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Part 1. Modular symbols, L-values, and #-elements

As I mentioned in the first session, Karl Rubin and I—inspired by
the random matrix heuristics predictions of David-Fearnley-Kisilevsky
[I]—had the idea of developing a somewhat more naive heuristic (moti-
vated by the general statistics coming from the combinatorics of mod-
ular symbols) that might complement (and concur with—or not) the
random matrix predictions.

Our aim is to give (heuristic!) support for conjectures asserting that
elliptic curves have finitely generated Mordell-Weil groups over certain
large abelian number fields. I won’t get to the general formulation
of these conjectures, nor of the precise heuristics that connect to the
conjectures in this session. But I do want to give a general sense of
what is known (and what is conjectured) concerning modular symbols,
f-elements and their statistics. It seems to me that there are many
computational projects connected to these objects that might be in-

teresting to consider. Much of this handout consists of pieces of text
1
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that I took (with Karl Rubin’s permission) from a draft of a paper that
Karl and I are writing.

1. Recall: MODULAR SYMBOLS

Lemma 1.1. In the discussion below, fix E an elliptic curve over Q
and let N be the conductor of E. Let 6 = 6g € Z~qo be the lem of the
orders of the torsion points in the Mordell-Weil group E(Q).

Forr e QU {oo} we have:
(i) []* € (20)7'Z,
(i) [oo]*

(i) [r]* = [r+ 1%,

(iv) [r]* = £[-r]*,
)

(v) Invariance:

If

a b

A= ( N d ) e I'o(N) C SL)2(Z),
so that for r € QU {oo},

A(r) = (ar +b)/(eNr +d) € QU {0},
we have the following relation in modular symbols:

1™ = [A(r)]* = [A(c0)]F,
and if A € T'o(N),as automorphism of H, has a complex (qua-
dratic) fived point, then [A(o0)]* = 0, and therefore:
[A(r)]* = [r]*

for all r € QU {00},

(vi) Atkin-Lehner relation: Suppose m > 1 and write N = ef
where f := ged(m,N). If a,d € Z, and ade = 1 (mod m),
and w, s the eigenvalue of the Atkin-Lehner operator W, on
fE, then

[d/m]* = —w, - [a/m]*,

(vii) Hecke relations:  Suppose ¢ is a prime, and a, is the (-th
Fourier coefficient of fg.

() IfCE N, then ag- [r]* = [0r]F + 325 [(r + 1) /0%
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(b) If | N, then ag- [r]* = Y12y [(r + 1) /0]*.

Proof. The proofs of (i)—(v) are evident. For (vi), here is a construc-
tion of the Atkin-Lehner operator W,. Let f = ged(m, N) and N = ef.
The W, operator is given by (any) matrix of the following form:

ae b
We':(c]\f de)’

with a,b,c,d € Z and det(WW,) = e.
Let ¢ =m/f. Then (since e and f are relatively prime) we can find
a and b to make a matrix of the desired form, and then

We.(o00) =ae/cN =a/cf = a/m,
and (computing)

We(d/m) = oo
Thus W, takes the path {oo,d/m} to the path {a/m,oc0}. It follows
that [d/m] = —wgla/m] where wg is the eigenvalue of W, acting on

the newform uniformizing F, and ade = 1(mod f) (the latter because
det(W,) = e).
The proof of (vii) is straightforward. O

Remarks 1. (i) A random example: For the elliptic curve E :=“11a”

(aka: Xo(11)) here are the values of [a/13]L.

0" =1/5,
1 +
[E] = —4/5,
21" = []* =17/10,
4 + 5 + 6 + _
[E] = [E] = [1—3] = —4/5.

Note that Xo(11) has a rational point of order 5, so § = 5;
hence the denominators of the values are multiples of 20 =
10. If you believe BSD and the Shafarevitch-Tate conjecture
the 1/5 already tells us (the true fact!) that the Mordell-Weil



(iii)

(1.3)

(1.5)
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group of Xo(11) is of order 5 and the Shafarevitch-Tate group
15 trivial.

SAGE conveniently computes modular symbols data (for a hint

of this, see W. Stein’s http://doc. sagemath. org/html/

en/ reference/modsym/ sage/ modular/ modsym/modular_ symbols.
html ).

Note that as in Chi-Yun’s lecture, the computation of modular
symbols via “Manin symbols™ follows the route of a contin-
ued fractions (i.e., Buclidean algorithm-type) reduction so one
gets a qualitative (“log”) upper bound for the size of modular
symbols:

la/m)*| < log(m).

The Hecke relation vii(a) above applied to a prime {1 N, and
r =0 gives us

(\
>_A

(ae—1)-[0]" [ /07 = L(E,1)/Q7

%

I§
o

and moving one “0]77 from right to left in and switching
sides we get:

N

-1

[i/0" = (ae —2) - [0]"

=1

Proceeding similarly by induction, we have:

Proposition 1.4. Let m = H]';l ; be square free (the {; being

distinct primes) and prime to N, then:

> li/m* =], -2 0]

(1,m)=1; i<m j=1


http://doc.sagemath.org/html/en/reference/modsym/sage/modular/modsym/modular_symbols.html
http://doc.sagemath.org/html/en/reference/modsym/sage/modular/modsym/modular_symbols.html
http://doc.sagemath.org/html/en/reference/modsym/sage/modular/modsym/modular_symbols.html
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2. Recall: MODULAR SYMBOLS AND L-VALUES

Definition 2.1. Suppose y is a primitive Dirichlet character of con-
ductor m. Define the Gauss sum

m

7(x) = Y x(a)e*mem

a=1

and, if L(E,s) =>_ a,n"*, the twisted L-function

L(E,x,s):= Z x(n)a,n*.
n=1

If F/Q is a finite abelian extension of conductor m, we will identify
characters of Gal(F/Q) with primitive Dirichlet characters of conductor
dividing m in the usual way.

Proposition 2.2. If F/Q is a finite abelian extension, then

L(E/p,s) = II ZExs).
x:Gal(F/Q)—Cx

Corollary 2.3. If the Birch and Swinnerton-Dyer conjecture holds for
E,q and E/p, then

rank(E(F)) = rank(E(Q)) + Z ords—1 L(E, x, 5).
x:Gal(F/Q)—C*
x#1

Theorem 2.4 (Birch-Stevens). If x is a primitive Dirichlet character
of conductor m, then

- . _ TOOL(E, )
> x(@lafm) = TR

a=1

where the sign € is equal to the sign of the character x, i.e., € =
xX(—1).

Remark: This also works for the trivial primitive character applied
to the element r = 0 € P}(Q):

(2.5) 0]* = L(E, 1)/9%.

(so the vanishing of L(E, s) at s = 1 is equivalent to [0]" = 0).
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3. Recall: §-ELEMENTS AND O-COEFFICIENTS

Definition 3.1. Suppose m > 1, and let G, = Gal(Q(w,,,)/Q). Iden-
tify G, with (Z/mZ)* in the usual way, and let 0,,, € G, be the
Galois automorphism corresponding to a € (Z/mZ)* (i.e., 04m acts
on ,, as raising to the a-th power). Define

0= =20 Z [a/m]* 04 €  Z[G)].

a€(Z/mZ)*

If F/Q is a finite abelian extension of conductor m, so F' C Q(w,,),
define the #-element (over F, associated to E) to be:

O == 0nlr € Z[Gal(F/Q)]

where 0= | is the image of 6= under the natural restriction homomor-
phism

Z[Gal(Q(p,,)/Q)] — Z[Gal(F/Q)].

Note: We probably should denote 0f as /g to emphasize that
the base field here is Q. An interesting project is to develop and pos-
sibly find algorithms for computing the analogous ‘0-elements,” 0p )k
for cyclic Galois extensions F/K where K is a more general num-
ber field. There is such a theory of ‘G-elements’ (gotten by reverse-
engineering the appropriate generalization of Theorem ; and con-
jecturally O i € Z|Gal(F/K)] C C[Gal(F/K)).

By Lemma [1.1](i) we have

(3.2) 0r= > cf,-v€ZGal(F/Q)
vEGal(F/Q)
where
(3.3) Cry =20+ Y [a/m]*.
a (mod m)
Oa 'mIF:’Y

We will refer to the cF € Z as 0-coefficients. Since we will most
often be dealing with the plus -f-elements, we will simplify notation
by letting 0p := 0, cpy = ¢, and Q 1= Q+ If F' is a real field, then

0_1m|F =1, s0

(3.4) Cpny=20" Z [a/m)].
a(Z/mZ)* J{+1}
O'a,m‘F:’y
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Remark: From the definition 3.3 we have

(3.5) > epy=45- > i/ml.

vEGal(F/Q) i€(Z/mZ)* J{£1}

and therefore by Proposition , if m = H;’:l ¢; is squarefree and
prime to N, we have:

(3.6) > epy=45- H(% —2)-[0]*.

Y€Gal(F/Q)

Proposition [2.4] can be rephrased as follows:

Corollary 3.7. Suppose F/Q is a finite real cyclic extension of con-

ductor m and x : (Z/mZ)* — Gal(F/Q) — C* is a character that
cuts out I'. Then

(3.8) 2(0p) = 26 - TOLE 1)

4. 9-ELEMENTS FOR CYCLIC FIELD EXTENSIONS OF PRIME ORDER

(i) Let x be a character of order a prime number p > 2 and of
squarefree conductor m = H;;l ¢; relatively prime to N, so

p |¢p(m) and then (by Equation

XO0r)= D chy - x() €Z[ET).
Y€Gal(F/Q)

If vo € Gal(F/Q) is a generator of the group Gal(F/Q),
putting ¢, := x(70) we can write the above equation as:

=0
So, the vanishing of Y (fr) (equivalently: of L(E,x,1)) oc-
curs if and only if all the c}ﬁ are equal. Recalling:

~

(4.1) > ey =45-[](ay, —2)-[0]".
YEGal(F/Q) j=1
we get:
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Proposition 4.2. Let x be a character of order a prime num-
ber p > 2 and of squarefree conductor m = H;:1 ¢, relatively
prime to N, cutting out the Galois cyclic field extension F/Q
(of order p) then the following are equivalent:

(a) x(0r) =0,
(b) L(E,x,1) =0,
(c) For all v € Gal(F/Q)
(43) cro =0 TJar, =) 10"

J=1

(ii) Example: E := X;(11) over Q

The Mordell-Weil group of E) is cyclic of order 5. So § = 5.

Also (see Remark [1| above) we have [0]f = 1.

So if x satisfies the hypotheses of Proposition [£.2] and if
L(E, x,1) =0, Equation above would read:

(4.4) Cry = é JJ(ar, —2).
j=1
and since cp, € Z this would force
ag;, =2 mod p
for at least one 7 =1,2,...,v. That is, we have the converse:

If y satisfies the hypotheses of Proposition [4.2] then
ag; Z#2 mod p, forall j <v = L(E,x,1) #0.

Discuss the corresponding issues with Selmer.

5. THE EFFECT OF THE ATKIN-LEHNER INVOLUTION ON
f-COEFFICIENTS

Definition 5.1. Suppose F' is a finite real cyclic extension of Q, let m
be its conductor, and let f = ged(m, N) where N is the conductor of
E and assume that [ is relatively prime to e := N/f. Let vr be the
image of e under the map

(Z/mZ)* — Gal(F/Q).
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Define an involution ¢tz of the set Gal(F'/Q) by
r(7) =~y
Recall that 0p = >° q.r/0) CFr Y-
Lemma 5.2. Suppose F' is a finite real cyclic extension of Q.

(i) We have

CFry = —WeCFy

where 7' := 1p(y) = v 1va" and where w, is the eigenvalue of
the Atkin-Lehner operator W, acting on fg.

(ii) The fized points of Lp are the square roots of vz in Gal(F/Q),
so the number of fixed points is:
e one if [F: Q] is odd,
e zero if yp is not a square in Gal(F/Q),
e two if [F : Q] is even and g is a square in Gal(F/Q).

(iii) If v = tp(7y) and w. =1, then cp, = 0.

Proof. Assertion (a) follows from the Atkin-Lehner relations satisfied
by the modular symbols (Lemma [I.1iv)). Assertion (b) is immediate
from the definition, and (c) follows directly from (a). O

Definition 5.3. If F//Q is a real cyclic extension, we say that v €
Gal(F/K) is generic, (resp., special™, resp., special™) if v # tp(7)
(resp., ¥ = tp(7y) and w, = —1, resp., v = tp(7y) and w, = 1).

By Lemma [5.2[(iii), if 7 is special~ then ¢p,, = 0.

Part 2. Statistics of modular symbols, theta-elements, and
L-values

6. DISTRIBUTION OF MODULAR SYMBOLS

The following fundamental result about the distribution of modular
symbols was proved by Petridis and Risager (cf. (8.6) of [4]). For
simplicity, we will formulate these results only if the conductor N of £
is squarefree (even though their results are more general).

Definition 6.1. Let Cp := 6/7°[[, |, (L +p~")7"- L(Sym?*(E), 2).
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Theorem 6.2 (Petridis & Risager [4]). As X goes to infinity the values

{%:mgxae (Z/mZ)X}

approach a normal distribution with variance Cg.

Numerical experiments led to the following conjecture. Denote by
Var(m) the variance

arm':L am+2
Var(m) i= — >ae<%z>x([/ )

Conjecture 6.3. (i) Asm goes to infinity, the distribution of the

sets
{ [a/m]"
log(m)
converge to a normal distribution with mean zero and variance
Cg.
(ii) For every divisor k of the conductor N, there is a constant
Dg € R such that

ra € (Z/mZ)X}

lim  (Var(m) — Cplog(m)) = D,
(m,N)=k

Note that Theorem[6.2]is an “averaged” version of Conjecture [6.3|i).
Inspired by Conjecture (6.3 Petridis and Risager [5, Theorem 1.6] ob-
tained the following result, which identifies the constant Dg, and
proves an averaged version of Conjecture (ii).

Theorem 6.4 (Petridis & Risager [5]). We continue to suppose that
N is squarefree. For every divisor k of N, there is an explicit (see [5,
(8.12)]) constant Dg,, € R such that

1

lim —— o(m)(Var(m) — Cglog(m)) = Dg,.
Xooo 37 p(m) n;(
(N gy=r (m,N)=r

(Yesterday) 1 also received a very new preprint by Junwong Lee and
Hae-Sung Sun Dynamics of Continued Fractions and Distribution of
Modular Symbols with a very different proof of these results. (I have
the permission of the authors to put it on the course web-page—which
I'll do.)
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6.1. The ‘irrelevant’ nonrandomness of the modular symbols.

Remark 6.5. The modular symbols are not completely “random” sub-
ject to Conjecture . Specifically partial sums Zf:a[a/ m] behave in
a somewhat orderly way—even though it seems only to be the full sum
that affects the statistics of f-coefficients. Numerical experiments led
the authors and William Stein to propose the following conjecture.

Conjecture 6.6. If0 < x < 1 then

mx
. 1 a, sin(mnz)
lim — g la/m] = 5 ——e—
m—00 M, £ n2Qg

where Y an,q" is the modular form fg corresponding to E.

This conjecture was recently proved for prime denominators by Kim
and Sun [3| Theorem A].

Theorem 6.7 (Kim & Sun [3]). If0 <z <1 then

mx

: 1 =1 ay, sin(mnr)
A, D lafml = =

m prime a=1 n=1

7. DISTRIBUTION OF #-COEFFICIENTS

By (3.4), if v is generic (resp., special™) then the theta coefficient
cp~ s twice a sum of ¢(m)/(2[F : Q]) modular symbols (resp., four
times a sum of ¢(m)/(4[F : Q]) modular symbols). If these were
randomly chosen modular symbols, one would expect from Conjecture
6.3(i) that these coefficients would have a normal distribution with
variance 2Cgp(m)log(m)/[F : Q] (resp., variance 4Cgp(m) log(m)/[F :
Q).

However, calculations do not support this expectation. Instead, they
support the following conjecture—which our hope is to eventually make
a good deal more precise!

For every d > 2, let 3, denote the collection of data

d

Y= { croVd : F/Q real, cyclic of degree d,
p(m)log(m)

m = cond(F), v € Gal(F/Q) generic}7

ordered by m. Let ¥} be defined in the same way, for 7 special™ instead
of generic.
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Conjecture 7.1. For every d > 2, the collections of data ¥4 and -,
ordered by m, have limiting distributions Apq(t) and A 4(t). As d
grows, Mg a(t) (resp., Af4(t)) converges to a normal distribution with
variance 2Cg (resp., 4Cg).

Question 7.2. Is it the case that for d > 0 Agq4(t) and AF ,(t) are
continuous bounded functions?
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