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We mathematicians have handy ways of discovering what stands a chance of being true. And we
have a range of different modes of evidence that help us form these expectations; such as: analogies
with things that are indeed true, computations, special case justifications, etc. They abound, these
methods—explicitly formulated, or not. They lead us, sometimes, to a mere hint of a possibility
that a mathematical statement might be plausible. They lead us, other times, to substantially
firm—even though not yet justified—Dbelief. They may lead us astray. Our end-game, of course, is
understanding, verification, clarification, and most certainly: proof; truth, in short.

Consider the beginning game, though. With the word “plausible” in my title, you can guess that
I'm a fan of George Pdlya’s classic Mathematics and Plausible Reasoning ([?]).

George Pdlya (1887-1985)

I think that it is an important work for many reasons, but mainly because Pdlya is pointing to
an activity that surely takes up the majority of time, and energy, of anyone engaged in thinking



about mathematics, or in trying to work towards a new piece of mathematics. Usually under
limited knowledge and much ignorance, often plagued by mistakes and misconceptions, we wrestle
with the analogies, inferences, and expectations I've just alluded to; with rough estimates, with
partial patterns that hint at more substantial ones, with partial consequences of hypotheses that
are true—or seem true—and therefore render it more likely that those hypotheses are true, or at
least should be provisionally conjectured, and worked with. We make use of a whole inventory
of different rules-of-thumb, and somewhat-systematic heuristics that, when they work, allow us to
divine what is true.

Along with this, we are constantly assaying the level of plausibility of any of these conceits, and
formulations, that float through our mind as we grapple. A three-level activity:

1. developing possibilities, hypotheses, expectations, through a network of more or less confidence-
inspiring heuristics, and at the same time

2. assaying their plausibility, and at the same time

3. “shorting them,” to use (metaphorically) an infamous financial term, i.e., working to disprove
them,

is what establishes—at least for me, and I imagine for many others—the three voices of the con-
trapuntal inner music that we experience when we strive to comprehend some idea, new to us, in
mathematics (and more broadly, in anything).

How do we gain confidence in mathematical guesses, before we actually prove them? In contrast
to the main thrust of Pélya’s text, I'm less interested in being pro- or pre-scriptive; that is, I don’t
have a pedagogical mission presuming to say what one should not or should do; I'm just aiming at
a reflective description of some ways of thinking that come up naturally (to me, and therefore—I
assume—to others as well) when one is grappling with judgments regarding plausibility in mathe-
matics. Different mathematicians will surely have different descriptions, and conversations about
these differences could be worthwhile. Moreover, a psychologically oriented study of plausibility in
mathematics in the manner of Tversky and Kahneman might also reveal interesting phenomena.

Here are three distinct modes of reasoning that provide us with plausible inferences:
e reasoning from consequence,

e reasoning from randomness, and

e reasoning from analogy.

The first of these is largely a non-heuristic method, while the other two are heuristic, the distinction
being:

e A heuristic method is one that helps us actually come up with (possibly true, and interesting)
statements, and gives us reasons to think that they are plausible.



e A non-heuristic method is one that may be of great use in shoring up our sense that a
statement is plausible once we have the statement in mind, but is not particularly good at
discovering such statements for us.

In what follows, I’ll be discussing each of these modes in turn, noting that this three-part distinction
is sometimes blurred by the fact that all three can work surprisingly well together. Among other
things, I'll be specifically thinking about what might have been the motivation for Leonhard Euler
to have come up with a certain curious conjecture.

Leonhard Euler (1707-1783)

1 Reasoning from Consequence

This is captured by the maxim:

If (A) implies true things we gain confidence in (A).

Depending upon the particular way it is cast, it is sometimes referred to as

e Induction, or
e Experimental confirmation, or

e “Inferential fallacy.”

Here is the example we’ll focus on.



Pélya discusses the following conjecture of Euler!:

Any number of the form 3 + 8n (for n positive) is the sum of a square and the double

of a prime?:

(A)  3+8n=a®+2p.

This is still today just a conjecture, neither proven nor disproven. How would you have first
discovered such a statement, as being potentially true? Having coming up with the statement, how
would you garner evidence for its truth? How would you augment or diminish its level plausibility?
That is, without actually proving it.

Of course, faced with such a problem, the first thing one might—perhaps should—do is to test it
numerically:

11=1%2+2-5
19=3%2+2-5
27=12+2-13

35=124+2-17=324+2.13=5%2+2.5

Now, Euler became interested in this conjecture—Pélya explains—because by assuming it, Euler
could prove:

Any number is a sum of three trigonal numbers:

B ao D WD )

a result he believed to be true and had been previously interested in3. It is intriguing to follow

Euler’s (strange, I think) train of thought: what got him to think that the (A) he was specifically
interested in would be made more plausible by virtue of its implying the (B) above?

This latter statement, (B), is a special case of Pierre de Fermat’s polygonal number “theorem,” and
even though Euler believed (B) to be true, no (published) proof of it existed at the time; (B) was

!This is discussed as an example of Verification of a consequence: page 3 of Vol. II of Mathematics and
Plausible Reasoning: Patterns of plausible inference. For the original text, see the Afterword below.

2Euler could include n = 0 in his assertion, since he allowed 1 to be a prime—thereby siding with my father, who,
whenever he wanted to get my goat, would playfully ask me to defend my bizarre contention that the first prime is 2.
Since I have removed 1 as prime, from the initial conjecture conceived by Euler I have ever-so-slightly strengthened
it.

3Numbers of the form n(n 4 1)/2 are called trigonal since they can be thought of as counting an array of points in
the plane that have integral coordinates and form—i.e., have as their convex closure—an isosceles right-angle triangle.

“A sketch of why A implies (B) is given in the afterword below.



proved later by Gauss in 1796 in Disquisitiones Arithmeticae (there is an often-quoted line in his
diary recording its discovery: “Eurekal num = A + A + A”).

By describing this turn of Euler’s thought, Pdélya is pointing to the following intricate zigzag
regarding (A) and (B). Euler showed (A) = (B) and believed (B) to be true (but hadn’t proved
(B)). As a result, (A) was rendered more believable; a kind of transport of plausibility:

A = (B
(B) is plausible

(A) gains in plausibility

We can take this diagram as a “plausibility” companion to the classical modus ponens which has
the following shape:

A = (B
(A) holds

Each time a special case of a general statement is something we believe to be true, we acquire a
tiny bit more confidence about that general statement. All the better, of course, if that “special
case” is known by us to be true. We then enact, in our thought, this inverted modus ponens:

A = (B)
(B) holds

(A) gains in plausibility.

We might think of the above diagram as one of the mainstays of the calculus of plausibility, while
modus ponens is key in the calculus of logic. That there are vast differences between these two
brands of “calculus” is so evident that it hardly needs to be said: In the calculus of plausibility, our
prior assessments are all important. How much (A) gains in plausibility, given that (A) = (B)
and (B) holds, depends on judgments about the relevance of (B) vis a vis (A). It is often influenced
by our sense of surprise that (B) is true, if we are, in fact, surprised by it.

In contrast, there is no judgment call necessary in the calculus of logic; what you see is what you
get: (A) = (B) plus (A) simply gives you (B).



In view of this distinction between the two modes of thought, it is hardly strange that modifications
of formulations which may be equivalent to each other in the calculus of logic, may become quite
alien to each other in the calculus of plausibility. A famous example of such a modification is passage
to the contrapositive, as in the philosophical conundrum, due largely to Carl Gustav Hempel. This
is sometimes called Hempel’s paradox, or the raven paradox, and starts with the observation that
“logically speaking” the two statements:
All ravens are black
and
No non-black object is a raven

are genuinely equivalent; and yet the natural (reasoning from consequences) way of collecting em-
pirical evidence for the first statement is to find raven after raven and check whether or not they
are black, whereas the corresponding strategy for the second formulation is to look for objects that
aren’t black, and then check that they aren’t ravens.

Now the first strategy to gain confidence in the assertion seems quixotic perhaps, but vaguely sane
to us, while the second is utterly ludicrous. (The essence of this “paradox,” as far as I understand it,
is that even though the two statements above are equivalent from the vantage-point of the calculus
of logic, they present quite different natural strategies for “reasoning from consequence.”)

A typical mathematical analogue to Hempel’s conundrum—which sheds some light on the initial
issue— might be the comparison of the following two modes of building confidence in the Riemann
hypothesis, which—formulated in the traditional way—asserts (still conjecturally, of course) that
all the zeroes of the Riemann zeta-function, ((s), either lie on the real line (in which case they occur
at negative even integer values of s: these are called the trivial zeroes of ((s) since the question of
vanishing—or nonvanishing—of the zeta function on the real line is known) or else the zeroes lie
on the line Re(s) = 1/2 in the complex plane. The Hempel conundrum, given this formulation,
would be to note the fact that the natural reasoning from consequence mode of collecting evidence
for the hypothesis as stated, and of its contrapositive, would be—respectively:

e Find a (nontrivial) zero of the Riemann (-function and check that it actually lies on the line
Re(s) =1, or:

e find a point so in the complex plane that is (not a trivial zero and) is off the line Re(s) = 1,
and check that ((sp) # 0.

There are a few things to discuss, even with regard to this somewhat frivolous example. As for
the second strategy above, if we were to choose an sy outside the critical strip, we would learn
absolutely nothing we hadn’t known—since we already know that all the trivial zeroes lie in the
critical strip. Even keeping to the critical strip, however, we do have the prior knowledge that
the set of zeroes is discrete, so the chances of hitting on a zero by a random choice of a point
is...well...zero. In contrast, the delicacy of the first strategy—requiring something to lie on a
given line—is a very demanding test. In brief, this intricate network of “prior assessments” control
the calculus of plausibility related to these strategies. What makes reasoning from consequence so
multi-stranded is illustrated by this example of the Riemann Hypothesis, where there are many
equivalent formulations of this very same hypothesis, and each formulation provides us with yet



a different natural (reasoning from consequences) way of collecting empirical evidence for it. For
example, one of the standard equivalent formulations, which is also one of the major reasons
for being interested in the conjecture in the first place, is the good approximation implied by
the Riemann Hypothesis for the function 7(X), the number of primes less than or equal to X.

Specifically, if Li(X) := 1X kflgt ; then the Riemann Hypothesis is equivalent to the estimate:

ILi(X) — m(X)| < X27°

for any positive € and X >> 0 (the “>>” depending on €). With this formulation in mind, the
more straightforward way to “reason from consequences” would be to compute 7(10™) and Li(10™)
for various n’s and compare.

Reasoning from consequences comes in two forms, one that might be called top-down, and the
other bottom-up.

The top-down form is where you firmly have an “A” in mind, explicitly formulated, and you want to
assess its plausibility by finding “B”s, that are provable and are implied by this A, thereby shoring
up your confidence in the truth of A. For example, in our discussion of the Euler conjecture, we
recommended making numerical calculations, e.g., 11 = 12 + 2.5 etc. as a sequence of confidence
builders. This, then, would be an example of the top-down version of reasoning from consequence.

One gambit that seems to fit into this top-down framework is when you have an A as your goal,
and you manage to prove a B which is a special case of A. But, there are instances where this B,
far from rendering A more plausible, may very well be either neutral or negative for that end; for,
depending upon the case at hand, it might be relevant to ask the following disturbing question:
how does it happen that your proof of B actually breaks down in the more general context of A,
and could that be more of a hint that something goes wrong, rather than right, in that general
context?

The bottom-up form is where you don’t have any general A in mind, but do have a potential B
that you know to be true, or more usually, you have a number of potential “B”s and you are
looking for a larger framework, an “A,” that implies this “B,” or these “B”s. An example of this is
given by Poélya’s discussion regarding Euler’s Conjecture, discussed above. For, Pdlya tells us that
Euler “wanted” the B (any number is a sum of three trigonal numbers) and, in his quest for it, he
formulated an A (his conjecture about twice primes) because it would imply his B.

This type of route, a “bottom-up reasoning from consequence,” is also a standard strategy for
developing demonstrations: we often know what we want to prove, and we “work backwards,” so
to speak, in that we formulate things that are more and more plausible, more accessible, that imply
it.

One might think of reasoning from consequence as being in the spirit of what is usually called
scientific induction, or at least the version of scientific induction that makes sense within the
context of mathematical practice. There are big differences, though; the biggest difference being
that scientific induction is saturated, either explicitly or implicitly, with issues of causality, that
“habit of thought,” according to Hume. Now the closest thing to “causality” (as viewed in the
empirical sciences) that occurs in the mathematical scheme of things is“logical implication.” But
these concepts, “causality” and “logical implication” each have elements that are quite foreign to



the other, and they each have their own idiosyncratic relationship to “time.”

Let us return once more to Pdlya’s example—i.e., Euler’s Conjecture that any number of the form
3 4+ 8n is a square plus twice a prime. Even though, as we’ve just mentioned, Euler achieved
a sense of its plausibility from what we're calling reasoning from consequence, there is another
plausibility route for this same conjecture. One might come to believe this same conjecture—or at
least something qualitatively like that conjecture—via a heuristic method that proposes that once
one takes account of all the known constraints, the data is random.

2 Reasoning from Randomness

As mentioned above, this mode of reasoning can be captured by, the following sentiment:

We know all the relevant systematic constraints in the phenomena that we are currently
studying, and ... the rest is random?®.

It is a somewhat hubristic type of reasoning, but it is—as I'm sure you agree—a common, and
perfectly natural, way of thinking; it is very often a powerful method that leads to formulating
hypotheses that—if not always true—at least often represent “current best guesses.” This method,
in contrast to “reasoning by consequence,” is genuinely heuristic: when it is applicable, it does
indeed present us with fairly precise formulations.

Here is a simple example of a problem which will illustrate the power, and the essential limitations
of this hubristic method.

Let a, b, ¢ be a triple of positive integers. Consider the diophantine equation
A+B=C

where A is allowed to be any positive integer that is a perfect a-th power, B a perfect
b-th power and C a perfect c-th power. (So, for example, if a = b = ¢ = 2 we are
considering Pythagorean triples.) Let X be a large positive integer, and N(X) be the
number of solutions of our diophantine equation with C' < X. What can we say about
the behavior of N(X) as a function of the bound X7

And here is a rough argument that might lead you to some kind of conjecture regarding this
problem. It is in a genre of speculation that almost all mathematicians must have engaged in, at
one time or another, in the vocabulary of their fields of interest.(For simplicity I will ignore positive
constants independent of X that arise in our error estimates either as multiplicative factors or
simply as constants.) Here are possible steps in our deliberation:

SWe form the [measure] space comprising the possible outcomes we are interested in, subject to all constraints
that we happen to know of, and then we put what we consider to be some kind of ’even-handed’ probability measure
on this space. This is sometimes tagged as an application of the principle of insufficient reason.



1. Following the dictum for the method, as described above, we want to think of the two sides,
A+ B and C, of our diophantine problem:

A+B=C

as being “random,” except, of course, for all our “prior” knowledge about them. So we must
take an inventory of what we actually know:

2. Is there an systematic structure to the collection of solutions? Here the only thing that comes
to my mind is that if d is the least common multiple of a, b, c and (A, B,C) is a solution to
our problem, i.e., a contributor to the number N(X), then for every integer

=

k=1,2,3,...(X/C)

we have that
(k¢ A, k4B, k. 0)

is also a solution.

3. Hypothesizing the systematic structure away: There are many ways of dealing with systematic
structure, and one way is simply to hypothesize it away! So let us change our problem, and
ask questions about the behavior of the function

N, (X) := the number of relatively prime triples (A, B, C) that are solutions to our problem.

Of course this will affect the collection of (A, B, C)’s that are in the game, but as we will see,
not by much.

4. Formulating the probabilistic event: We get a “hit,” i.e., a solution to A + B = C every time
we get that the number A + B — C' is zero. But—and this is the big assumption—viewing
A+ B — C as randomly roaming through the allowable range which is roughly of size X as
we run through our allowable triples (A, B, C')——the probability that any A+ B — C'is zero
is roughly X 1.

5. Counting the number of times we are allowed to play the above game:

The rough 1number of all conceivable values of A that might appear in a solution in the range
< X is Xa and similarly for B and C' where we get X?, and X ¢, respectively. We now
need to confront the requirement that our three numbers (equivalently: any two of them) are
relatively prime. This—given the roughness of our calculation—we can ignore, the reason for
which I will sketch in this footnote®.

So we do have (roughly)
Xo-Xt-Xe=Xatote

5The possible choices of A are the a-th powers of integers u := 1,2,3, ..., X% and for each of these choices we
must choose B’s which are the b-th power of v :=1,2,3, ... ,X% that are relatively prime to u. So, for each prime p
we must throw out all pairs (u = pu,,v = pv,) in our range, i.e. roughly piQX%Jr% pairs. Overestimating, then, we
throw out at most .
(5 5 xit
p prime

pairs. Since 35 .. p~?) converges (it is 0.452247...) we absorb this into our constants, and can ignore it.



shots at this. So the expected number of successes will be % times X %Jr%*%, or:

1 1 1
XE+§+E*1.

To blur things a bit, given that we have been arguing quite naively, we might conjecture:

e When
1 1 1
-+ -+->1,
a b ¢

we should get:
Xatpte—l-e o N,(X) < Xetpte—lte

for any € > 0, and for X >> 0 (with the implied constant in “>>" depending on ¢).

e When
1 1 1
-+ -+-<1,
a b ¢

the above estimate would give us a decreasing number of hits as X tends to infinity; which
doesn’t make much sense at all, but we interpret it as suggesting

Conjecture 1 Fizing exponents a, b, c satisfying the inequality % + % + % < 1, there are only
finitely many solutions to the diophantine problem U® + V? = W¢ with (U, V,W) relatively
prime positive numbers.

We see the classical Last Theorem of Fermat as giving a good deal more precise information
than the above conjecture for the cases a = b = ¢ > 3. This illustrates the structural
shortcoming of this probabilistic heuristic: it is quintessentially probabilistic, and could not
get one to make as precise a conjecture as Fermat’s Last Theorem, even though it might offer,

as plausible guess, some affirmation of the qualitative aspect of that Theorem”.

As I mentioned, every mathematician must have some favorite applications of reasoning from ran-
domness. In number theory, my current favorite is the Cohen-Lenstra heuristic that give us guesses
for the average values of ideal class groups over various ranges of number fields. This is obtained by
imagining the thought-experiment of fabricating an ideal class group by a random process in terms
of its generators and relations, subject to the prior constraints that reflect everything we know
about the manner in which the ideal class group appears. So far, the Cohen-Lenstra heuristics
seem to check out with numerical computations, and these heuristics are regarded as sufficiently
plausible, that they have a firm place in the toolkit of conjectures that are helpful—even though
not yet proven— guides for reflections and experiments in that branch of number theory®.

"I've left out of the above discussion the case of equality %+ % +% = 1, which involves just a handful of possibilities:
(3,3,3),(2,3,6),(2,4,4) and their permutations; each of them have interesting stories. The discussion above in more
general format motivates the work of Masser and Oesterlé with their wonderful, sweeping, ABC' conjecture; see [?]).

8More recently, there have been heuristics, somewhat in the spirit of Cohen-Lenstra, that predict the densities of

given ranks of p-Selmer groups over the class of all elliptic curves over a given number field; these heuristics are due
to Bjorn Poonen and Eric Rains.
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The question: “has all the relevant coherent structure of the phenomena been taken into account?”
hovers over every plausibility argument in this reasoning from randomness category. A famous
conjecture in number theory due to Emil Artin predicts the density of the set of prime numbers
p relative which a given integer A (not 0 or +1) is a primitive root. Clearly, for A to be a

primitive root mod p, there cannot be a prime number ¢ dividing p — 1 such that ApTl = 1 modulo
p. Artin initially tallied up the probabilities governing this behavior, and—assuming that these
requirements are independent for different primes ¢—came up with a prospective density for this
problem. Further reflection made it clear to him that there were indeed some dependencies (related
to the prime 2) between these conditions and required a change of conjecture. For details about
this see the Preface (written by by Serge Lang and John Tate) to The Collected Papers of Emil
Artin Addison-Wesley (1965).

Let us return to the conjecture of Euler regarding numbers of the form a square plus twice a prime
congruent to 1 mod 4 and note that if the conjecture is true, then, in some natural sense, at least
one-eighth of all positive numbers are of that form (i.e., any number congruent to 3 mod 8 is of
that form). What does the probabilistic heuristic have to say about this conjecture?

Well, the number of squares < X is on the order of X'/2, and—by the prime number theorem—the
number of integers that are twice a prime and < X is on the order of X/log(X) (recall we are
ignoring positive factors that are constant). Now since the squares and twice primes have nothing
to do with one another except for the relationship modulo 8, as far as we know, and since there are
(on the order of) X/2. X/log(X) = X32/log(X) > X pairs of the form:

(square, twice a prime congruent to 1 mod 4)
with sum < X, the probabilistic heuristic might prompt us to make the following conjecture:

Conjecture 2 The set of integers of the form a square plus twice a prime congruent to 1 mod 4
1s of positive density in the set of all positive integers.

But one thing to notice is that, when this probabilistic heuristic suggests such a conjecture it often
suggests much more at the same time (and in this case, to my mind, it certainly does). For example,
by the same reasoning as we have just made, if we let f(z) be any fixed non-constant polynomial
with positive integral coefficients and let n be any positive number, it is just as plausible to make
the conjecture that the set of numbers of the form

f(a)+npa

as a ranges through all positive integers and p through all primes, is of positive density.

3 Reasoning from Analogy

The fabric of all our thought is woven by the strands of analogy—conscious ones as well as un-
conscious ones— and is decorated by those snap-analogies: metaphors. So it is no wonder that
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mathematical thought is saturated with, and very much colored by, analogies of all sorts.
Here, then, are two somewhat different brands of analogies:

Analogy by expansion is where one has a concept, or a constellation of concepts, or a theory, and
one wants to expand the reach of these concepts, retaining their structure as some sort of template.
This is often referred to simply as “generalization” but that term—generalization— is, I think,
more useful if it were allowed to be a looser descriptive, including, as well, some of the other types
of analogical operations that I'll be listing. Analogy by expansion may have the appearance, after
the fact, of being a perfectly natural “analytic continuation,” so to speak, of a concept—such as
the development of zero and negative numbers as an expansion of whole numbers, and from there:
rational numbers, etc. BUT, the act itself may be, at the time and even somewhat afterwards, have
the shock value of a fundamental change. Even though Grothendieck topologies are half a century
old, and are (but only after you've learned the theory!) an utterly direct expansion of the more
classical notion of topology—an expansion that gets to the essence of that classical concept—there
is still the thrill of it as providing a radical refiguring of what it means to be a topology.

There is, however, a more modest version of analogy by expansion that we all, I believe, constantly
do: starting from a (B) that we either know to be true, or at least firmly believe to be true, we
look around for improvements (A) that are just a bit more general than (B), for which we can
show that

(A) = (B).

Even relatively small improvements, (A)’s that are no more than (B)+¢, so to speak, are fair game.
Subject to no palpable counter-indication, the proved implication confers a modicum of belief in
(B) + €. This is in the style of Amazon’s If you like X you’ll like Y, but here takes the form: If
you believe (B) why don’t you believe (B) + €7 As I hope will be clear from the Afterword (Section
?7?) below, it is this belief-expansion attitude that (I think) is also a plausible account of how Euler
came to his Conjecture.

Analogy as 'Rosetta stone’is where one subject, or branch of a subject—with its specific vocabulary—
is perceived as representing something of a model useful to predict what might be happening in
another subject, or branch, this latter subject often having quite different vocabulary, axioms, and
general set-up.

Here is André Weil’s famous paragraph on analogy—expressing a sentiment that I firmly disagree
with; nevertheless I keep quoting and re-quoting it:

Nothing is more fruitful—all mathematicians know it—than those obscure analogies,
those disturbing reflections of one theory on another; those furtive caresses, those in-
explicable discords; nothing also gives more pleasure to the researcher. The day comes
when this illusion dissolves: the presentiment turns into certainty; the yoked theories
reveal their common source before disappearing. As the Gita teaches, one achieves
knowledge and indifference at the same time.

What I believe has been shown to be true, time after time, in the development of mathematics is
that “yoked theories reveal their common source.” That is, analogies between two different theories
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are often the first indication that there lies in the future a more embracing context that allows
each of the theories that are currently yoked by analogy to be simply special instances of the larger
picture, their vocabulary merging.

Examples are easily come by, some of vast importance to the nature of our subject such as the
grand analogy between algebra and geometry. In fact, the trace of old mergers of distinct viewpoints
can be seen in the combination words that are now titles of basic subjects, such as Algebraic
Topology, Algebraic Geometry, Geometric Algebra (which is different, of course), Combinatorial
Group Theory, etc.

In recent years, we have witnessed the extraordinary predictive power of analogies that link physics
with mathematics—specifically: string theory with aspects of algebraic geometry—these coming
from various symmetries and dualities first conceived in physics. The mere extent and number of
examples here are staggering, but allow me to mention just one of them: on the basis of what
one might term a physical analogy Candelas, de la Ossa, Green (and others) conjectured a general
formula for the number of rational curves of any degree on a generic quintic threefold; e.g., the
number of rational curves of degree 5 was conjectured to be 242,467, 530,000. The general formula
was subsequently proved by Givental.

But physics (and physical intuition, broadly interpreted) has been offering mathematics an “analog-
ical laboratory” with predictions that are generally on the mark, for millennia. One need only turn
to Archimedes treatise On the quadrature of the parabola where he invokes his mechanical method—
which he does not regard as rigorous!—to compute the ratio of the area of a segment of a parabola
to the area of a triangle that he constructs based on the geometry of that parabolic segment.
Archimedes hints that he had also given what he called a geometric (rather than “mechanical”)
demonstration of this same quadrature, a demonstration that he felt was rigorous. Archimedes
performs mechanical method by laminating his parabolic segment, representing it as a continuum
of linear cuts, and making a corresponding lamination of the triangle to which he is comparing
his parabolic segment. Then, in effect, he “weighs” corresponding linear cuts (as if they had a
“weight” in proportion to their length) to obtain the result that the “weight” of his triangle is a
simple multiple of the weight of his parabolic segment (See [?])).

Now if you suspect that this is an argument that, if correct, could easily be affirmed by calculus,
you are right; but in Archimedes’ conception, The Method works on the strength of a correctly
guiding analogy that combines previously disparate intuitions that had originated in somewhat
different domains: the experience one has with a certain weighing apparatus and the intuition one
has via Euclidean geometry.

4 Summary so far

I have sketched—or at least hinted at—three quite different engines of plausibility: reasoning by
consequence, by randomness, and by analogy.

Reasoning by consequence is the backbone of the inductive method. Its shortcoming is that in
practicing this method, we often aren’t clear whether or not the consequences that we have amassed
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in support of a general assertion are telling consequences. In number theory, for example, there are
general conjectures for which an immense amount of numerical data has been collected that actually
do not (at least significantly) support the general assertion, and in fact would naively suggest a
different qualitative guess ... and yet we still (at least currently) believe the general conjectures.
For an example of this see [?].

Reasoning by randomness has the danger that we may not be taking into consideration all system-
atic behavior relevant to the phenomena we are studying. Nevertheless it has two great advantages:
it is a starting position, a best current guess, worth contemplating to get what might be the lay
of the land, and even if not accurate, it is often an analysis that separates the supposed random
aspects (which may show up as ‘error terms”) from the more regular aspects (which may show up
as “dominant terms”) of the phenomena. In number theory, those error terms may then also have
profound structure (e.g., See[?])).

But reasoning by analogy is, I think, the keystone: it is present in much (perhaps all) daily mathe-
matical thought, and is also often the inspiration behind some of the major long-range projects in
mathematics. And, André Weil was right when he said: “nothing also gives more pleasure to the
researcher.”

In number theory the Langlands Program is one of the grand analogies—currently being vigorously
pursued— connecting representation theory, algebraic geometry, and arithmetic.

The analogy between number fields and function-fields of one variable over finite fields is a more
elementary, and older example.This analogy views the two type of fields we mentioned as a single
entity ( called a global field) that is treatable in a unified way”.

5 Variants of ‘plausible’

In our discussion of Euler’s Conjecture, I hope that I've made a convincing argument that one could
(and Euler might have) come to believe his conjecture from a mix of the three brands of plausible
reasoning that I had labeled as separate categories at the beginning of my essay (consequence,
randomness, and analogy). My feeling is that if we think through the history of any of our personal
involvement with any mathematical issue that is important to us, all resources available to us will
be playing some role in the proceedings. The way these resources interact may be complex, and
may be key.

9But, as with all great analogies, its imperfections sparkle, raising questions that may lead to future theories, far
deeper than the ones we currently are at home with:

e What is the full story that connects the finite primes of a number field to its archimedean primes, its “primes
at infinity”?

e What is the full analogue in the context of number fields of the genus of a function field (of one variable) over
a finite field?

e Is there an analogue, in the context of number fields, of the product of the smooth projective models of function
fields (of one variable) over a finite field?
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And sometimes plausibility itself isn’t germaine. Thinking about possible mathematical strategies,
it is as natural to focus our attention on issues that are useful wedges, rather than plausible
formulations.

It can happen that our ideas are clarified by specifically formulating a particular yes or no question
whose answer we can’t guess; and yet the mere fact that we don’t have sufficient experience to even
make a strongly believed guess focuses the mind (a bit)*©.

Often our thoughts are peppered with fragments of possible patterns, possible formulations, and—
even more important—possible organizing principles, for which truth is not yet even meaningful,
for their truth will depend on their context, and that context is not yet fully determined, or fully
formed. There are some organizing principles the truth of which is implicitly stipulated, as the
lawyers say'!, these principles being of use to us as a guide to finding the context within which
they are valid. In Physics, conservation of energy served as such a guiding principle: of course
energy is to be conserved; and if one comes up with a situation where it seems not to be the case,
one doesn’t throw away the principle, but rather one revises one’s idea of what energy is.

To illustrate this type of phenomenon with a celebrated mathematical example, consider the Hilbert-
Pélya quest for a Hilbert space and Hermitian operator with characteristic series equal, after
appropriate normalization and correction, to the Riemann zeta-function. The point here is that if
such a Hilbert space and operator could be found, the Riemann hypothesis would follow. Conversely,
if the Riemann hypothesis is valid, we can concoct—merely formally—some such Hilbert-Pélya
model. So here plausibility simply isn’t the issue; it is rather a question of whether or not a
contemplation of this quest has some utility'2.

The Hilbert-Polya model has already shown its usefulness, if only because it invites us to think
about the zeroes of ((s) as related to the zeroes of analogous zeta-functions of algebraic varieties
over finite fields, these being the eigenvalues of a linear operator; and in another direction it connects
with Iwasawa’s Main Conjecture (which is proved, and) which identifies the zeroes of the p-adic
zeta-function companions to Riemann’s ((s) with eigenvalues of natural operators; and—going
in a completely different direction—the Hilbert-Polya model invites comparison of the zeroes of
((s) with eigenvalues of random matrices. To be sure, if it also inspires a proof of the Riemann
Hypothesis, that would be its crowning utility.

10Hjlbert’s Tenth Problem over Q is in my opinion, is one such question: is there a finite algorithm which tells
for any given system of polynomial equations in many variables over the rational numbers whether it has a rational
solution? Hilbert’s Tenth Problem over Z for polynomials of degree 3 in many variables is another such question:
Hilbert’s Tenth Problem over Z has been settled affirmatively for polynomials of degree < 2 by Siegel, and negatively
for polynomials of degree 4 (or higher) by Matjasevic; but degree 3 is a vastly different world and despite the fact
that there has been an immensely concentrated effort to understand this world, with a rich theory emerging from
this, a further step in our knowledge would be represented by our having, at least, a firm consensus for a guess—just
a guess—about the outcome (in degree 3) of the algorithmic problem posed by Hilbert.

"meaning that we agree without any further discussion to accept the principle

12Plausibility giving way to utility suggests that we’ve slipped into a bit of William James’ type pragmatism.
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6 Afterword: Euler’s Conjecture implies Gauss’s “Eureka Theo-
rem.”

Recall that we want to assume Euler’s Conjecture that any integer n > 0 occurs in an equation
(A) with a an integer and p a prime number,

(A)  3+8n=a*+2p,

and prove (what will eventually be Gauss’s Theorem; i.e.,) that any integer n > 0 is expressible as
a sum of three trigonal numbers. The proof of this is given in a series of steps and hints.

1. For any equation of the form (A) above, the number a is odd, and p is of the form 4¢ + 1.
(Proof: work the equation (A) modulo 8.)

2. If the prime p occurs in an equation of the form (A) then p is expressible as a sum of two
squares:
p=u?+ 02
(This is Fermat’s Theorem.)

3. If any number n > 0 occurs in an equation of the form (A) then any number n > 0 occurs in
an equation of the form
(A)  34+8n=ad>+b+c

with a, b, c odd integers. (Proof: If p = u? 4 v? take
b:=u+v, and c:=u—wv;

then work the equation (A’) modulo 8 to show oddness of a,b,c.) As usual, refer to the
proposition that asserts the above fact for any n > 0 as “(A’).”

4. Write
a=2rx+1,b=2y+1,c=2z+1,
for x,y, z integers; compute to get:
z(x+1) yly+1) z2(z+1)

B n=
()n2+2+2,

and going the other way, show that (B) = (A).

5. Conclude that (A) = (A') < (B).

We can now speculate more exactly about Euler’s plausibility thinking here. Euler believed (B),
and surely knew that (B) is logically equivalent to (A’). So, of course, he believed (A’), and he
knew that the passage from (A) to (A’) consisted in nothing more than replacing, in these contexts,

e the set of numbers that are of the form 2u? 4 2v? such that u? 4+ v? is an odd prime number

by
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e the set of numbers that are of the form 2u? 4+ 2v? such that u? + v? is an odd number.

I am thankful to William Dunham who sent me this portion of text where Euler formulates this
conjecture, the Euler Archive (E 566), as presented to the St. Petersburg Academy on Oct. 19,
1775. Euler muses quocirca quaestio huc redit: whether any number of the form 8NV + 3 can be
separated into two parts, one an odd square and the other the double of a prime of the form 4n + 1.

De refolutione numerorwin
in ternos trigonales.

§ 5. Si numerus N fuerit fumma trium trigona- |

Jum, hoc eft N == 2&k? 42yt 5 4 222, erit '
’

§N4-3—=(2 ¥4 1) (2y 4+ 1] + (234 1)
Quodfi igitur demonﬂran queat, omnes NuUmMeros formae
8N ~+ 3 effe fummas trium quadratorum, tum etiam de-
monftratum erit, omnes planc numeros N effe fummas tri-
um trigonalium; forma emm 8N -~ 3 nonnifi tribus qua«
dratis 1mpar1bus aequalis “efle poteft. Vnde fi fuerit

8N - g= (2 ¥+ 1)~ (27 -+ 1) 4 (22-+1)%

erit viciffim
N— =x+x+y!+y+zz+z

fdeoque fumma trium trigonalium. . 6

. §. 6. Nunc.in fubfidium vocemus theorema fupra
¢ memoratum: quod omnis numerus primus formae 4z x
4 fit fumma duornm quadratorum, ideoque 4i-+Y1=aa+bb; '
= gtque euidens eft etiam eius duplum 87~ 2 fore fum-«
« mam,_ duornm quadratorum; eft enim
‘ §7142 = (a4 Bf 4 (a— b

Quod fi ergo fingulis his numeris .87 -~ 2 addamus qua-
' drata imparia, .quae fiint formae 8m - 1, aggregata
. erunt vtigue fummae trium quadratorum’; horum autem

-aggregatorum forma erit 87+ 3; quocirca qu'aeﬂio huoc
redit: num omnes  numeri- formae N ——3 ita in duas
partes dinidi queant, vt vna {it quadratum impar, altera
“duplum numeri primi formae 47 1, quod vt in mino-"
ribus numeris faltem exploremus, ifta dupla vsque ad
¢ 200 ording exponamus :

- ”.’ 10,_26, 34, 58,74, 82, 3106, 122, I46, 178, 194, 202,

So, perhaps, his thoughts went as follows. Fermat has assured us (without revealing his proof) that
we get a correct proposition if we allow u? + v? to run through all odd numbers of that form. Can
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we sharpen things to get a better (and still correct!) proposition by requiring u? + v? to run only
through all odd prime numbers of that form? What a subtle guess, hinting at an inquiry concerning
the density of primes; this is especially striking since Euler did not have the advantage of Gauss’s
guesses approximating m(X); nor did he have any serious results giving relevant estimates.

And viewed from this perspective, it would seem that the mode of thought Euler is employing is a
straightforward sharpening of a known result, a form of analogy by expansion.

In summary, all modes of reasoning that I listed might have contributed to the motivation for
Fuler’s surmise.
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