgroup X of order p in the ideal class group of K = Q(e2πi/p) stabilized
by the action of the Galois group ι : Gal(Q(e2πi/p)/Q) ' F∗p and such that the action of α ∈
Gal(Q(e2πi/p)/Q) on X is given by the formula:

α(x) = ι(α)p−2k · x = ι(α)2k−1 · x.

We end part I of this article by accompanying these statements in their counterclockwise route
with some brief discussion; a few of these points will be expanded upon in slightly more detail in
the later sections.

• 1 ⇒ 6 .

This is just because B2k
4k is the constant term of the Fourier expansion of E2k.

• 6 ⇒ 5 .

Here one depends upon the algebraic-geometric interpretation of modular forms—as sections
of bundles over algebraic curves. The question of lifting a mod p form to characteristic zero is
then dealt with by standard exact sequences, very much helped by the fact that we are over
algebraic curves. (The analogous procedure when one deals with higher rank automorphic
forms is not so smooth-going.) Once one lifts, standard methods allow one to obtain a lift
that is an eigenform; i.e., is “eigen” for all the Hecke operators that one needs.

A curious point is that we have our choice of infinitely many different newforms f (at least
one for each weight). Ken chose to work with cuspidal newforms of weight two. In the next
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step we will be making use of Galois representations associated to these cuspidal eigenforms,
and in the case of weight two, these representations are somewhat concretely obtained as
representations occurring in the natural action of Galois on the p-power torsion points of
abelian varieties.

In particular, in our discussion of p = 691, we chose to single out ∆, the eigenform of weight
twelve (that we will also call Φ12 in Section 13 below) but Ken worked with weight two—and
in that specific instance he would be visualizing the Galois representation obtained by the
natural Galois action on the 691-power torsion points of the abelian variety of dimension 2508
that we called A, attached to the eigenform we will be calling Φ2 in Section 13.

• 5 ⇒ 4 .

Let f =
∑∞

n=1 an(f)qn be a cuspidal newform of level p (i.e., on Γ1(p)) of weight > 1. The
theorem of Deligne (see Section 9 below) provides us with degree two Galois representations
as discussed previously in the context of ∆. In particular—if we view the Fourier coefficients
of f as lying in some finite discrete valuation ring extension D of Zp (this generally requires
making a choice) then Deligne will give us a representation ρD : GQ → GL2(D) which is

– irreducible as a representation over the field of fractions of D, and

– which has the property that the trace of Frobenius at ` (for primes ` 6= p) is equal to
a`(f).

For f ranging through the package of eigenforms given to us by 5

– if D is the discrete valuation ring extension of Zp generated by the Fourier coefficients
of f , the residue field of D is Fp,

– the Fourier expansion of f modulo the maximal ideal of D is congruent to the Fourier
expansion of E2k modulo p making

– the Galois representation ρ̄D (i.e., ρD viewed over Fp) is reducible; with, in fact,

– its semisimplification ρ̄ss
D equal to the trivial character 1 plus ω2k−1 where ω is the

cyclotomic character modulo p, i.e., ω is the composition:

GQ → Gal(Q(e2πi/p)/Q)
ι'F∗p.

The collection of eigenforms f given to us by 5 have further properties making them quite a
coherent package; all this will play a role in the later parts of this article. For example, the p-th
Fourier coefficient, ap(f), (which is also the eigenvalue of Up the Atkin-Lehner automorphism
acting on f) is congruent to 1 modulo the maximal ideal of D, which implies that f is what
is called p-ordinary which has strong implications regarding the restriction of the associated
Galois representation to an inertia group at p (cf. Definition 1 in Section 20). Also, there is
some uniformity in the nature of the discrete valuation ring D, in that one can take—once
and for all f ’s in the package—D to be a fixed finite flat extension of Zp.

If we choose, as Ken did, to work with one of the eigenforms f as above of weight two then
f cuts out in a standard manner a simple abelian subvariety A = Af ⊂ J1(p)—unique up to
Q-isogeny—having all the properties24 described in 4 .

24Consider, in the appropriate Hecke algebra, the ideal If of elements annihilating the modular form f ; then Af is
an abelian variety that is Q-isogenous to the quotient abelian variety J1(p)/If · J1(p). This construction goes back
to Shimura.
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• 4 ⇒ 3 .

So far, this seems like a very unpromising picture, for we have no idea whether the repre-
sentation ρ̄D is nothing more than the sum 1 ⊕ ω2k−1, which would be a nice-enough fact,
but would not give us what we want; namely a nontrivial abelian Galois extension of the
p-cyclotomic field (and, in fact, we even want more: we want it to be everywhere unramified
and acted upon by Galois in a very particular way).

It is at this point that the Ribet wrench comes to help us. Ken uses it to show that since the
representation over F , the field of fractions of D, is irreducible he can change the D-lattice
of the underlying F -vector space of the representation ρD ⊗ F to obtain a new GQ-stable
D-lattice such that the corresponding Fp-representation obtained by reduction modulo the
maximal ideal is indecomposable and in fact—in this situation—one can do this in two ways:
either so as to have the trivial representation 1 as sub-representation of the corresponding
indecomposable residual representation or as quotient. Ken goes with quotient and uses the
algebraic geometry of the abelian variety A to guarantee that he has constructed precisely the
type of abelian extension that is required by 3 . We call this the preferred indecomposable
residual representation. We shall be going into a few details about this last point in
Section 18 below.

• 3 ⇒ 2 .

This leg of the journey is guaranteed by Class Field Theory as discussed briefly in Subsection
4.1 above.

• 2 ⇒ 1 .

This is Herbrand’s theorem (proved before World War II)25.

I hope that my article has, up to this point, conveyed to readers of general background the flavor of
some ideas behind this type of explicit construction of abelian extensions. The remaining sections
of this article will go a bit further into some of the techniques required for–and connected to—the
proof, and also current related work.

25[26]; See also [46].
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Part II: Galois representations coming from Algebraic Geometry

7 Galois extensions of number fields, prime splitting phenomena,
and Frobenius conjugacy classes

Let L/K be a finite Galois extension of number fields, and put G = Gal(L/K). The action of the
group G on L stabilizes the ring of integers OL in L and fixes the subring OK = OL∩K of integers
in K. Of major arithmetic interest is the manner in which primes P of K (i.e., nonzero prime
ideals of OK) split (or not) in L. A historically important case of this general problem is answered
by the theorem ascribed to Fermat that says that a prime number is expressible as a sum of two
squares (i.e., splits into a product of two primes in the field of gaussian numbers) if and only if it
is not congruent to −1 mod 4. In general, the splitting of P in the field L is given by the prime
factorization of the OL-ideal P · OL. Such a factorization will look like:

P · OL = Qe1 ·Qe2 · · · · ·Qem

where the Qi are mutually distinct primes of L and e ≥ 1.

One usually refers to the primes Qi that occur in this formula as the “primes Q of L lying above
P .”

For any prime P of K the action of the Galois group G on OL induces a transitive action on the
set of primes of L lying above P . For any of these Q’s, GQ ⊂ G denotes the isotropy subgroup26 at
Q of the action —i.e., GQ := {g ∈ G | g ·Q = Q}. Fixing, then, a prime Q lying above P we may
identify the set of all primes of L lying above P with the left coset space G/GQ in the evident way.
The isotropy subgroup GQ stabilizes both OL and Q ⊂ OL and therefore one induces a natural
action of GQ on the finite (“residue field at Q”) κQ := OL/Q.

The prime P is said to be ramified in L/K if e > 1; there are only finitely many primes P ramified
in L/K (these being the primes dividing the discriminant Disc(L/K) which is a nonzero ideal of
OK). If, for any nonzero ideal I ∈ OK we denote by NI its norm (meaning the cardinality of the
set OK/I) then a sufficient condition for P to be unramified is that the integer NP not divide
NDisc(L/K).

In the case where P is unramified in L/K the isotropy group GQ for any Q lying above P has a
strikingly precise structure:

The isotropy group GQ is cyclic with a canonical generator (called the Frobenius
element at Q)

FrobQ ∈ GQ ⊂ G

determined uniquely by the property that the natural action of FrobQ on the residue

26also called the decomposition group
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field at Q, OL/Q, consists in raising every element to the NP -th power; equivalently:

FrobQ(x) ≡ xNP mod Q for x ∈ OL.

The set of elements FrobQ ∈ G where Q ranges through all primes of L lying above P consists in
a single conjugacy class of G—determined by P—and we will refer to this conjugacy class cP =
cP (L/K) ⊂ Gal(L/K) as the Frobenius conjugacy class (relative to the Galois extension
L/K) attached to the (unramified) prime P of K. This assignment is nicely functorial for nested
Galois extensions of K; i.e., if K ⊂ L ⊂ M are fields with M/K and L/K Galois, we have—for
all primes P of K unramified in M/K—that cP (L/K) is the image of cP (M/K) under the natural
surjection Gal(M/K)→ Gal(L/K).

The Galois group G = Gal(L/K) of a Galois extension L/K of number fields comes—then—with
an impressive amount of extra structure. There are many ways of bottling this extra structure but
here is a way that I find helpful.

By a Cebotarev Group over a number field K I will mean a finite group G together with a
function P 7→ cP defined on almost all (i.e. all but a finite number of) primes P over K that
associates to P a conjugacy class cP in G, and that has the property that for any conjugacy class
c ⊂ G, there are infinitely many P with cP = c and more precisely:

lim
X→∞

|{P | cP = c and NP < X}|
|{P | NP < X}|

=
|c|
|G|

where the absolute value sign around the symbol for a set means its cardinality.

Let us say that two Cebotarev groups over K, {G;P 7→ cP } and {G′;P 7→ c′P }, are isomorphic if
there is an isomorphism G ' G′ which sends cP to c′P for all but finitely many primes P for which
both cP and c′P are defined.

We can formulate a version of the Theorem of Cebotarev as follows:

Theorem 2. Let L/K be a Galois extension of number fields with G = Gal(L/K). The rule
that assigns to each prime P of K that is unramified in L/K the Frobenius conjugacy class cP =
cP (L/K) defines a Cebotarev group {G;P 7→ cP }. The isomorphism class of this Cebotarev group
over K determines L/K up to isomorphism.

The first sentence of the theorem is the classical Cebotarev Theorem27. The second assertion is
seen as follows. Let K̄/K be an algebraic closure of K.

Lemma 1. Let L,L′ ⊂ K̄ be subfields each of which is a finite Galois extension field of K and
suppose that there is an isomorphism ψ : Gal(L/K) ' Gal(L′/K) such that if P runs through
almost all primes of K which are unramified in L/K and in L′/K the isomorphism ψ sends the
Frobenius conjugacy class relative to the Galois extension L/K, cP ⊂ G = Gal(L/K), to the
Frobenius conjugacy class relative to the Galois extension L′/K, c′P ⊂ G′ = Gal(L′/K). Then
L′ = L.

27For a proof of the theorem cf. Thm. 10 Ch. VIII, Section 4 of [39]; also see Section 2.7 of [53] which casts the
theorem in the context of global fields. For Cebotarev’s original article see [13]; and to get a sense of his generosity
of spirit see the extraordinary tale beginning on page 131 in [25].
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Proof: Let M = L · L′ ⊂ K̄ be the compositum. Consider the injection

Gal(M/K) ↪→ G×G′

defined as the product of the natural surjections onto each factor.

Suppose that the natural surjection Gal(M/K)→ G is not an isomorphism.

Let CM/K ⊂ Gal(M/K) denote the conjugacy class in Gal(M/K) containing some nontrivial
element of N := ker{Gal(M/K) → G}. The natural projection N → G′ is injective since
Gal(M/K) ↪→ G × G′ is injective. Let C′ ⊂ G′ be the conjugacy class of G′ that is the image
of CM/K under the natural surjection Gal(M/K) → G′, noting that C′ is not the (conjugacy class
of the) identity in G′. In contrast, if C denotes the image of CM/K under the natural surjection
Gal(M/K)→ G, then C = {1} is the conjugacy class of the identity in G.

Let P be a prime of K so that

1. The conjugacy class CM/K ⊂ Gal(M/K) is the conjugacy class of Frobenius elements for the
prime P relative to the extension M/K and

2. the conjugacy classes cP ⊂ G and c′P ⊂ G′ are both defined (i.e., by the Cebotarev group
structures of each of these groups).

This is possible since by the Cebotarev Theorem for M/K every conjugacy class of Gal(M/K) is
the Frobenius conjugacy class of infinitely many primes of K.

By the functoriality of Frobenius conjugacy classes mentioned above, we have that C = cP is the
conjugacy class of Frobenius elements for the prime P relative to the extension L/K. Similarly,
C′ = c′P is the conjugacy class of Frobenius elements for the prime P relative to the extension
L′/K. By the hypotheses of our lemma, we would then have that ψ(C) = C′. But C is the identity
conjugacy class in G and C′ is not the identity class in G′. Since ψ is an isomorphism of groups,
we have a contradiction.

It follows that N is the trivial group, and therefore the natural projection Gal(M/K) → G is an
isomorphism, establishing our lemma.

It is traditional to study the structure packaged in the Cebotarev group associated to an extension
L/K by considering linear representations of the underlying Galois group—i.e., choosing a Galois
representation over K that is split by L/K—and using the vocabulary and techniques of analytic
number theory28.

Here is a brief hint of how one passes to analytic number theoretic methods. Fix {G;P → cP }, a
Cebotarev group over a number field K. Consider an (irreducible) complex representation η : G→
GLn(C). For a prime number P for which cP is defined, let

Lη,P (T ) := det
(
1− T ·MP

)
∈ C[T ]

28In fact, it is by such a route that the Cebotarev Theorem quoted above is proved.
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be the characteristic polynomial of the n×nmatrix 1−T ·MP ∈ Matn×n
(
C[T ]

)
whereMP ∈ GLn(C)

is any element of η(cP ) ⊂ GLn(C). Thus,

Lη,P (T ) ≡ 1− Trace
(
η(cP )

)
· T modulo higher powers of T.

Since η is a complex representation of a finite group, and since the Cebotarev theorem guarantees
that every conjugacy class of G is cP for (infinitely many) primes P , the representation η is already
pinned down, up to isomorphism, by the data P 7→ Trace

(
η(cP )

)
and therefore all the more by

P 7→ Lη,P (T ).

From the above data, define a Dirichlet series (in the complex variable s)

L(η, s) =
∏
P

Lη,P (NP−s)−1,

where the product is taken over all those primes P for which the Cebotarev group structure provides
us with a “cP .” Since the eigenvalues of any of the matrices MP in the previous paragraph are roots
of unity, a straightforward computation gives that the Dirichlet series L(η, s) converges in some
right half-plane. One learns detailed statistical information about the rule P 7→ cP by establishing
further analytic properties (e.g., analytic continuation, functional equation, location of poles and
zeroes) of this collection of Dirichlet series

η 7→ L(η, s)

for various representations η.

If the Cebotarev group in question comes from a Galois extension L/K we may view η as a
representation of Gal(L/K) and L(η, s) is—except for factors corresponding to the (finitely many)
missing primes P—the Artin L-function about which much is known, and even more is conjectured.

8 Towers of Galois representations; p-adic Galois representations

In the previous section we discussed finite degree Galois extensions of number fields, and corre-
sponding Galois representations of finite Galois groups into GLn(C). The focus, though, of much
recent work is towards infinite degree extensions. For this we should say a few words about infinite
Galois groups.

For K a field, choose a separable algebraic closure Ksep of K and set GK := Gal(Ksep/K) which
we view as profinite topological group with its Krull topology; this is the topology for which
closed subgroups of GK are in one:one correspondence—as they would be in Galois theory of finite
degree extensions—with the intermediate subfields of Ksep/K; any such closed subgroup H ⊂ GK
corresponds to the subfield consisting of the elements of Ksep fixed by all the elements of H. Since
GK is a profinite group, its continuous representations to Lie groups over R or over C necessarily
factor through finite quotient groups; but this is no longer true if the target groups are, for example,
Lie groups over p-adic fields.
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By a p-adic Galois representation of degree n over K we will mean a continuous representation

GK −→ GLn(F )

where F is some extension field of finite degree over Qp, the field of p-adic numbers. Since GK is
compact, one can show that any such continuous homomorphism can be conjugated to one that
factors through GLn(OF ) ⊂ GLn(F ) where OF is the ring of integers (i.e., elements integral over
Zp) in F . That is, in any equivalence class of such representations, there will be at least one
homomorphism that has image in GLn(OF ). For example, if F = Qp, such a representation factors
through a homomorphism

GK −→ GLn(Zp)

which itself can be viewed as a projective limit of homomorphisms,

GK −→ GLn(Z/pνZ),

for ν = 1, 2, 3, . . . , these representations being split by finite Galois extensions of K,

K ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lν ⊂ . . . ,

and if L∞ := ∪νLν then L∞/K is a Galois extension of K whose—possibly infinite—Galois group
is the compact p-adic Lie subgroup of GLn(Zp) that is the image of GK in GLn(Zp).

Often we will be content to deal with algebraic extension fields of Qp, i.e. subfields F of Q̄p, an
algebraic closure of Qp, but sometimes it is useful to allow a certain larger field as field of scalars,
namely the field Cp := ˆ̄Qp the hat ˆ signifying the completion of Q̄p with respect to its p-adic
valuation29.

Usually we will be dealing with Galois representations that are unramified except possibly at a
finite number of places. For such a Galois representation ρ : GK −→ GLn(F ) we have a convenient
“numerical handle” that determines ρ, up to semisimplification; namely, the function that associates
to each place v of K unramified in ρ the value aρ(v) := TraceF (ρ(Frobv)) ∈ F . This function

v 7→ aρ(v)

plays a central role in any dealings with a Galois representation ρ.

In particular, if K = Q, we may view this function as taking values on “almost all” prime numbers
`, i.e., ` 7→ aρ(`) and note that we’ve already had hints of such functions, such as the Ramanujan
function ` 7→ τ(`), alluded to in our discussion of 5 above. An excellent general introduction to
`-adic representations is given in Serre’s article [57] as well as in his earlier treatise [54].

9 Deligne’s Theorem for the modular form ∆

A theorem of Deligne—a special case of which we shall be quoting below—gives us that for every
prime number p and every modular eigenform, there is a continuous irreducible degree two p-adic

29This field Cp is sometimes called “Tate’s p-adic complex numbers” the Tate part of its name because Tate first
defined and used it, the complex numbers part of its name because Cp is—deprived of its topology—abstractly isomor-
phic to the classical field of complex numbers; Cp is, in particular, algebraically closed, and—being a completion—is
complete.
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Galois representation that is closely related to the eigenform in the sense that the Fourier coefficients
of the eigenform determine—in a fairly direct way—the equivalence class of the representation. The
previous two sections give us the vocabulary we need to discuss such connection between modular
forms like

∆(q) = q

∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn

and the p-adic Galois representations that connect to them.

In this section—to focus ideas—we will concentrate on the modular form ∆ itself, and in the next
section we will specialize even further by considering p = 691. Our modular form ∆ is related by the
mod 691 congruence to the Eisenstein series E12 as we discussed in Part I. We will be introducing
a representation denoted ρ∆,691 that will be the key for us, in constructing the abelian field L{12}

and the Galois representation ρ{12} that cuts it out. A very similar discussion beginning with the
691-adic cuspform ∆{200} would construct the abelian field L{200} and the Galois representation
ρ{200} that cuts it out (see footnote (19) above).

Essential input here is the theorem of Deligne relating modular eigenforms to Galois representations:

Theorem 3. (Deligne) Let p be a prime number. There is a continuous irreducible degree two
Galois representation

ρ∆,p : GQ → AutQp(V ) ≈ GL2(Qp)

(where V is a 2-dimensional Qp-vector space) such that for all primes ` 6= p the representation ρ∆,p

is unramified at ` and has the property that the trace of Frobenius at ` is equal to τ(`) ∈ Z ⊂ Qp.

Proof: See ([19]).

This condition (that the trace of Frobenius at ` is equal to τ(`) ∈ Z ⊂ Qp for all primes ` 6= p)
determines the character of ρ∆,p since the Frobenius elements are dense, and therefore—since ρ∆,p

is irreducible—the representation is pinned down if we know the Fourier coefficients of ∆. In the
discussion to follow, first let us suppose that p is any (odd) prime number.

Suppose you are given a GQ-stable lattice M ⊂ V (so M is a free Zp-module of rank two). By
passing to V̄ = M/pM = M ⊗Zp Fp we get an Fp-representation of GQ of degree two,

ρ̄∆,p,M : GQ → AutFp(V̄ ) ≈ GL2(Fp)

that may—and in the cases of specific interest to us, will—depend upon the choice of lattice M . We
will refer to ρ̄∆,p,M as the residual representation obtained from ρ∆,p via the lattice M . Since—
by the Cebotarev Density Theorem—the conjugacy classes of Frobenius elements (associated to
all prime numbers ` 6= p) run through all conjugacy classes of the Galois group of the splitting
field of ρ̄∆,p,M ; and since p is odd, the character of the (degree two) representation mod p, ρ̄∆,p,M ,
determines its semisimplification, we get that this semisimplification is completely characterized30

by the function
` 7→ τ(`) mod p.

30See [18] and the proof—especially page 216—of (30.16), i.e., the Brauer-Nesbitt Theorem.
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For general prime numbers p the beauty of the representation ρ∆,p is that it is obtained naturally,
and systematically, from the evident action of Galois on a piece of the étale cohomology group of
an algebraic variety. The mild difficulty one encounters in working with this is that we are dealing
with an H11, i.e., cohomology in dimension eleven.

10 Galois representations attached to more general modular eigen-
forms

For a fine introduction to the subject of the title of this section, see Ribet’s [50]. Passing from our
modular form ∆ to a more general context, let N ≥ 1 and consider modular cuspidal eigenforms of
any weight w ≥ 1 for Γ0(N) with nebentypus. Let Φ be such an eigenform, with Fourier expansion
given as

Φ = 0 + q +
∞∑
n=2

t(n)qn

with coefficients t(n) all lying in the ring of integers O of some number field. For any prime p and
prime ideal λ ⊂ O lying over p, let Oλ denote the completion of O at λ, so that Oλ is a discrete
valuation ring, finite flat over Zp.

Theorem 4. There is a unique irreducible Galois representation

ρΦ,λ : GQ → GL2(Oλ)

unramified outside p ·N and such that for all primes ` not dividing p ·N , we have that if Frob` ∈ GQ

is a choice of Frobenius element at `, the trace of

ρΦ,λ(Frob`) ∈ GL2(Oλ)

is equal to the image of the Fourier coefficient t` ∈ O in Oλ.

The determinant, det(ρΦ,λ), of this representation is the character whose values at any Frobenius
element Frob` for ` any prime not dividing p · N is equal to ε(`)`w−1 where ε is the nebentypus
character associated to Φ.

This theorem was first proved for weight w = 2 by Shimura (cf. [61] Chapter 7; [60]). The case
w ≥ 2 was conjectured by Serre and proved by Deligne (cf. [19]); the case w = 1 was subsequently
done by Deligne and Serre ([21]).

11 Moving from one weight to another

The way in which Deligne and Serre proved their theorem ([21]) cited at the end of the previous
section, was to first move from weight one to higher weight by multiplying by an appropriate
Eisenstein series to obtain a modular form—no longer necessarily a Hecke eigenform—but with
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Fourier coefficients connected by congruences to the Fourier coefficients of the initial eigenform of
weight one. An appropriate “spectral decomposition” of that modular form under the action of
the Hecke algebra then provided them with eigenforms for which one could apply the theorem of
Deligne31.

The above operations had the effect of replacing an eigenform f of one weight by an eigenform g
of a higher weight that is related to f by a congruence mod p between their corresponding Fourier
coefficients. In more recent times, one has somewhat greater flexibility, in that—for example—
the theory of Hida 32 provides a clean way of starting with a cuspidal eigenform f of weight wo
and level N that is p-ordinary (p ≥ 5) and producing from f a fairly nicely behaved collection of
(p-ordinary) eigenforms fw for every integral weight w ≥ 2 such that fwo = f and such that the
Fourier coefficients of all of these eigenforms are related by a congruence33. In particular, if you
are principally interested in the properties of your eigenform modulo p you can replace it by one
of weight two, and therefore find its associated Galois representation realized as the Galois module
of one-dimensional cohomology with coefficients in Qp of some simple abelian variety; or, to put
it even more concretely, realized in the action of Galois on the p-torsion points of such an abelian
variety34. Since the weight two modular form has Fourier coefficients congruent modulo p to the
high weight eigenform you started out with, the mod p Galois representations associated to these
modular forms will be equivalent, at least after semisimplification, as discussed in Part I (4.5).

Moving in this way to weight two modular eigenforms and their associated abelian varieties you
have, at least, the sensation that you are dealing with more concrete entities (than higher dimen-
sional varieties and the Galois representations on their étale cohomology groups) and indeed: in
certain instances working with modular forms of weight two and their associated abelian varieties
actually does confer the advantage of significantly more control.

12 Returning to p = 691

Here is what happens in the special case p = 691: since as we have mentioned,

τ(`) ≡ 1 + `11 mod 691

for every prime number `, we get that the semisimplification of ρ̄∆,691,M is equivalent to the semisim-
plification of the representation ρ̄ of 4 ; namely, to 1 ⊕ ω11. This is true for the representations
V̄ = M/pM obtained from every GQ-stable lattice M ⊂ V . In the 1967/1968 Séminaire Delange-
Pisot-Poitou, Serre wrote that it seemed probable to him that the image of inertia at p under the

31Alternatively, as Shimura mentioned to Serre (see the footnote on page 312 of [56] and its reference to [38])
multiplying by an approprate Eisenstein series of weight one would allow one to apply the more elementary prior
result of Shimura.

32Here are a few basic references to Hida’s theory but see also his web-page (http://www.math.ucla.edu/∼hida/).
One of the main ingredients in the theory that we are using is his Control Theorem. For a complete proof of this over
a general totally real field, see Thm. 3.2 of [29]; for a general discussion of the theory based on notes of a year-long
course that Hida gave, taking into account Wiles’ theory (specifically: the universality of the Hecke algebra in the
ordinary case), see [30] (Sections 2,3; and Theorem 1 especially); for further perspective, see [27], [28].

33If, for example the starter eigenform f = fwo is on Γ0(N) all the eigenforms fw will be on Γ0(N) ∩ Γ1(p).
34There will, in general, be more than one such simple abelian variety, but (at least) one of them will be a quotient

of J1(p)/J0(p); here we have used standard notation.
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representations ρ̄∆,691,M was distinct from the image of the full Galois group, thereby generating an
everywhere unramified cyclic extensions of Q(e2πi/691) of degree 691. Serre went on to suggest that,
perhaps, one could determine this using an analysis of the representation attached to ∆ modulo
6912 (page 507 of [55]).

This was the approach similar to one taken up later by Ralph Greenberg and Paul Monsky who
indeed constructed the sought-for everywhere unramified cyclic extension. This is unpublished.
Using the fact that p = 691 is properly irregular (and therefore the converse to Herbrand’s Theorem
is known for p = 691) and also using facts about the representation attached to ∆ modulo 6912 that
guarantee Proposition 1 below, Greenberg and Monsky showed that the piece of the 691-Hilbert
class field of Q(e2πi/691) corresponding to the character ω−11 is contained in the field extension of
Q that we called L{12} in part I) cut out by Deligne’s 691-adic representation of GQ associated
with ∆. Greenberg wrote to me: “I was quite excited by the idea behind this at the time because
I thought that it suggested a very promising approach to the converse.”

Proposition 1. (Monsky, Greenberg)35 Up to homothety (i.e., multiplication by a nonzero scalar)
there are only two Galois stable lattices M as above, and the action of the Galois group GQ on
M/pM for each of these lattices is triangular and non-semisimple (or equivalently: reducible and
indecomposable) with diagonal characters 1 and ω11 occurring in the two different orders in the two
lattices.

13 Moving from ∆ to eigenforms of weight 2, 3, 4, . . . (when p = 691)

In the previous paragraph we were considering any prime number p and any eigenform. But if
you fix attention to the weight 12 eigenform ∆ and p = 691 you are in a quite a nice situation.
Here, thanks to Hida’s theory, there will be, for any weight w > 1 a 691-adic cuspidal eigenform
Φw = Φw,691 of weight w on Γ1(p) with Fourier coefficients in Zp and whose Fourier expansion is
of the form

1 · q1 +
∞∑
n=2

aw(n)qn

where the cofficients aw are algebraic numbers in Q691, and this Fourier series is congruent modulo
691 to the series

0 +
∞∑
n=1

( ∑
0<d | n

d11
)
qn

modulo 691, i.e., Φw has the same Fourier expansion modulo 691 as E12 or ∆. (Indeed, Φ12 = ∆.)

If Φw is the 691-adic modular form of weight w for w = 2, 3, 4, . . . as above, denote by Fw ⊂ Q691

the smallest field in Q691 generated (over Q) by all the Fourier coefficients, {aw(n); n = 1, 2, . . . },
of Φw. It is known that Fw is a “number field,” i.e., is of finite degree over Q.

35Greenberg tells me that one can check it just using the Hecke operators for the primes 2 and 3. Explicitly, since
τ(2) = −24 and τ(3) = 252 one must check that there is no integer a simultaneously satisfying the following two
congruences modulo 6912 = 477481:

−24 ≡ 2a + 211−a, and 252 ≡ 3a + 311−a.
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Furthermore, in our case, the 691-adic cuspidal form Φw with the properties listed above is unique,
for each w > 1. Section 24 below sketches a proof of this. Deligne’s theorem provides us with an
infinite sequence of 691-adic representations,

ρ{w,691} : GQ → GL2(Z691),

(i.e., related to Φw for w = 2, 3, 4, . . . ) all of them having the same semisimplication when reduced
modulo 691. Specifically, its reduction ρ̄{w,691} : GQ → GL2(F691) is a reducible representation and
its semisimplication, ρ̄ss

{w,691}, is equivalent to 1 ⊕ ω11. These ρ{w,691} all have the same preferred
indecomposable residual representation, as well, and this representation has the property that the
inertia group at 691 acts semisimply.

William Stein and Craig Citro have calculated Φ2, and its field of Fourier coefficient F2, and I am
thankful to them for providing me with the information I’ll be recounting here. Stein and Citro
show that the (quotient) Hecke algebra—tensored with Q—acting faithfully on the vector space
of weight two cuspidal modular eigenforms of level 691 and nebentypus ω−10 is a field—and hence
can be taken to be “our” F2. They show this field F2 to be of degree 57 over the cyclotomic field
Q(µ69) (that’s not a typo: ω−10 is of order 69). Moreover, there is a (unique) prime ideal P of
degree one, with residual characteristic 691 in the ring of integers of F2, such that if F2,v is the
completion of the field F2 with respect to the valuation determined by P , then under the canonical
identification Q691 = F2,v, for every n ≥ 1, the n-th Hecke operator Tn ∈ F2 ⊂ F2,v = Q691 is
equal to a2(n) ∈ Q691.

We are thus led to consider the abelian variety over Q that is simple (even over C) related to the
eigenform Φ2. Call this abelian variety Ã for short (its standard name is J1(691;ω−10)). Explicitly,
Ã is the abelian variety quotient of the jacobian of the modular curve J1(691) associated to the space
of weight two cuspidal modular eigenforms of level 691 and nebentypus ω−10. The calculations of
Stein and Citro alluded to above give you that Ã is an abelian variety of a whopping dimension
2508 = 2 · 22 · 57, whose endomorphism ring EndC(Ã) tensored with Q is equal to the field F2.

We know (see Corollary 5 and the first appendix: Section 24 below) that its Galois module of
691-power torsion points has a subquotient of length two that is equivalent to ρ̄.

In other words, ρ̄ can be “found in the action of Galois on 691-torsion points of Ã.” It is hard to
believe that when we represent ρ̄ in this manner we learn something36 but we do!37

36We actually learn at least two things: the first being, as mentioned, that we have an elegant occurrence of the
representation ρ̄ in the context of abelian varieties, but the second is that when we return to the 691-adic GQ-
representation ρ∆,691 on the two-dimensional vector space V over Q691, there is a unique choice of lattice, up to

multiplication by a nontrivial scalar, for which V̄ is a GQ-representation equivalent to ρ̄ in 4 . The argument for
this latter statement comes from Proposition 1 above and is also briefly discussed in Section 24.

37And to construct the abelian field L{200} (and the Galois representation ρ{200} that cuts it out) in a manner similar
to the above, we would begin with the 691-adic cuspform ∆{200} and would be discovering this Galois representation
in Galois action on 691-power torsion in the abelian variety J1(691;ω−198). William Stein informs me that this is a
simple abelian variety of dimension 4928.
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Part III: The Wrench

14 Variations of Galois representations

It is natural nowadays (and for some problems imperative) to consider families of group repre-
sentations that vary, in some sense or other “continuously” in terms of their parameters. Among
these of specific interest to us here are families of p-adic representations of the Galois groups of
fields, parametrized by complete local rings (and therefore called “Galois deformations;” cf. [40]),
or similar such families that vary p-adic analytically over p-adic analytic parameter spaces.

In any of these contexts, suppose that you have such a continuous family of (Galois) group rep-
resentations, the generic representation being irreducible. For argument’s sake, suppose this fam-
ily ρt is parametrized by a line, with parameter variable denoted t. For certain special values
of t, say t = to the representation ρto may no longer be irreducible. Borrowing the standard
logo that algebraic geometers use to depict degeneration in a parametrized family of objects,
we may sometimes think of our family of representations as depicted by the following cartoon.
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Note that absolute irreducibility for degree two representations is an “open condition” in the follow-
ing sense: Let R be an integral domain, G a group, and consider ρ : G→ GL2(R) a homomorphism
viewed as a family of G-representations ρF : G→ GL2(F ) varying over the collection of homomor-
phisms R → F for fields F . If ρFo is reducible for any single injection R ↪→ Fo, then for R → F
any homomorphism of R to any algebraically closed field F , ρF is reducible. The contrapositive,
of course, implies that if ρF is absolutely irreducible for any single homomorphism R→ F then for
R ↪→ Fo any injection ρFo is absolutely irreducible.

Proof: Let R ↪→ Fo be an injection. Let M be a free R-module with G-action via ρ. Suppose
that M ⊗R Fo is not irreducible, and that there exists a G-equivariant surjection φ : M ⊗R Fo → N
to an Fo-vector space N of dimension one endowed with Fo-linear G-action. The action of G on
N factors through an abelian quotient of G as does the action of G on kerφ. Now consider the
restriction of φ to M and form

0→M0 →M
φ→M1 → 0

so that M1 ⊂ N , and M0 ⊂ kerφ ⊂M ⊗R Fo. In particular, the actions of G on M0 and M1 factor
through the abelian quotient of G. Now tensor with any field F to get the G-equivariant exact
sequence

M0 ⊗R F →M ⊗R F
φ→M1 ⊗R F → 0.

Since the actions of G on the two flanking modules factor through the abelian quotient of G it
follows that either M ⊗R F is reducible as degree two G-representation, or else the action of G on
M ⊗R F factors through the abelian quotient of G. In either case, if F̄ denotes an algebraic closure
of F , we have that M ⊗R F̄ is reducible, and therefore M ⊗R F is not absolutely irreducible.

The Jordan-Hölder constituents of ρto are determined by the family {ρt}t6=to parametrized by the
complement of the point to. Nevertheless, as in algebraic geometric deformation theory—but not
the less puzzling therefore—the isomorphism class of ρto is not completely determined: there may
be many distinct ways of filling in38 the family of representations {ρt}t at to. Often there is one
preferred indecomposable representation. This is the lever that can be used so effectively.

15 A lemma in the style of Ribet

Ken’s initial application was for K = Qp for some prime number p and κ = Fp.

For our discussion let K be a complete discrete valued field with ring of integers O, a choice of
uniformizer π, and finite residue field (denoted κ = O/πO). As usual, O and K are given the
π-adic topology, so that O is the projective limit of the finite discrete rings O/πnO, the O-lattices
π−mO ∈ K are open O-submodules of K, as is any O-lattice in any finite dimensional K-vector
space (given the standard topology).

38One way of treating this ambiguity in “filling in” is to use Wiles’ notion of a pseudo-character or pseudo-
representation; see for example the opening sections of [6] for an exposition, and also see Section 1.1 of [31]. A
very useful comprehensive discussion of the deformation theory of pseudo-representations (viewed as generalized
determinants) and a primer on the background of the subject—making extensive use of the earlier work of Procesi
and others—can be found in [16].
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Let G be a profinite group and V a d-dimensional K-vector space endowed with a continuous
K-linear G-action, so that we have a continuous homomorphism

r : G→ AutK(V ) ∼= GLd(K).

For example, take O to be Zp. Or, for another example, take it to be the power series ring
Fp[[t]] where we view the continuous G-representation G → GLd(Fp[[t]]) as a formal variation of
representations; here t is the parameter variable (in the spirit of the figure of Section 14)39.

Lemma 2. Let G be a profinite group and V a finite dimensional K-vector space endowed with a
continuous K-linear G-action, r : G→ AutK(V ).

1. There is an O-lattice M ⊂ V that is G-stable.

2. For each g ∈ G the characteristic polynomial det(1 − r(g)T ) of the action of g in the repre-
sentation r has coefficients in O.

3. If M ⊂ V is a G-stable O-lattice, form the associated “residual representation,” rM⊗κ; i.e.,
the representation of G on the κ-vector space M ⊗O κ obtained from r via reduction M →
M ⊗O κ. Then for each g ∈ G the characteristic polynomial

det(1− rM⊗κ(g)T )

of the action of g in the representation rM⊗κ is the reduction of det(1 − r(g)T ) under the
natural homomorphism O[T ]→ κ[T ].

4. If M,M ′ ⊂ V are two G-stable O-lattices, the Jordan-Hölder constitutents40 of the represen-
tations rM⊗κ and rM ′⊗κ are equal.

Proof: Start with any lattice M ′ ⊂ V and we will correct it to be G-stable. Note that the action
G ×M ′ → V is continuous, M ′ is finitely generated over O, and M ′ ⊂ V is open. It follows that
the subgroup Go ⊂ G stabilizing M ′ is an open subgroup of G. Since G is profinite, we then have
that Go ⊂ G is of finite index, and therefore G stabilizes M :=

∑
gi ·M ′ ⊂ V where {gi}i is a

(finite) system of representatives of left Go-cosets in G. This establishes (1).

The proof of (2) and (3) are straightforward from this, while the final item (4) is an application of
the Brauer-Nesbitt theorem (See [8] and also pp. 215-217, as well as Chapter XII, of [18]).

In view of this lemma, given a (finite dimensional) G-representation ρ on a K-vector space we may
speak of the various residual representations attached to ρ, these being representations of G
into κ-vector spaces obtained as the reduction of the various G-stableO-lattices in the underlying K-
vector space of the representation ρ. We may also speak of the residual irreducible constituents
of ρ with their multiplicities, these being the irreducible representations that occur as Jordan-
Hölder constituents of one (or, equivalently, any) residual representation attached to ρ.

39We will also encounter later in this article variations of a slightly different order of complexity, coming from
representations, say, to GLd(Zp[[t]]) where wrench-type techniques are useful.

40i.e., the irreducible representations occurring as subquotients of a Jordan-Hölder filtration, including their mul-
tiplicities,
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Here is the lemma that is the backbone of the “wrenching” strategy, expressed in general terms fol-
lowing Joël Belläıche’s article A propos d’un lemme de Ribet ([4]). We keep to the above terminology
and hypotheses, fixing π ∈ O a uniformizer.

Lemma 3. (Ribet-Belläıche) Let G be a profinite group and V a finite dimensional K-vector
space endowed with a continuous irreducible K-linear G-action, r : G → AutK(V ). Let M̃ ⊂ V
be a G-stable O-lattice so that we may view r as a homomorphism rM̃ : G → AutO(M̃) and let
rM̃⊗κ : G→ Autκ(M̃ ⊗O κ) be the corresponding residual representation.

Now let r̄0 be a “proper” subquotient κ[G]-module in this residual representation rM̃⊗κ. “Proper”
means that the degree of r̄0 (i.e., the dimension of the underlying κ-vector space) is positive and
strictly less than the degree of r over K (equivalently, the degree of rM⊗κ over κ).

Then there is a G-stable O-lattice M ⊂ V such that the associated residual representation r̄ = rM⊗κ
is isomorphic to a nonsplit extension of G-representations of κ-vector spaces, displayed here in terms
of the labels of the corresponding representations:

0→ r̄1 −→ r̄
ψ−→r̄0 → 0.

(“Nonsplit” means that there is no κ[G]-equivariant homomorphism r̄0 → r̄ that is a left-inverse to
ψ.)

Remark. Ribet’s original result was formulated when r̄1, r̄0 above are characters, i.e., represen-
tations of degree one. A proof of this theorem for r̄1, r̄0 a pair of distinct absolutely irreducible
representations of higher degree is due to Urban, in [70]. See also Theorem 1.1 of [71] for a different
proof and see loc. cit. for remarks about the situation where r̄ has more than two irreducible
constituents.

Proof: By lattice (for short) we mean a G-stable O-lattice in V . It is sometimes convenient to
label the κ[G]-modules in the discussion below by the terms for the corresponding representations
(e.g., rM̃⊗κ and M̃/πM̃ are synonyms).

• Step 1: The initial wrench, moving r̄0 to a quotient of the residual representation.

Since r̄0 occurs as a subquotient of the residual G-representation M̃ ⊗ κ we may find a G-
subrepresentation N̄ ⊂ M̃ ⊗ κ such that r̄0 occurs as a quotient of N̄ . Let M (0) ⊂ M̃ be the
full inverse image in M̃ of N̄ ⊂ M̃ ⊗ κ under the reduction homomorphism M̃ → M̃ ⊗ κ. Let
r̄(0) denote the residual representation rM(0)⊗κ associated to this new lattice M (0). We now
have that r̄0 is a quotient of r̄(0). Denote the kernel of the projection M (0) ⊗ κ→ r̄(0) by r̄1.
Consider the exact sequence of κ-representations

0→ r̄1 → r̄(0) → r̄0 → 0. (1)

Note that r̄1 is a representation of positive degree, given our hypothesis.

If this exact sequence, (1), of κ[G]-modules is nonsplit, then we are done, so—to continue—
suppose that we have a splitting of (1) (as G-representation). Fix such a splitting, i.e., a
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direct sum decomposition
r̄(0) ' r̄1 ⊕ r̄0.

• Step 2: The inductive sequence of wrenches seeking a nonsplit extension. Let
M (1) ⊂M (0) be the full inverse image in M (0) of the subrepresentation r̄0 ⊂M (0) ⊗ κ under
the reduction homomorphism M (0) → M (0) ⊗ κ. By construction, M (1) fits into two exact
sequences of G-stable O-modules,

0→ πM (0) →M (1) → r̄0 → 0,

and
0→M (1) →M (0) → r̄1 → 0. (2)

Consider, now, the residual representation, r̄(1) = rM(1)⊗κ, associated to this new lattice M (1).

Lemma 4. This κ[G]-representation r̄(1) fits into an exact sequence

0→ r̄1 → r̄(1) → r̄0 → 0. (3)

Proof: By definition of M (1) we have a surjection M (1)/πM (1) → r̄0 → 0. Its kernel is
canonically

πM (0)/πM (1) ∼= M (0)/M (1) ∼= r̄1,

the latter isomorphism by (2) above.

Again, if this exact sequence (3) of κ[G]-modules is nonsplit, we are done. Otherwise we
continue the same procedure as above, writing

r̄(1) ' r̄1 ⊕ r̄0

(fixing a choice of splitting) and defining M (2) ⊂M (1) to be the full inverse image in M (1) of
the subrepresentation r̄0 ⊂ M (1) ⊗ κ under the reduction homomorphism M (1) → M (1) ⊗ κ.
And again, M (2) fits into two exact sequences of G-stable O-modules,

0→ πM (1) →M (2) → r̄0 → 0,

and
0→M (2) →M (1) → r̄1 → 0.

This gives us four things:

1. An inclusion
M (2) ⊂M (0)

with quotient R(2)
1 := M (0)/M (2) being an extension of r̄1 by r̄1.

2. An inclusion π2M (0) ⊂ M (2). Its quotient, R(2)
0 := M (2)/π2M (0), is an extension of

r̄0 = M (2)/πM (1) by
πM (1)/π2M (0) ∼= M (1)/πM (0) ∼= r̄0,

i.e., we have an exact sequence

0→ r̄0 → R(2)
0 → r̄0 → 0.
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3. Equalities of lattices
M (2) + πM (0) = M (1) ⊂M (0),

and (multiplying by π)

πM (2) + π2M (0) = πM (1) ⊂M (2).

4. Combining these we would get an exact sequence

0→ R(2)
0 →M (0)/π2M (0) → R(2)

1 → 0. (4)

and, by (3), that R(2)
1 ⊗O κ ∼= r̄1 and R(2)

0 ⊗O κ ∼= r̄0.
Tensoring (4) over O with κ yields an exact sequence

R(2)
0 ⊗O κ→M (0)/πM (0) → R(2)

1 ⊗O κ→ 0,

and since M (0)/πM (0) = r̄(0) a consideration of dimensions over κ shows that the homo-
morphism on the left above is injective, forming an exact sequence:

0→ r̄0 → r̄(0) → r̄1 → 0.

• Step 3: An infinite sequence of sublattices

We discover in this manner that either we are done at some stage, or else we have an infinite
sequence of G-stable sublattices

· · · ⊂M (i+1) ⊂M (i) ⊂ · · · ⊂M (0)

with the following properties.

1. We have an exact sequence

0→ πiM (0) →M (i) → R(i)
0 → 0,

whereR(i)
0 has a Jordan-Hölder filtration of length i with successive quotients isomorphic

to r̄0.

2. For j ≤ i we have that
M (i) + πjM (0) = M (j) ⊂M (0).

3. We have an exact sequence

0→M (i) →M (0) → R(i)
1 → 0,

where R(i)
1 has a filtration of length i with successive quotients isomorphic to r̄1.

4. We have an exact sequence

0→ R(i)
0 →M (0)/πiM (0) → R(i)

1 → 0, (5i)

and tensoring (5i) over O with O/πjO for any j ≤ i yields the exact sequence

0→ R(j)
0 →M (0)/πjM (0) → R(j)

1 → 0. (5j)
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From (1) we get the inclusion
R(i)

0 ⊂M
(0)/πiM (0)

while from (2) we get that the natural projections M (0)/πi+1M (0) → M (0)/πiM (0) induce
surjections

R(i+1)
0 → R(i)

0 .

From (3) we get surjections
R(i+1)

1 → R(i)
1 .

Passing to the projective limits,

R0 := lim
i
R(i)

0 ⊂ lim
i
M (0)/πi+1M (0) = M (0)

and
R1 := lim

i
R(i)

1

we get an exact sequence of G-stable O-modules 0 → R0 → M (0) → R1 → 0. Under
our assumption that r̄1 is proper, we get that both R0 and R1 are of infinite length—i.e., of
positive rank—asO-modules. Tensoring withK we then get that our originalK-representation
r has a proper G-stable subspace, contradicting the fact that it is assumed to be irreducible.

16 A directed graph

Keeping the hypotheses of Section 15 let r : G → AutK(V ) be an irreducible representation as in
Lemma 3, and let r̄1, r̄2, . . . , r̄ν be the irreducible residual constituents of r. Suppose for simplicity
of notation that the r̄i are all distinct—i.e., they each occur with multiplicity one in rM⊗κ for
any G-stable O-lattice M ⊂ V . Construct a graph Y := Y (r) as follows. The vertices of Y are
the residual constituents r̄1, r̄2, . . . , r̄ν . Draw a “directed edge” from r̄i to r̄j if there is a G-stable
O-lattice M ⊂ V such that the associated residual representation rM⊗κ possesses a subquotient
which is a nontrivial extension of r̄i by r̄j . Using the statement and proof of the above lemma a
further argument will show that the graph Y is connected and each vertex of Y has as least one
directed edge leaving it, and another entering it41. (It is easy enough to make examples where the
graph is given by a single (directed) cycle lacing through all the residual irreducible constituents.)

The immediate effect of Ribet’s strategy is to provide a large quantity of nontrivial extensions. The
surprise is that (in many cases) one has—by application of this strategy—constructed extensions
with very precise and useful further properties.

41If Y is expressible as a disjoint union of two nonempty subgraphs, one first shows that for any lattice M the
associated residual representation r̄ has a direct sum decomposition r̄ = r̄1⊕ r̄0 where each of the summands r̄1, r̄0 has
irreducible constituents corresponding to the vertices of each of the two subgraphs. Moreover, under this hypothesis,
for every lattice for which the associated residual representation r̄ has a quotient representation isomorphic to r̄0

we have such a direct sum representation. The technique of the proof of Lemma 3 then works to show that this is
impossible, thanks to the irreducibility of the K-representation r. To show that each vertex of the graph has an edge
directed to it (as well as emerging from it) apply Lemma 3 appropriately to the dual of r.
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A major (but not the only) application of this lemma is when the residual representation has two
distinct irreducible contitutents, r̄1 by r̄2, each occurring with multiplicity one. In this situation
one obtains, given the hypotheses of Lemma 3, two indecomposable residual representations: a
nontrivial extension of r̄1 by r̄2 and a nontrivial extension of r̄2 by r̄1, giving us this elementary
“complete” graph on two vertices42.

r
1

r
2

17 A Tree

Here is a somewhat more geometric view that one can adopt towards arguments similar to those
in Sections 15 and 16.

Let us work, for example, with the case where the vector space V is of dimension two over K
and where κ is a finite field, and where we have focused on a K-linear continuous representation
r : G→ AutK(V ). Say that two O-lattices M,M ′ in V are equivalent43 if there is a nonzero element
λ of K such that λ ·M = M ′. Form the graph whose vertices are equivalence classes of O-lattices,
and two equivalence classes admit an edge between them if they have representatives M,M ′ such
that M ⊂ M ′ with quotient M ′/M an O-module of length one (i.e., M ′/M is a κ-vector space of
dimension one).

The graph that we’ve just defined is a tree; call it T . This tree is acted upon naturally by AutK(V ) ∼=
42Here is the argument that these nontrivial extensions, as elements of Extk[G](r̄1, r̄2) and Extk[G](r̄2, r̄1), are

independent of the lattice for which they are residual representations: suppose that you have two lattices M,M ′ with
indecomposable residual representations, r̄, r̄′, both admitting, say, a k[G]-equivariant surjection to r̄2. Multiplying
by an appropriate power of π you can arrange it so that M ⊂ M ′ but M is not contained in πM ′. Then either
M = M ′ or else the image of M in r̄′ is isomorphic to r̄2, thereby splitting r̄′ contrary to hypothesis.

43a synomym being homothetic
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GL2(K) with scalar matrices acting trivially, and so this action factors through the projective
general linear group PGL2(K). The representation r induces then a continuous action of the
profinite group G on T .

Any G-stable lattice M will represent a fixed vertex of this G-action. The converse is also true: any
fixed vertex of this G-action is represented by G-stable O-lattices44.

So the quest for G-stable O-lattices is the same as the quest for the fixed point set TG in the tree
T under the action of G. For a beautiful exposition of this see Section 6.6 of [58]. Noting that
the fixed point set in a tree under the action of a group must either be empty, or a (sub-)tree45

and since—e.g. by (1) of Lemma 2—TG is nonempty, we see that the collection TG of equivalence
classes of G-stable O-lattices in V forms a sub-tree in T .

Each vertex x of TG represents an equivalence class of G-stable lattices; the residual representations
attached to the O-lattices in this equivalence class are all canonically isomorphic (the isomorphisms
are induced by multiplying lattices by an appropriate power of the uniformizer π). We refer to this
representation over κ as the residual representation attached to the vertex x.

The following proposition is proved by arguments similar to those in Lemma 3.

Proposition 2. Let r : G→ AutK(V ) be a K-linear continuous representation on a two-dimensional
vector space V over K and let T be the associated tree of lattices.

1. The sub-tree TG consists of a single vertex if and only of the residual representation r̄ of r is
irreducible.

2. From now on, suppose TG is not a single point, so the residual representation over κ attached
to any of the vertices of TG is reducible. A vertex is an extremal point in the tree TG if and
only if the residual representation over κ attached to it is (reducible and) indecomposable.

3. Now let G act on V in a manner such that the semi-simplification of its residual representation
is a sum of two distinct (one-dimensional) characters α, β : G→ κ∗.

(a) The sub-tree TG is linear and is equivalent to one of the following three sub-graphs of
the real line R (with vertices the integers):

i. the full real line (−∞,+∞),
ii. the half-line [0,+∞),

iii. a finite closed interval [0, N ] (for some N ≥ 1).

The first case occurs if and only if the representation r : G → GL2(K) is a sum of two
one-dimensional characters A,B : G→ K∗.

44This is because if M represents a fixed vertex under the action of G we get a natural continuous homomorphism
from G to the (discrete abelian group of) rational integers Z by the rule that assigns to g ∈ G the unique n ∈ Z such
that g ·M = πn ·M . Such a mapping must be constant, and (since it is a homomorphism) it must be trivial.

45If x and y are vertices of the tree fixed under the action of the group G then the unique geodesic between them
is also fixed; hence TG is connected, if nonempty, and therefore a sub-tree (a connected subgraph of a tree is a tree).
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The second case occurs if and only if the representation r : G → GL2(K) is a reducible
indecomposable representation.
The third case occurs if and only if r is irreducible. (So, in the first case no G-stable lat-
tice has an indecomposable residual representation; in the second case there is exactly one
equivalence class of G-stable lattices possessing indecomposable residual representations;
and in the third case, exactly two.)

(b) Now suppose we are in the third case above; i,.e., r is irreducible. The two end-points of
the graph TG correspond to G-stable O-lattices in V whose residual representations are
indecomposable and one of these residual representations will have a one-dimensional
sub-representation with the character α; and the other with character β.

(c) The following are equivalent:

i. The graph TG consists precisely of two (end-)vertices and the edge between them.
ii. There is no G-stable O-lattice in V whose residual representation is semi-simple.

iii. There is no inclusion of G-stable O-lattices M ⊂ M ′ in V such that the quotient
M ′/M is a cyclic O-module of length two.

For example, consider the representation ρ∆,691 ofG = GQ discussed in Section 13. By Proposition 1
in Section 12 its sub-tree TGQ is homeomorphic to the interval [0, 1] with the endpoints being its
two vertices.

For more about this, see Section 24 below. For more examples, but still keeping to the modular
form ∆, one might move from the prime 691 to the prime 2 (or other “exceptional primes;” cf.
[68], [69]) and the exercise of determining the corresponding sub-trees fixed by GQ under ρ∆,2 in
the tree of 2-adic lattices.

For another kind of example, for the prime 2, let G ⊂ GL2(Z2) be the kernel of the reduction
homomorphism GL2(Z2) → GL2(F2), and the action of G on V := Q2 × Q2 be the standard
action. Then TG ⊂ T consists in the thickened “Y” in the ambient infinite tree T , the star of
this “Y” in T being depicted in the figure below. The central vertex corresponds to the “standard
lattice” Z2 × Z2 ⊂ Q2 ×Q2 = V , the residual representation being trivial, and the three extremal
vertices of the “Y ” correspond to G-stable O-lattices whose residual representations are reducible
and indecomposable.
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A consequence of Proposition 2 is the following result, very useful to the topic of this article.

Corollary 5. Let r : GQ → AutK(V ) be an irreducible K-linear continuous representation on a
two-dimensional vector space V over K such that

1. The residual representation(s) of r are reducible, and their semisimplifications are a sum of
two distinct (one-dimensional) characters α, β : G→ κ∗.

2. The restriction of r to an inertia group attached to the prime p is reducible.

Then there are exactly two equivalence classes of GQ-stable O-lattices in V with indecomposable
residual representations. At least one of these two indecomposable residual representations, r̄, has
the added property that its restriction to any inertial group attached to p is semisimple.

Proof: Let I ⊂ GQ denote an inertia group attached to the prime p, and let rI : I → AutK(V )
be the restriction of r to I. Let T be as above. By 3(a) of Proposition 2 above applied to the
representation rI of I we have that the sub-tree fixed by I, T I , is either a full line or a half line
(depending on whether rI is semisimple or not). By 3(b) of Proposition 2 above applied to the
representation r of GQ we have that the fixed sub-tree TGQ ⊂ T I is a finite line. There are
three different possibilities for this inclusion of trees, roughly indicated by the following figure,
where the finite sub-tree TGQ is the darkened sub-graph. In the top two cases both endpoints of
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TGQ correspond to residual representations whose restriction to inertia groups at the prime p are
semisimple, while in the last case only one of the two residual representations attached to r has
that property.

Globally indecomposable
Inertially semisimple

Globally indecomposable
Inertially semisimple

Inertially (and globally)
indecomposable

Globally indecomposable
Inertially semisimple

For example, the representation r∆,691 has the properties (1) and (2) required of Corollary 5, as
do the representations associated to the modular forms Φw,691 of Section 13 for w ≥ 2. In fact,

42



these Galois representations are ordinary46 in the sense to be explained in Part IV, Section 20; see
definition 1.

Corollary 6. The two indecomposable residual representations attached to r∆,691 have the property
that the restriction of one of them to an inertia group at p is semisimple, and the other is not. The
same is true for the two indecomposable residual representations attached to the representations
rw,691 for any w ≥ 2.

In particular, given what we have discussed so far, the pair of fixed subtrees TGQ ⊂ T I for r∆,691

is isomorphic to [0, 1] ⊂ [0,+∞) with the vertices being integers.

Corollary 6 follows from Corollary 5 together with the fact that although there is an element z of
order 691 in the ideal class group of Q(e2πi/p) such that if

Gal
(
Q(e2πi/p)/Q

) ι−→ F∗p

is the natural isomorphism, we have the formula

α(z) = ι(α)691−ν · z = ι(α)1−ν · z,

for 1−ν = −11. But there is no such element satisfying this condition for 1−ν = +11 and therefore
the other indecomposable residual representation does not have the property that its restriction to
an inertia group at p is semisimple.

18 Ramification at p and a “classical example”

At this point we will look more closely at the issue hinted at in the 4 ⇒ 3 lap in the discussion-
of-proof at the end of Part I above. Why is the extension described in 3 everywhere unramified?

Our representation ρ̄ is unramified at primes ` different from p since ρ̄ is contained in the Galois
representation on p-torsion in the abelian variety J1(p)/J0(p) which has good reduction outside the
prime p (see the discussion in Section 11)47. To show that ρ̄ is everywhere unramified we must show
it to be unramified at the delicate prime p.

This follows by wrenching the situation in such a way that the global representation admits one type
of splitting and the representation restricted to a decomposition group at p admits a contrasting
splitting.

I will illustrate this first in a situation that is significantly different from the above, but has the
advantage of being one of the most studied examples among modular curves. Namely, consider
the three isomorphically distinct, but isogenous, elliptic curves over Q of conductor 11. Two of

46This follows from the fact that their U691-eigenvalue is nonzero mod 691; the eigenvalue is, in fact, congruent to
1 mod 691.

47Good reduction outside p would also follow from our discussion regarding ρ̄ as related to Deligne’s theorem (See
Section 9) since, for all ` 6= p Deligne obtains the representation from the Galois representation on the mod p étale
cohomology of an abelian variety over F`.
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these elliptic curves have standard names, X1(11) and X0(11); call the third (only in this article)
X−1(11). These elliptic curves are linked by 5-isogenies defined over Q:

X−1(11)→ X0(11)→ X1(11),

and
X1(11)→ X0(11)→ X−1(11).

Here, then, p = 5, K = Q5, κ = F5, the group in question is G = GQ,{5,11,∞}, the Galois group
over Q of the maximal algebraic extension that is unramified outside the places 5, 11, and ∞, and
the representation r : GQ,{5,11,∞} → GL2(Q5) comes from the action of Galois on the 5-power
torsion subgroup of these elliptic curves. The two indecomposable residual representations are the
representations of Galois on the 5-torsion of the two other elliptic curves over Q of conductor 11.

Setting p = 5 in this discussion, fix a decomposition group reatlive to the prime p = 5,

Dp = D5 ⊂ GQ,{5,11,∞}

and consider the G := GQ,{5,11,∞}-module of p-torsion points E[p] for each of our three elliptic
curves. These are vector spaces of dimension two over Fp with Fp-linear G-actions.

• When E = X0(11), the intermediate elliptic curve in the two chains above, the G-action is
(reducible, and) semisimple, and we have

E[p] ≈ Z/pZ⊕ µp

where the G action on Z/pZ is trivial, and on µp is the natural Galois action on p-th roots
of unity. Division by “the Z/pZ” yields X−1(11) while division by “the µp” yields X1(11).

• Now, given what we have said above, when E := X1(11), (and, as in this entire discussion,
p = 5) we have the exact sequence of G-representations,

(∗) 0→ Z/pZ→ E[p]→ µp → 0.

But (for finite flat group scheme reasons) when you restrict the action to the decomposition
group at 5, Dp ⊂ G you find the Dp-module E[p] fitting into an exact sequence where the
Z/pZ and µp occur in the opposite order:48

48Here, briefly,is the reason for this. Viewing the Dp-representation space E[p] as the Galois module at the generic
point of S := Spec(Zp) of a finite flat group scheme E over S we may fit E into a canonical exact sequence of finite
flat group schemes,

(∗∗) 0→ Eo → E → Eet → 0,

where Eo is the open connected component finite flat subgroup scheme of E , and Eet is the maximal étale quotient of E .
Now pass to the Galois modules associated to the generic fiber of these finite flat group schemes. Given the standard
results regarding finite flat group schemes over S (since p = 5 > 2) we get that—given (*) above— Eo is necessarily
the “multiplicative” group scheme µp over S and Eet is the constant group scheme Z/pZ over S. Comparison with
(**) give us our splitting of Dp-modules:

0→ µp → E[p]→ Z/pZ→ 0.
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Since the Dp-representations Z/pZ and µp are distinct, this provides the wrench showing
that Dp acts semisimply on E[p] (this Dp-representation being then just the direct sum
Z/pZ⊕µp). In particular, if L/Q is the splitting field (over Q) of the GQ-representation E[p]
when E = X1(11) then L/Q(e2πi/5) is unramified at p. Since E[p] is also indecomposable as
a GQ-representation, L will be a cyclic degree p extension unramified at p and only ramified
at primes above 11.

• When E = X−1(11) the G-representation E[p] fits into an exact sequence

0→ µp → E[p]→ Z/pZ→ 0,

so the local (finite flat group scheme) argument above gives us no further information in this case.

A direct computation, however, of the 5-division field of E = X−1(11) (performed by William Stein
using SAGE) tells us that this field is wildly ramified over Q(µ5), and—in particular—the inertia
group I ⊂ G at 5 acts (reducibly, but) in an indecomposable (i.e., non-semisimple) manner on E[p].

It follows that (in the terminology of section 17) the tree T I fixed by the inertia group I at the
prime p = 5 for the elliptic curve E = X−1(11) is the half-infinite line [0,∞), and the subtree
TG ⊂ T I that is fixed by G = GQ,{5,11,∞} consists of the interval [0, 2] ⊂ [0,∞).

Ribet employs this argument not for elliptic curves of this sort, or for elliptic curves exclusively,
but rather for abelian varieties over Q of the form J1(p)/J0(p) (or abelian varieties isogenous to
quotients of J1(p)/J0(p)) these having good reduction outside of p. Therefore, ramification at p
is the only issue in question here. But these abelian schemes actually achieve good reduction also
at p over the field Q(µp)+ (cf. [20]) which is enough to press an analogue of the above argument
forward49.

19 Liminal representations

In Sections 14 and 15 we focused on the phenomenon of irreducible representations degenerating
to reducible ones. One can also consider the prospect of “going the other way.” That is, given a
reducible representation ρ0 of G in, say, a finite dimensional Qp-vector space, when can we find a
(locally analytic, say) family of representations ρt parametrized by a variable t ranging through a
disc about the origin such that

• the generic member of the family is an irreducible representation of G, and

• the specialization of this family to t = 0 is our initial representation ρ0?
49More specifically, working with such an abelian scheme locally over the completion of Z(µp)

+ at the prime above
p one uses a crucial result of M. Raynaud ([48]) that gives information about the structure of finite flat sub-group
schemes of exponent p over discrete valuation rings that are finite degree extensions of Zp of ramification index < p−1
together with a wrenching argument very similar to the one in the previous paragraph to conclude.
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If the above happens (given, say, by a continuous homomorphism ρ : G → GL2(Zp[[X]]) where ρt
is the composition of ρ with the homomorphism induced by specializing X 7→ t) we will call the
representation ρ0 limit-irreducible, or for short, liminal.

When we say that a given representation ρ : G→ GL2(Zp) is the limit of representations satisfying
a particular property P we mean, more explicitly, that there is a sequence ρi : G → GL2(Zp) of
continuous homomorphisms each satisfying property P (for i = 1, 2, 3, . . . ) converging in the p-
adic topology to ρ. We will usually want our family ρt to have some specifically described good
properties, and hope that in certain good situations we can predict that the liminal representation
has the same good properties50.

A (technically only slightly) different version of this concept of liminality is when there is a complete
discrete valued field K, as in the previous discussion, with residue field κ, and for which there is a
continuous irreducible representation ρ of G into a finite-dimensional K-vector space having ρ0 as
one of its residual κ-vector space representations.

20 Ordinary and Nearly Ordinary Galois representations

An extremely useful thing to do, to learn important facts about the restriction to a decomposition
group at p of the p-adic Galois representation attached to an eigenform Φ (such as ∆ or the
eigenforms Φw we have been discussing), is to determine whether the eigenvalue of the Atkin-
Lehner operator, Up, is congruent to zero or not modulo p. If it is not congruent to zero mod p one
says that the eigenform is p-ordinary, and one learns that the restriction to a decomposition group
at p of the p-adic Galois representation attached to Φ is reducible (cf. [43], [75])51.

We will now frame this discussion in a more general context regarding a sequence of conditions on
degree two Galois representations over number fields.

Let K be a number field, K̄/K an algebraic closure and put GK := Gal(K̄/K). Let S be a finite set
of places of K let GK,S be the quotient of GK obtained by dividing by the closed normal subgroup
generated by all inertia groups for places outside S. Fix p a prime, let S(K, p) denote the set of all
places of K dividing p, and suppose that S contains S(K, p).

Let M be a free Zp-module of rank two endowed with a continuous Zp-linear action of GK,S . Let

ρ : GK,S −→ Aut(M) ' GL2(Zp)

denote the corresponding degree two representation.

Definition 1.
50In a more general–yet still particular–context, a big role in recent developments is played by a theorem of Kisin

that allows us to deduce that the liminal representation ρ possesses a limiting p-adic period in the sense of Fontaine’s
theory, provided the approximating representations ρi, when restricted to the decomposition group at p, satisfy
appropriate requirements (see [37] and Section 3 of [14]).

51In the case of ∆ and the Φw’s, for example, when p = 691 the eigenvalue of the Atkin-Lehner operator, U691, is
congruent to 1 mod 691. Therefore these eigenforms are p-ordinary, for p = 691.
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1. We say that ρ is nearly ordinary if for all v ∈ S(K, p) the restriction ρv of ρ to a decom-
position group GKv at v preserves a free rank one sub-module Mv ⊂ M . We can, and do,
take Mv to be saturated in M ; we choose a decomposition subgroup for v and such an Mv for
each v ∈ S(K, p) and—in cases where there are more than one such possible Mv—we view
these choices as part of the nearly ordinary structure of ρ; cf. [11]. We then have for each
v ∈ S(K, p) an exact sequence of GKv -modules

0→Mv →M →M/Mv → 0.

The restriction of ρv to Mv and the induced action on M/Mv give us two degree one char-
acters, i.e., homomorphisms GKv → Z∗p, for each v ∈ S(K, p). For evident reasons let us
call the character giving the action on Mv the local sub-character of the nearly ordi-
nary representation ρ at v; and call the character giving the action on M/Mv the local
quotient-character.

2. We say that a nearly ordinary (degree two) Galois representation is ordinary if the local
quotient-characters of ρ for all v ∈ S(K, p) are unramified52.

3. We say that an ordinary (degree two) Galois representation is anomalous if the local quotient
characters of ρ for all v ∈ S(K, p) are trivial.

For reasons that will become apparent below, we will define Iwasawa representations to allow for
more general scalars than the Qp that was operative in the above definition. Consider a continuous
Galois (GK) representation on a two-dimensional vector space V over Cp; ρ : GK → AutCp(V ) ≈
GL2(Cp).

Definition 2. We will call such a representation an Iwasawa representation if

1. the global representation ρ is indecomposable,

2. the semisimplication of ρ is the sum of two characters of GK , a nontrivial character χ : GK →
C∗p and the trivial character 1,

3. the character χ = det(ρ) has the property that its minimal splitting field over K is a Zp-
extension of K.

4. the character χ occurs as a sub-representation of ρ and the trivial character 1 occurs as a
quotient-representation,

5. for all v ∈ S(K, p) the local representation ρv when restricted to the inertia group IKv ⊂ GKv
is semisimple53.

52There is a somewhat arbitrary choice to be made here: some texts define ordinary by the requirement that the
local sub-characters of ρ (for v ∈ S(K, p)) are all unramified. The two choices are elementarily related in that if a
Zp[GK ]-module M is ordinary according to one of these choices, its Zp-dual, Hom(M,Zp), will be ordinary according
to the other. In effect, if you are dealing with cohomology, the choice we’ve just made is slightly more natural than
the other, and if you are dealing with homology the situation is reversed.

53if the local representation ρv when restricted to the inertia group is semisimple it also follows, in this situation,
that the local representation ρv (on the entire decomposition group) is semisimple since (a) the inertia group at a
prime v is a normal subgroup of the corresponding decomposition group at v, and (b) under our hypotheses, the
inertia group representation is a sum of two distinct characters.
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We are often—but not always—specifically interested in Iwasawa representations with determinant
characters χ that cut out the p-cyclotomic Zp-extension of K.

Note that if an Iwasawa representation takes its values in GL2(Zp) we may view it as a nearly
ordinary representation, and indeed—for each v ∈ S(K, p)— we have our choice as to which of the
two local degree one characters we choose to be the sub-character, which the quotient-character.
Choosing, consistently, the local quotient-character to be the trivial character as we can do by (5),
the Iwasawa representation is then anomalous.

21 Parameter spaces of ordinary degree two Galois representa-
tions

Let us return to the context of the beginning of Section 15. Suppose you are given a family ρt of
degree two ordinary p-adic GQ-representations parametrized by an open disc in Qp, with parameter
variable denoted t.

{ {Irr
ed

uc
ib

le

Irr
ed

uc
ib

le

R
ed

uc
ib

le

t = 0 
t

Suppose that these ρt’s are generically irreducible in the sense described previously, and for the value
t = to the representation ρto is not irreducible—and therefore even though its semisimplification
is well defined—as previously discussed—it itself is not well-defined; suppose that it has as its
Jordan-Hölder constituents the GQ-characters 1 and χ where χ is ramified at p. We may “fill in”
the family in more than one way; we choose ρto to be indecomposable and such that we have an
exact sequence of GQ-representations with the following the “ordering of characters”:

0→ 1→ ρto → χ→ 0.
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Now, since our family is ordinary, and χ is ramified at p, the Dp-representation obtained from ρto
also fits into an exact sequence of Dp-representations, but with the opposite ordering:

0→ χ→ ρto → 1→ 0.

The same wrench phenomenon applies as in the previous bullet to give us that if K is the splitting
field of χ over Q, and L is the splitting field of ρto over Q, then K ⊂ L and L/K is unramified at p
(interpreted appropriately, since these in general will be extension fields of infinite degree over Q).

22 Liminality of Iwasawa representations

The proof of the main conjecture ([42] over Q; and more generally, [76] over totally real fields) tells
us something about liminality of Iwasawa representations. Specifically, in the special case over Q,
for χ a p-adic character of GQ let χ∗ = εχ−1 where ε : GQ → Z∗p is the p-cyclotomic character.

1. The p-adic Leopoldt-Kubota L-function, Lp(ξ), vanishes at the p-adic character ξ = χ∗ if and
only if there is an Iwasawa representation of determinant χ.

2. There is one and only one Iwasawa representation of determinant χ if and only if the zero of
Lp is simple at χ∗ and in this case the Iwasawa representation occurs as an indecomposable
representation ρs attached to a point s on a one-parameter p-adic analytic family (technically:
a Hida family) of generically irreducible degree two Galois representations.

A consequence is that if the zero of Lp is simple at χ∗ then the corresponding Iwasawa repre-
sentation is indeed liminal in a very strong way: it is a limit of geometric, ordinary, irreducible
representations54.

Sidenote: There is something baffling happening in the (unlikely) event that the Leopoldt-Kubota
L-function has a multiple zero at χ∗. For then we have a positive dimensional projective space
parametrizing all Iwasawa representations of determinant χ, and yet only finitely many of these
will lie in Hida components. Which ones? Or are all zeroes of the Leopoldt-Kubota L-function
simple55.

54If K is a totally real field, (and—for simplicity of discussion—assume that Leopoldt’s conjecture holds for K) by
the proof of the main conjecture for K (cf. [76]) one sees that the same statement holds for Iwasawa representations
over K.

55In the improperly irregular case we know that the maximal everywhere unramified p-abelian extension of
∪∞n=1Q(e2πi/pn

) can be generated by the extraction of pν-th powers of the appropriate subgroup of cyclotomic units
in Q(e2πi/pm

) (for appropriate exponents ν, as m goes to ∞). It follows—in the improperly irregular case—that
if the corresponding Iwasawa module is semisimple, then all the zeroes of the Leopoldt-Kubota L-function will be
simple.
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Part IV: Liminality in recent and current work

23 The general framework

To succinctly remind ourselves of Ribet’s idea—but framing it in the more general context of
reductive groups–we may illustrate the procedure by these six steps (allowing for variants, the
most evident variant being a congruence version of what we describe below, such as in the format
originally used by Ribet himself 56).

1. The initial equipment:

Let p be a prime number, and K a number field.

Let H(1), H(2), . . . ,H(ν) be a collection of reductive groups over Q̄p. In practice, these groups
H(i) will be either general linear, symplectic, or unitary groups and we will be considering
them as subgroups of general linear groups via their standard representations.

More to the point, we often also take the H(i) as the Langlands dual groups to reductive
groups, Hi, which are either general linear, or are of symplectic or unitary type over Q, or
over totally real or CM number fields.

Let
ρ(i) : GK → H(i)(Q̄p)

(i = 1, 2, . . . , ν) be irreducible Galois representations57.

The above Galois representations will, in recent practice again, either be of degree one—i.e.,
characters—or, more generally, will be obtained from automorphic forms for Hi. We will call
these ρ(i) the constituent representations.

2. The encompassing equipment:

We wish to find interesting GK representations that are extensions of appropriate pairs of the
constituent representations ρ(i) (i = 1, 2, . . . , ν).

To this aim, one seeks

• some well chosen reductive group G over a number field whose Langlands dual group,
G, contains a parabolic subgroup P ⊂ G with P = H · U a Levi decomposition, where
H = H(1) ×H(2) × · · · ×H(ν), and
• an automorphic form πo for G that has an associated Galois representation ρo : GK →
P (Q̄p) ⊂ G(Q̄p) and such that composition with the natural projection

GK −→ P (Q̄p)→ H(Q̄p) =
ν∏
i=1

H(i)(Q̄p)

is
∏ν
i=1 ρ

(i). One then picks out appropriate two-stage subquotient representations. We
call the reductive group G “the” encompassing reductive group.

56Similarly when you are dealing with unitary groups and you have a quadratic extension K/k in the works.
57where by irreducible all I mean is that the composition of these representations with the standard representation

yields an irreducible representation of GK into the corresponding general linear group.
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In the initial use, and in early applications, the automorphic form πo was taken to be an
appropriate Eisenstein series, but certain other nontempered representations have also been
brought into play, and the all-important passage from 6 to 5 in Ribet’s original method,
which bridges—via the convenience of congruences—the divide between Eisenstein series and
cuspforms, is sometimes replaced by bridging the divide between nontempered and tempered
automorphic representations, following a suggestion made many years ago by Harder.

3. The automorphic form is “fit” into a p-adic family: “Fit” πo into a p-adically interpolable
family of automorphic representations of the encompassing reductive group, and prove that
there is indeed an associated (rigid analytic) family of Galois representations

ρt : GK → G(Q̄p)

parametrized by an irreducible (“pointed”) rigid analytic space (T, to) such that

• for t = to, the semisimplification of ρto is ρsso ,

• for t 6= to the ρt are irreducible representations,

• for a Zariski-dense set of values of t, the ρt’s have good properties.

4. The wrench is used to get a desired liminal representation: Now use the lemma of Ribet-
Belläıche and the “wrench phenomenon” described earlier to modify, if necessary, the limiting
ρto so as to get an interesting liminal Galois representation—call it ρo. The number field cut
out by the nonsemisimple representation ρo constructs, for us, Galois extensions of the number
field cut out by the original constituent representations—described in the Ribet-Belläıche
lemma.

5. Establishing good properties of the action of decomposition group: Finally, use whatever
good properties the ρt have when restricted to the decomposition groups at places above
p to guarantee good local behavior (at places above p) for ρo and hence for the nontrivial
extensions of the constituent representations that you have constructed, thereby showing that
certain of these extensions provide sought-for elements in appropriate Selmer groups.

Here are a few examples to give a brief rough idea of the type of work that has been done58, and
that is being done, along these lines59. Below, the symbol χ will just mean some Galois character
to Q̄∗p = GL1(Q̄p) but, in practice, one may also want to deal with characters to multiplicative
groups of extension fields of Q̄p.

1. The above seems not to be too bad a strategy if you want to prove “main conjectures” as
in [42] (the main conjecture of Iwasawa theory over Q, and more generally as in [76], the
main conjecture of Iwasawa theory over totally real fields). The large difference between the
approaches in [42] and [76] is that (although both follow the Ribet wrench philosophy) [42]
makes extensive and particular use of the algebraic geometric structure of the jacobian of
modular curves (which is not available in a more general setting) while [76] replaces this with
the more automorphic format as described above. Here ν = 2, the reductive groups H(1), H(2)

58It is noteworthy—and natural— that many, perhaps all, of the classic results proving modularity of two-
dimensional representation of Gal(Q̄/Q) (that satisfy appropriate hypotheses) make use of procedures that touch on
Ribet’s wrench; to cite one important example, see [63].

59I am thankful to Michael Harris for help in preparing this brief summary.
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are both isomorphic to GL1, the constituent representations are two characters, one of them
the trivial character. The encompassing reductive group is GL2 and the parabolic subgroup
P ⊂ G is the Borel subgroup of upper triangular matrices. We can summarize this by the
picture of the 2× 2-matrix that we’ll think of as a (1 + 1)× (1 + 1) matrix:(

1 ∗
0 χ

)
the extension constructed (signified by the “∗ in the upper right-hand corner”) providing us
with elements in the one-dimensional Galois cohomology of the degree one representation χ
and, thanks to Step 5 above, these elements enjoy good local properties. The congruence
version of this is, of course, the strategy initiated by Ribet. An appropriate Hida family gives
the p-adically varying family of Galois representations “ρt.”

2. To construct elements in the Selmer group of an adjoint representation of a Galois represen-
tation ρ : GK → GLd(Q̄p) one might try the above strategy with ρ and ρ∗⊗χ as constituent
characters, with G = GSp2d where the picture corresponding to the one drawn in (2), just
above, is of the 2d× 2d matrix: (

ρ ∗
0 ρ∗ ⊗ χ

)
and the parabolic subgroup P ⊂ G is the evident one. This is the format described in 1997
by Haruzo Hida, Jacques Tilouine, and Eric Urban [32] in their strategy for a possible proof
of the main conjecture for the adjoint representation ad(φ) where φ is the GL2 automorphic
representation attached to an elliptic curve over Q. Here d = 2, G = GSp4, and one then
may hope to use p-adic rigid analytic families of GSp4-automorphic forms to effect Steps (2)
and (3) of the strategy outlined above, and thereby to produce elements in the Selmer group
of twists of the adjoint representation to ρ. This was formulated as a candidate strategy in
[32] and many of the technical hurdles to carry it out were dealt with in that article. As
Michael Harris has explained to me, what was principally left yet to be done (given [32]) to
obtain this main conjecture was to guarantee non-divisibility by p of (non-constant) Fourier
coefficients of certain Eisenstein series.

One has, in this story of the main conjecture for the adjoint representation ad(φ), three basic
objects: the p-adic L-function interpolating the critical values of the symmetric square of the
modular forms in these families, the characteristic ideal of the associated Selmer group, and
a characteristic Eisenstein ideal containing information on the congruences between cuspidal
Siegel modular forms of genus 2 and the Klingen-type Eisenstein series. Regarding this, see
[72] where, in an appropriate context, the divisibility of the Eisenstein ideal alluded to above
by the L-function is shown, and see [71] for the divisibility of the characteristic ideal of the
Selmer group by the Eisenstein ideal.

3. Finding elements of the Selmer group when the sign of the functional equation would predict
that they exist seems to be amenable to the above outlined approach.

(a) A “congruence version” of (1)—i.e., a strategy close to Ribet’s original strategy—was
carried out by Joël Belläıche for quadratic imaginary fields in his thesis [3] (cf., the re-
cently published [2]) where for a set of primes p of positive density, a Ribet-type theorem
was proven relating nontriviality of the p-primary group of the Selmer group of algebraic
Hecke characters over an imaginary quadratic field if the sign of the corresponding L-
function is −1. As alluded to above, Harder’s suggestion (of replacing the Eisenstein
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series that played the role—in 6 —of Ribet’s proof by a CAP automorphic form60 is
employed by Belläıche in his approach, coupled with an idea due to Clozel, Belläıche’s
thesis advisor61. Here ν = 3, the encompassing reductive group is a unitary group in
three variables, and if η is the algebraic Hecke character one is studying, the residual
representation attached to the “ρsso ” of the above method is a sum of three characters
with the residual representation attached to η occurring as one of the constituents.

(b) Starting with a self-dual GQ-representation representation ρ into GL2(Q̄p), and a char-
acter χ, and again letting ν = 3, consider the triple of constituent GQ-representations
χ, ρ, χ∗ (with values in GL1(Q̄p),GL2(Q̄p),GL1(Q̄p) respectively) and take G = GSp4.
Here—if the sign is right—the aim would be to find GQ-representations of the shape
given by the following picture of this (1 + 2 + 1)× (1 + 2 + 1) matrix: χ 0 ∗

∗ ρ ∗
∗ 0 χ∗


whose most “usable” pieces are the submatrices:(

χ 0
∗ ρ

)
and (

ρ ∗
0 χ∗

)
which provide the sought-for extension(s) of Galois representations (these two being
equivalent under duality).
This is the format of the article [64] where ρ is taken to be a GQ-representation attached
to a newform of (even) weight ≥ 2 for Γ0(N) (some N) where the functional equation
for the L-function would predict that the Selmer group associated to ρ is of odd rank. In
this case Skinner and Urban prove that the rank is, at least, positive. As in Belläıche’s
thesis, the Eisenstein series (of 6 of Ribet’s proof) is replaced by a CAP form. Here,
as above, non-ordinary p-adic deformations are used to obtain the desired element in
the Selmer group.

4. A variant of (43) above is to keep to the same (1 + d + 1) × (1 + d + 1) matrix picture (for
various values of d) but using a unitary group of rank d+2 rather than a (general) symplectic
group. Here one would work with initial representations χ, ρ, χ∗ in that order, with χ some
appropriate character and ρ a Galois representation associated with an automorphic form for
a unitary group of rank d. Chenevier’s thesis adopts such a format, and—taking d = 1, E a
quadratic imaginary field and a unitary group of rank three, the joint work of Belläıche and
Chenevier [5] employs this to find elements in the Selmer groups of certain algebraic Hecke
characters over E when the functional equation sign would predict that such elements should
exist. Here a nontempered πo is used. The forthcoming volume of Belläıche and Chenevier
[6] deals, as well, with examples where d > 1 in a similar way, achieving interesting results.

60The notion of CAP automorphic representation is due to Ilya Piatetski-Shapiro (cf [45]). CAP is an acronym,
meaning: cuspidal associated to parabolics. These are, indeed, cuspidal automorphic representations closely related to
automorphic representations that are induced from a parabolic subgroup. Such cuspidal automorphic representations
don’t exist on GLn, but for reductive groups for which they do exist, they may sometimes be used in place of Eisenstein
series in the context we are discussing. For a reader-friendly brief discussion of this notion, see the introduction to
[24].

61See the discussion in Section 1 of [3] related to [17].
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5. Articles by Chris Skinner and Eric Urban (See [62] and [66]) establish the (p-adic) main
conjecture for many elliptic curves (defined over Q). Here the reductive group in question is
G = GU(2, 2), i.e., the general unitary group of signature (2, 2) over a quadratic imaginary
field K/Q. The parabolic P is a maximal parabolic subgroup of G fixing an isotropic line; its
Levi component is H = GU(1, 1)×ResK/QGm. The “πo” is an Eisenstein series induced from
the base change to K of a cuspform on GL2 over Q times a Hecke character on K. The p-
adically varying family of Galois representations “ρt” is a three-variable family corresponding
to a “Hida family” times a two-dimensional space of p-adic (degree one) Galois characters
over K.

In [65] Skinner and Urban deal with the case where one has a double zero for L(ρ, s) at s = 0
(when it is the center of the functional equation) to construct two linearly independent exten-
sions of Qp(−1) by ρ with appropriate Selmer conditions. See, specifically, loc. cit., Theorem
B on page 475. The strategy is to seek generically irreducible deformations of a representation
which has (using the terminology of the beginning of this section) five irreducible constituents
ρ(1) = ρ; ρ(2) and ρ(3) trivial; ρ(4) and ρ(5) given by Qp(−1).

24 Appendix I: the preferred residual representation mod p = 691
of—e.g.—∆

We will be dealing exclusively with the prime p = 691 in this appendix; for ease of reading though,
let p denote the prime 691 below. Let Λ := Zp[[Γ]] where, as usual, Γ ⊂ Z∗p is the group of 1-
units. Let T be the finite flat Hida-Hecke Λ-algebra (cf. [27], [28], [29]) that acts naturally on
Sk(Γ1(p);ωk−12; Zp)o for all k ≥ 2, and acts faithfully on the direct sum⊕

k≥2

Sk(Γ1(p);ωk−12; Zp)o,

where the superscript o means the p-ordinary projection. The classical Hecke operators contained
in T include T` for all primes ` 6= p and the Atkin-Lehner operator Up. Let

sk : Λ→ Zp

be specialization to weight k, and denote the Λ-module Zp where the Λ-action is given via sk by
the symbol Zp〈k〉.

Lemma 5. 1. The natural ring homomorphism

Λ→ T

is an isomorphism.

2. For every k the natural homomorphism of Λ-modules

Zp〈k〉 −→ T⊗Λ Zp〈k〉

is an isomorphism.
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Proof: Clearly (1) implies (2). Since T is a finite flat Λ-algebra (1) follows if (2) holds for some
value of k. One computes that the Zp-module S12(Γ1(p);ω0; Zp)o is generated by the ordinary
eigenform ∆(z)−p11∆(pz). Since T⊗Λ Zp〈12〉 acts faithfully on S12(Γ1(p);ω0; Zp)o as follows from
Hida’s theory (cf. Thm. 22 of [30]) we see that (2) holds for k = 12, which is enough to prove the
lemma. Independently, computations of Stein and Citro establish (2) for k = 2.

Hida’s theory (cf. loc. cit.) gives a degree two pseudo-representation over T = Λ which associates
to the Frobenius element at a prime ` 6= 691 the Hecke operator T` ∈ T. When specialized to
weight two this (pseudo)-representation yields the Galois representation over Fv = Q691 associated
to Af , the abelian variety discussed in Section 6. We can realize the entire pseudo-representation
over T by an honest Galois representation, ρT : GQ → GL2(T) = GL2(Λ) using Proposition 1.6.1
of [6], since the pseudo-representation is residually multiplicity free and T is a factorial local ring.

The relevant Leopoldt-Kubota L-function L ∈ Λ is not divisible by p (which is a general phe-
nomenon thanks to the “µ = 0” result of [23]) and has a single zero of multiplicity 1 (as had been
computed long ago). Equivalently, Λ/LΛ ' Zp.

The Eisenstein ideal I ⊂ T is the closed ideal in T generated by the elements T` − 1− 〈`〉`−1 (for
` 6= p) and the element Up−1. By [22] (or [41]) we see that under the natural isomorphism Λ→ T,
the element L is sent to a generator of the Eisenstein ideal I. We can, if we wish, view L as a
parameter in Λ = T in the sense that we have natural isomorphisms

Λ = T = Zp[[L]].

Reducing ρT modulo L one gets a representation

ρT,mod L : GQ → GL2(Zp) ⊂ GL2(Qp)

and we have (using the above two paragraphs) that the character of this dimension two GQ-
representation over Qp is the sum of two one-dimensional characters: the trivial character and
the determinant det(ρT,mod L). It follows that ρT,mod L is reducible. Choose a basis {x̄, ȳ} for a
ρT,mod L-stable lattice

M̄ ⊂ Zp ⊕ Zp = Λ/(L)⊕ Λ/(L)

such that the action of GQ is upper-triangular.; lift this basis to obtain a basis {x, y} for the
underlying Λ-module of the representation GQ → GL2(Λ) (which we write, in terms of this basis,
as Λ⊕ Λ) so that the action of GQ is upper-triangular modulo LΛ.

In particular, the “sublattice” M ′ := LΛ⊕Λ ⊂ M := Λ⊕Λ is GQ-stable so that we have the option
of taking either M or M ′ as our basic lattice in terms of which we will write the representation ρT.
This boils down to considering either the initial representation ρT or its conjugate:(

L 0
0 1

)
· ρT ·

(
L−1 0

0 1

)
.

By the residual representations attached to the Λ-lattices M and M ′ we mean the representations of
GQ on the Fp-vector spaces M ⊗Λ Fp and on M ′⊗Λ Fp obtained by reduction modulo the maximal
ideal of Λ.
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• Reduction to weight twelve

Reducing the representation ρT : GQ → GL2(T) to weight twelve, i.e., composing with the
homomorphism GL2(T)→ GL2(Zp) induced from the ring homomorphism s12 : Λ→ Zp, we
get from either lattice M or M ′ above, two GQ-stable Zp-lattices for the representation ρ∆,691.
Call them M12 and M ′12. The residual representations attached to the Λ-lattices M and M ′

are naturally isomorphic to residual representations attached to the Zp-lattices M12 and
M ′12 respectively. By Proposition 1 the only residual representations for GQ-stable lattices
of ρ∆,691 are (reducible and) indecomposable, and in their Jordan-Holder decompositions
the one-dimensional characters occur in different order. By Corollary 6, one of these when
restricted to the inertia group at p is semisimple, and the other not. It follows that the residual
representations attached to M12 and M ′12—and consequently also the residual representations
attached to the Λ-lattices M and M ′—are indecomposable representations GQ → GL2(Fp)
with characters 1 and ω11 occurring in the two different possible orderings, one of these when
restricted to the inertia group at p is semisimple, and the other not.

• Reduction to arbitrary weight

Reducing the representation ρT : GQ → GL2(T) to any weight w ≥ 2, for reasons similar to
the above we get that the two indecomposable residual representations attached to lattices for
ρw,691 are independent of w ≥ 2 and are isomorphic to the residual representations attached
to ρT,M and ρT,M ′ .

Definition 3. Call the indecomposable residual representation for which the character 1
occurs as a quotient representation, rather than a sub-representation of the residual represen-
tation the preferred indecomposable residual representation.

In particular, the preferred residual representation of ρw,691 is independent of the weight w.

• Reduction to weight two

For reasons analogous to those occurring in the first bullet in Section 18, using properties of
the abelian variety Af (of Section 6) one obtains (as in [49]) a proof, slightly different than
the one above, that the preferred residual representation attached to ρ2,691 has the property
that its inertial action is semisimple62.

• Anomalous representations

It may deserve mention that the only anomalous representation in this Hida family is the
Iwasawa representation (i.e., the representation into GL2(Z691) obtained by reducing modulo
L). For by [41] or [22], we have that L divides U691 − 1 in Λ = T. Write

U691 − 1 = N · L ∈ Λ,

for N ∈ Λ. Let the covering symbol tilde denote the image in Zp of elements in Λ under the
ring-homomorphism s12 : Λ→ Zp.

62Note that the representation ρ2,691 is obtained by the action of Galois on cohomology and therefore is dual to
the associated representation that occurs within V691(Af ), the tensor product over Q691 of the 691-adic Tate module
obtained from 691n-torsion points of the abelian variety Af .
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The image (under s12) of the Hecke operator U691 is congruent to τ(691) mod 69111. A
computation using SAGE63 tells us that τ(691) ≡ 374523 = 1 + 542 · 691 modulo 6912, so
Ũ691 − 1 is divisible by 691 but not by 6912. Since L̃ ≡ 0 mod 691 it follows that Ñ is a unit
in Zp, and therefore that N is a unit in Λ.

So we have an equality of ideals
(
U691−1

)
=
(
L
)

in Λ. But the ideal
(
U691−1

)
is the defining

ideal in T of the locus of anomalous quotient representations (derived from ρT), proving our
assertion.

25 Appendix II: Computations for more irregular pairs

Appendix I above has been a close study of the irregular pair (p, 2k) = (691, 12) and gives us
information about the nature of the package of newforms given in station 5 in the Herbrand-
Ribet theorem (Theorem 1 of Section 6) related to (p, 2k) = (691, 12). The modular form in this
package of newforms that is of level 1 and of lowest weight (i.e., weight 12) is ∆ and we have
discussed this case somewhat. And we have shown that there is a unique newform in our package
in each weight ≥ 2 that is congruent modulo 691 to the Eisenstein series of that weight. Appendix I
concommitantly tells us something about the corresponding Hida family (consisting of 691-ordinary
691-adic modular eigenforms of tame level 1 congruent to the corresponding Eisenstein series “mod
691”).

What happens for other irregular pairs?64

For many conceptual questions in the arithmetic of cyclotomic fields, it is probably not a good idea
to use extensive computation as a trustworthy guide to a conjectured answer to a general question.
Consider, for example, Vandiver’s Conjecture, which is verified for primes < 163, 000, 000 ([10]).
Here is what Joe Buhler and David Harvey say about that computation:

We find that the expected number of counterexamples up to 12 million is about 0.674,
and that another 0.074 counterexamples were expected between 12 million and 163
million (though of course we now know that there are none in either case). Many
people believe that Vandiver’s conjecture is true; it also seems reasonable to believe
that the conjecture is false but that the first counterexample is so astronomically large
that it may never be known.

Nevertheless, some computations of William Stein for irregular pairs (p, 2k) with p < 107 and
2k < 8000, give rather striking information about the nature of the package of newforms given in

63Computations and theoretical discussion related to this can be found in [69] where it is shown, among other
things, that the image of Galois under ρ12,691 in GL2(Z691) is as large as it can be, given that the image of its
associated residual representation lies in a Borel subgroup of GL2(F691).

64E.g., here are the first few irregular pairs (p, 2k) ordered by increasing weight w = 2k: (691, 12) (3617, 16)
(43867, 18) (283, 20) (617, 20) (131, 22) (593, 22) (103, 24) (2294797, 24) (657931, 26) (9349, 28)
(362903, 28) (1721, 30) (1001259881, 30) (37, 32) (683, 32) (305065927, 32) (151628697551, 34)
(26315271553053477373, 36)
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station 5 in the Herbrand-Ribet theorem (Theorem 1 of Section 6). Here, again, the modular
form in this package of newforms that is of level 1 and of lowest weight is of weight 2k.

Specifically, Stein shows that for irregular pairs (p, 2k) with p < 107 and 2k < 8000, with one
exception there is a unique eigenform of level 1 in weight w = 2k for which there is a prime ideal P
in the ring O generated by its Fourier coefficients such that O/P = Fp and its eigenvalue for the
Hecke operator T2 is congruent mod P to the eigenvalue for the Hecke operator T2 acting on the
Eisenstein series of weight k, taken mod p. In particular, in these examples, the eigenvalue of the
Hecke operator T2 mod p alone is enough65 to “cut out” the eigenform of weight 2k in the package
of newforms given in station 5 .

The exceptional irregular pair is (p, 2k) = (547, 486). For this irregular pair, there is a conjugate
pair of newforms of weight 486 with the required Eisenstein-congruence condition “mod 547,” each
with Fourier coefficients generating the quadratic extension Qp(

√
−p) (and for this case too, the

Hecke operator T2 also cuts out the conjugate pair of newforms of weight 486 out of the space of
all newforms of level 1 of that weight).

One can show—following arguments as in Appendix I—that for all cases p < 107 and 2k < 8000—
except for (p, 2k) = (547, 486)—the corresponding Hida Hecke algebra T is isomorphic to the
Iwasawa algebra Λ.

When (p, 2k) = (547, 486) the corresponding Hecke algebra, T, is finite flat of rank two over Λ.
What is its discriminant ideal? Is T an integral domain? Is its spectrum geometrically unibranch?
(I.e., is Q̄p ⊗Zp T an integral domain?)

To answer this one might be led to computing (special values of) p-adic L-functions associated to
the symmetric squares of the relevant classical modular eigenforms.

More generally, to get closer to the numerical phenomena surveyed in this article, it seems to me that
a good deal of further numerical experimentation (in various directions) is warranted. For example,
in view of the immense amount of computation that has been focused on classical irregular pairs,
and on the classical p-adic L-functions Lp(s, ω2k), it might be a good idea to extend and round out
this data-base to include—as far as is practical—information about the analogous problems posed
by p-adic L-functions Lp(s, α ·ω2k) where α is a finite (Dirichlet) character of prime-to-p conductor.

65There is a companion pair of side-questions to this phenomenon:

1. Are there non-ordinary cuspidal eigenforms of level 1 and weight 2k with Fourier coefficients in O, the ring of
integers in a number field, and is there a prime P ⊂ O of residual characteristic p and degree one, such that
the semisimplification of the associated residual representation mod P is the direct sum of the characters 1
and ω2k−1?

2. If there are such eigenforms, can one still obtain a construction of the requisite unramified abelian extension of
Q(e2πi/p) (using, perhaps, Fontaine’s theory) in a manner analogous to the method that works in the ordinary
case?

Regarding the first question, Stein’s computations tell us that there is no such (nonordinary) eigenform if p < 107

and k < 8000. The second question is the issue dealt with in [34] (this was also discussed by C. Dalawat, in lectures
given at Gauhati).
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[6] J. Belläıche, G. Chenevier, Families of Galois representations and Selmer groups, Astérisque 324 (2009)
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