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Part 1. Modular symbols, L-values, and θ-elements

As I mentioned in the first session, Karl Rubin and I—inspired by
the random matrix heuristics predictions of David-Fearnley-Kisilevsky
[1]—had the idea of developing a somewhat more naive heuristic (moti-
vated by the general statistics coming from the combinatorics of mod-
ular symbols) that might complement (and concur with—or not) the
random matrix predictions.

Our aim is to give (heuristic!) support for conjectures asserting that
elliptic curves have finitely generated Mordell-Weil groups over certain
large abelian number fields. I won’t get to the general formulation
of these conjectures, nor of the precise heuristics that connect to the
conjectures in this session. But I do want to give a general sense of
what is known (and what is conjectured) concerning modular symbols,
θ-elements and their statistics. It seems to me that there are many
computational projects connected to these objects that might be in-
teresting to consider. Much of this handout consists of pieces of text
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that I took (with Karl Rubin’s permission) from a draft of a paper that
Karl and I are writing.

1. Recall: Modular symbols

Lemma 1.1. In the discussion below, fix E an elliptic curve over Q
and let N be the conductor of E. Let δ = δE ∈ Z>0 be the lcm of the
orders of the torsion points in the Mordell-Weil group E(Q).

For r ∈ Q t {∞} we have:

(i) [r]± ∈ (2δ)−1Z,

(ii) [∞]± = 0,

(iii) [r]± = [r + 1]±,

(iv) [r]± = ±[−r]±,

(v) Invariance:
If

A :=

(
a b
cN d

)
∈ Γ0(N) ⊂ SL)2(Z),

so that for r ∈ Q t {∞},
A(r) = (ar + b)/(cNr + d) ∈ Q t {∞},

we have the following relation in modular symbols:

[r]± = [A(r)]± − [A(∞)]±,

and if A ∈ Γ0(N),as automorphism of H, has a complex (qua-
dratic) fixed point, then [A(∞)]± = 0, and therefore:

[A(r)]± = [r]±

for all r ∈ Q t {∞},

(vi) Atkin-Lehner relation: Suppose m ≥ 1 and write N = ef
where f := gcd(m,N). If a, d ∈ Z, and ade ≡ 1 (mod m),
and we is the eigenvalue of the Atkin-Lehner operator We on
fE, then

[d/m]± = −we · [a/m]±,

(vii) Hecke relations: Suppose ` is a prime, and a` is the `-th
Fourier coefficient of fE.
(a) If ` - N , then a` · [r]± = [`r]± +

∑`−1
i=0 [(r + i)/`]±.
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(b) If ` | N , then a` · [r]± =
∑`−1

i=0 [(r + i)/`]±.

Proof. The proofs of (i)—(v) are evident. For (vi), here is a construc-
tion of the Atkin-Lehner operator We. Let f = gcd(m,N) and N = ef.
The We operator is given by (any) matrix of the following form:

We :=

(
ae b
cN de

)
,

with a, b, c, d ∈ Z and det(We) = e.
Let c = m/f . Then (since e and f are relatively prime) we can find

a and b to make a matrix of the desired form, and then

We(∞) = ae/cN = a/cf = a/m,

and (computing)

We(d/m) =∞
Thus We takes the path {∞, d/m} to the path {a/m,∞}. It follows
that [d/m] = −wE[a/m] where wE is the eigenvalue of We acting on
the newform uniformizing E, and ade ≡ 1(mod f) (the latter because
det(We) = e).

The proof of (vii) is straightforward. �

Remarks 1. (i) A random example: For the elliptic curve E :=“11a”
(aka: X0(11)) here are the values of [a/13]+E.

[0]+ = 1/5,

[
1

13
]+ = −4/5,

[
2

13
]+ = [

3

13
]+ = 17/10,

[
4

13
]+ = [

5

13
]+ = [

6

13
]+ = −4/5.

Note that X0(11) has a rational point of order 5, so δ = 5;
hence the denominators of the values are multiples of 2δ =
10. If you believe BSD and the Shafarevitch-Tate conjecture
the 1/5 already tells us (the true fact!) that the Mordell-Weil
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group of X0(11) is of order 5 and the Shafarevitch-Tate group
is trivial.

(ii) SAGE conveniently computes modular symbols data (for a hint
of this, see W. Stein’s http: // doc. sagemath. org/ html/

en/ reference/ modsym/ sage/ modular/ modsym/ modular_ symbols.

html ).

(iii) Note that as in Chi-Yun’s lecture, the computation of modular
symbols via “Manin symbols’” follows the route of a contin-
ued fractions (i.e., Euclidean algorithm-type) reduction so one
gets a qualitative (“log”) upper bound for the size of modular
symbols:

|[a/m]±| � log(m).

(iv) The Hecke relation vii(a) above applied to a prime ` - N , and
r = 0 gives us

(1.2) (a` − 1) · [0]+ =
`−1∑
i=0

[i/`]+ = L(E, 1)/Ω+

and moving one “[0]+” from right to left in 1.2 and switching
sides we get:

(1.3)
`−1∑
i=1

[i/`]+ = (a` − 2) · [0]+

Proceeding similarly by induction, we have:

Proposition 1.4. Let m =
∏ν

j=1 `j be square free (the `j being

distinct primes) and prime to N , then:

(1.5)
∑

(i,m)=1; i≤m

[i/m]+ =

ν∏
j=1

(a`j − 2) · [0]+

http://doc.sagemath.org/html/en/reference/modsym/sage/modular/modsym/modular_symbols.html
http://doc.sagemath.org/html/en/reference/modsym/sage/modular/modsym/modular_symbols.html
http://doc.sagemath.org/html/en/reference/modsym/sage/modular/modsym/modular_symbols.html
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2. Recall: Modular symbols and L-values

Definition 2.1. Suppose χ is a primitive Dirichlet character of con-
ductor m. Define the Gauss sum

τ(χ) :=
m∑
a=1

χ(a)e2πia/m

and, if L(E, s) =
∑
ann

−s, the twisted L-function

L(E,χ, s) :=
∞∑
n=1

χ(n)ann
−s.

If F/Q is a finite abelian extension of conductor m, we will identify
characters of Gal(F/Q) with primitive Dirichlet characters of conductor
dividing m in the usual way.

Proposition 2.2. If F/Q is a finite abelian extension, then

L(E/F , s) =
∏

χ:Gal(F/Q)→C×
L(E,χ, s).

Corollary 2.3. If the Birch and Swinnerton-Dyer conjecture holds for
E/Q and E/F , then

rank(E(F )) = rank(E(Q)) +
∑

χ:Gal(F/Q)→C×
χ 6=1

ords=1L(E,χ, s).

Theorem 2.4 (Birch-Stevens). If χ is a primitive Dirichlet character
of conductor m, then

m∑
a=1

χ(a)[a/m]ε =
τ(χ)L(E, χ̄, 1)

Ωε
E

.

where the sign ε is equal to the sign of the character χ, i.e., ε =
χ(−1).

Remark: This also works for the trivial primitive character applied
to the element r = 0 ∈ P1(Q):

(2.5) [0]+ = L(E, 1)/Ω+
E.

(so the vanishing of L(E, s) at s = 1 is equivalent to [0]+ = 0).
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3. Recall: θ-elements and θ-coefficients

Definition 3.1. Suppose m ≥ 1, and let Gm = Gal(Q(µm)/Q). Iden-
tify Gm with (Z/mZ)× in the usual way, and let σa,m ∈ Gm be the
Galois automorphism corresponding to a ∈ (Z/mZ)× (i.e., σa,m acts
on µm as raising to the a-th power). Define

θ±m := 2δ
∑

a∈(Z/mZ)×
[a/m]± σa,m ∈ Z[Gm].

If F/Q is a finite abelian extension of conductor m, so F ⊂ Q(µm),
define the θ-element (over F , associated to E) to be:

θ±F := θ±m|F ∈ Z[Gal(F/Q)]

where θ±m|F is the image of θ±m under the natural restriction homomor-
phism

Z[Gal(Q(µm)/Q)]→ Z[Gal(F/Q)].

Note: We probably should denote θF as θF/Q to emphasize that
the base field here is Q. An interesting project is to develop and pos-
sibly find algorithms for computing the analogous ‘θ-elements,’ θF/K
for cyclic Galois extensions F/K where K is a more general num-
ber field. There is such a theory of ‘θ-elements’ (gotten by reverse-
engineering the appropriate generalization of Theorem 2.4); and con-
jecturally θF/K ∈ Z[Gal(F/K)] ⊂ C[Gal(F/K)].

By Lemma 1.1(i) we have

(3.2) θ±F =
∑

γ∈Gal(F/Q)

c±F,γ · γ ∈ Z[Gal(F/Q)]

where

(3.3) c±F,γ = 2δ ·
∑

a (mod m)
σa,m|F=γ

[a/m]±.

We will refer to the c±F,γ ∈ Z as θ-coefficients. Since we will most
often be dealing with the ‘plus’-θ-elements, we will simplify notation
by letting θF := θ+F , cF,γ := c+F,γ, and Ω := Ω+. If F is a real field, then
σ−1,m|F = 1, so

(3.4) cF,γ = 2δ ·
∑

a∈(Z/mZ)×/{±1}
σa,m|F=γ

[a/m].
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Remark: From the definition 3.3 we have

(3.5)
∑

γ∈Gal(F/Q)

cF,γ = 4δ ·
∑

i∈(Z/mZ)×/{±1}

[i/m].

and therefore by Proposition 1.4, if m =
∏ν

j=1 `j is squarefree and
prime to N , we have:

(3.6)
∑

γ∈Gal(F/Q)

cF,γ = 4δ ·
ν∏
j=1

(a`j − 2) · [0]+.

Proposition 2.4 can be rephrased as follows:

Corollary 3.7. Suppose F/Q is a finite real cyclic extension of con-
ductor m and χ : (Z/mZ)× � Gal(F/Q) ↪→ C× is a character that
cuts out F . Then

(3.8) χ̄(θF ) = 2δ · τ(χ̄)L(E,χ, 1)

ΩE

.

4. θ-elements for cyclic field extensions of prime order

(i) Let χ be a character of order a prime number p > 2 and of
squarefree conductor m =

∏ν
j=1 `j relatively prime to N , so

p |φ(m) and then (by Equation 3.2)

χ̄(θF ) =
∑

γ∈Gal(F/Q)

c+F,γ · χ̄(γ) ∈ Z[e2πi/p].

If γ0 ∈ Gal(F/Q) is a generator of the group Gal(F/Q),
putting ζp := χ̄(γ0) we can write the above equation as:

χ̄(θF ) =

p−1∑
i=0

c+
F,γio
· ζ ip ∈ Z[e2πi/p].

So, the vanishing of χ̄(θF ) (equivalently: of L(E,χ, 1)) oc-
curs if and only if all the c+F,γ are equal. Recalling:

(4.1)
∑

γ∈Gal(F/Q)

cF,γ = 4δ ·
ν∏
j=1

(a`j − 2) · [0]+.

we get:
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Proposition 4.2. Let χ be a character of order a prime num-
ber p > 2 and of squarefree conductor m =

∏ν
j=1 `j relatively

prime to N , cutting out the Galois cyclic field extension F/Q
(of order p) then the following are equivalent:

(a) χ(θF ) = 0,

(b) L(E,χ, 1) = 0,

(c) For all γ ∈ Gal(F/Q)

(4.3) cF,γ =
4δ

p
·

ν∏
j=1

(a`j − 2) · [0]+.

(ii) Example: E := X0(11) over Q

The Mordell-Weil group of E) is cyclic of order 5. So δ = 5.
Also (see Remark 1 above) we have [0]+E = 1

5
.

So if χ satisfies the hypotheses of Proposition 4.2, and if
L(E,χ, 1) = 0, Equation 4.3 above would read:

(4.4) cF,γ =
4

p
·

ν∏
j=1

(a`j − 2).

and since cF,γ ∈ Z this would force

a`j ≡ 2 mod p

for at least one j = 1, 2, . . . , ν. That is, we have the converse:

If χ satisfies the hypotheses of Proposition 4.2 then

a`j 6≡ 2 mod p, for all j ≤ ν =⇒ L(E,χ, 1) 6= 0.

Discuss the corresponding issues with Selmer.

5. The effect of the Atkin-Lehner involution on
θ-coefficients

Definition 5.1. Suppose F is a finite real cyclic extension of Q, let m
be its conductor, and let f = gcd(m,N) where N is the conductor of
E and assume that f is relatively prime to e := N/f . Let γF be the
image of e under the map

(Z/mZ)× � Gal(F/Q).
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Define an involution ιF of the set Gal(F/Q) by

ιF (γ) = γ−1γ−1F .

Recall that θF =
∑

γ∈Gal(F/Q) cF,γγ.

Lemma 5.2. Suppose F is a finite real cyclic extension of Q.

(i) We have

cF,γ = −wecF,γ′

where γ′ := ιF (γ) = γ−1γ−1F and where we is the eigenvalue of
the Atkin-Lehner operator We acting on fE.

(ii) The fixed points of ιF are the square roots of γ−1F in Gal(F/Q),
so the number of fixed points is:
• one if [F : Q] is odd,
• zero if γF is not a square in Gal(F/Q),
• two if [F : Q] is even and γF is a square in Gal(F/Q).

(iii) If γ = ιF (γ) and we = 1, then cF,γ = 0.

Proof. Assertion (a) follows from the Atkin-Lehner relations satisfied
by the modular symbols (Lemma 1.1(iv)). Assertion (b) is immediate
from the definition, and (c) follows directly from (a). �

Definition 5.3. If F/Q is a real cyclic extension, we say that γ ∈
Gal(F/K) is generic, (resp., special+, resp., special−) if γ 6= ιF (γ)
(resp., γ = ιF (γ) and we = −1, resp., γ = ιF (γ) and we = 1).

By Lemma 5.2(iii), if γ is special− then cF,γ = 0.

Part 2. Statistics of modular symbols, theta-elements, and
L-values

6. Distribution of modular symbols

The following fundamental result about the distribution of modular
symbols was proved by Petridis and Risager (cf. (8.6) of [4]). For
simplicity, we will formulate these results only if the conductor N of E
is squarefree (even though their results are more general).

Definition 6.1. Let CE := 6/π2
∏

p | m(1 + p−1)−1 · L(Sym2(E), 2).
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Theorem 6.2 (Petridis & Risager [4]). As X goes to infinity the values{
[a/m]+√

log(m)
: m ≤ X, a ∈ (Z/mZ)×

}
approach a normal distribution with variance CE.

Numerical experiments led to the following conjecture. Denote by
Var(m) the variance

Var(m) :=
1

ϕ(m)

∑
a∈(Z/mZ)×

([a/m]+)2

Conjecture 6.3. (i) As m goes to infinity, the distribution of the
sets {

[a/m]+√
log(m)

: a ∈ (Z/mZ)×
}

converge to a normal distribution with mean zero and variance
CE.

(ii) For every divisor κ of the conductor N , there is a constant
DE,κ ∈ R such that

lim
m→∞

(m,N)=κ

(Var(m)− CE log(m)) = DE,κ.

Note that Theorem 6.2 is an “averaged” version of Conjecture 6.3(i).
Inspired by Conjecture 6.3, Petridis and Risager [5, Theorem 1.6] ob-
tained the following result, which identifies the constant DE,κ and
proves an averaged version of Conjecture 6.3(ii).

Theorem 6.4 (Petridis & Risager [5]). We continue to suppose that
N is squarefree. For every divisor κ of N , there is an explicit (see [5,
(8.12)]) constant DE,κ ∈ R such that

lim
X→∞

1∑
m<X

(m,NE)=κ

ϕ(m)

∑
m<X

(m,N)=κ

ϕ(m)(Var(m)− CE log(m)) = DE,κ.

(Yesterday) I also received a very new preprint by Junwong Lee and
Hae-Sung Sun Dynamics of Continued Fractions and Distribution of
Modular Symbols with a very different proof of these results. (I have
the permission of the authors to put it on the course web-page—which
I’ll do.)
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6.1. The ‘irrelevant’ nonrandomness of the modular symbols.

Remark 6.5. The modular symbols are not completely “random” sub-
ject to Conjecture 6.3. Specifically partial sums

∑β
a=α[a/m] behave in

a somewhat orderly way—even though it seems only to be the full sum
that affects the statistics of θ-coefficients. Numerical experiments led
the authors and William Stein to propose the following conjecture.

Conjecture 6.6. If 0 < x < 1 then

lim
m→∞

1

m

mx∑
a=1

[a/m] =
∞∑
n=1

an sin(πnx)

n2ΩE

where
∑

n anq
n is the modular form fE corresponding to E.

This conjecture was recently proved for prime denominators by Kim
and Sun [3, Theorem A].

Theorem 6.7 (Kim & Sun [3]). If 0 < x < 1 then

lim
m→∞
m prime

1

m

mx∑
a=1

[a/m] =
∞∑
n=1

an sin(πnx)

n2ΩE

.

7. Distribution of θ-coefficients

By (3.4), if γ is generic (resp., special+) then the theta coefficient
cF,γ is twice a sum of ϕ(m)/(2[F : Q]) modular symbols (resp., four
times a sum of ϕ(m)/(4[F : Q]) modular symbols). If these were
randomly chosen modular symbols, one would expect from Conjecture
6.3(i) that these coefficients would have a normal distribution with
variance 2CEϕ(m) log(m)/[F : Q] (resp., variance 4CEϕ(m) log(m)/[F :
Q]).

However, calculations do not support this expectation. Instead, they
support the following conjecture—which our hope is to eventually make
a good deal more precise!

For every d > 2, let Σd denote the collection of data

Σd :=

{
cF,γ
√
d√

ϕ(m) log(m)
: F/Q real, cyclic of degree d,

m = cond(F ), γ ∈ Gal(F/Q) generic

}
,

ordered by m. Let Σ+
d be defined in the same way, for γ special+ instead

of generic.
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Conjecture 7.1. For every d ≥ 2, the collections of data Σd and Σ+
d ,

ordered by m, have limiting distributions ΛE,d(t) and Λ+
E,d(t). As d

grows, ΛE,d(t) (resp., Λ+
E,d(t)) converges to a normal distribution with

variance 2CE (resp., 4CE).

Question 7.2. Is it the case that for d � 0 ΛE,d(t) and Λ+
E,d(t) are

continuous bounded functions?
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