
1. Math 258: L-Functions and Arithmetic Statistics

The format of this “topics course” Math 258 will consist of some
lectures from me (and possibly other faculty and guests) but I hope
it will mainly be composed of student lectures. Even though the title
of our course is L-Functions and Arithmetic Statistics, the aim is to
understand as best we can the nature of rational points on algebraic
curves—both statistics related to this and explicit methods of compu-
tation.

There are no exams in this course—the only requirements will be
(a) participation in general and (b) specifically: to give one or two
lectures on a topic germane to one of the three the general areas related
to modular symbols and arithmetic described below. The focus will
be background to appreciate some of the current work in this area—
e.g., in arithmetic statistics, Chabauty’s technique and its very recent
elaborations, and Selmer groups. How much time, we spend on any of
these areas will depend on the preference of the participants.

Here, then, is the general spread of our topics:

Modular symbols −→ Θ-elements −→

−→ Special values of L-functions −→ L-functions −→

conjecture−→

−→ Selmer groups or varieties −→ Rational points

I.e.,

Combinatorics −→ Analysis −→ Algebraic number theory and geometry −→ Arithmetic
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2. General comments

How many rational points are there? Theorems, Conjectures, Statistics:

Since we’ve been trying—for millennia—to understand phenomena
related to rational points (of curves or of varieties of various types)
it’s of interest to take stock of current work (proved, or conjectured)
regarding general statistical features of these phenomena; and to study
whatever new developments—either proved or conjectured—that there
are for actual computation and determination (e.g., of these statistics,
and of the rational points themselves).

Conjectures (and some results) suggest that, on the whole, algebraic
varieties over a number field K tend not to have all that many K-
rational points unless either

• there is some specific algebraic geometric structure (e.g., a
group structure in the works) generating them,

or, in the case, say, of abelian varieties

• a functional equation (proved, or conjectured) and a corre-
sponding root number computation predicts the parity of the
rank of a Mordell-Weil group (which in many cases allows one
to expect the existence of more rational points than is in evi-
dence without this prediction).

But lacking either reason for rational points to be abundant1 , the
sense is that they are scarce.

For curves, there is recent work that emphasizes the scarcity of
points. For example, the body of work of Manjul Bhargava and his col-
laborators offer (proved) results indicating, in general terms, that statis-
tically we may expect few rational points in various contexts; e.g., the
work of Manjul Bhargava, Benedict H. Gross, and Xiaoheng Wang may
be roughly interpreted as showing that most hyperelliptic curves of high
genus have relatively few rational points (Pencils of quadrics and the
arithmetic of hyperelliptic curves: http://arxiv.org/abs/1310.7692).

One also has classical results stemming from Chabauty’s method
such as Robert Coleman’s corollary (in Effective Chabauty, Duke Math.
J. 52 (1985), no. 3, 765-770) that any curve over Q of genus 2 with

1 A conjecture of Lang implies that a variety over a number field has infinitely
many rational points only if it contains a rational curve or a nontrivial image of an
abelian variety.
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good reduction at 2 or 3 and the Mordell-Weil rank of its jacobian ≤ 1
possesses at most 12 Q-rational points.

How many rational points are there? Heuristics:

Moreover, various different types of heuristics play a role in leading
us to expect further manifestations of ‘scarcity.’ For example:

• For elliptic curves, the remarkable guess (originally made by
Honda for families of quadratic twists of a single elliptic curve)
that there is a finite upper bound to the Mordell-Weil ranks
of all elliptic curves over Q has been given some support by
heuristics developed in the article A heuristic for boundedness
of ranks of elliptic curves2. The heuristic set-up here connects
to the earlier ‘Cohen-Lenstra’ heuristic regarding ideal class
groups. The conjecture, by the way, is that this maximal rank
is not only finite, but quite small.

• David, Fearnley, and Kisilevsky (DFK) make use of random
matrix heuristics to (essentially3) conjecture that if E is an
elliptic curve over Q for any prime number p > 5 there are
only finitely many cyclic extensions K of Q such that E(K) is
strictly larger than E(Q). (This connects with the question of
Diophantine stability for more general curves and varieties4, a
topic that we want to consider in this seminar-course.)

• Inspired by (DFK), Karl Rubin and I have been framing con-
jectures (and proving some theorems) and making some com-
putations regarding modular symbols to develop a somewhat
more naive heuristic format in hopes that it gives the same
qualitative conclusion as DFK. Curiously—although the qual-
itative predictions are the same—at the moment there are
very slight (power of log) differences in certain instances be-
tween this heuristic and the more sophisticated random matrix
heuristic; we hope to understand this better.

2 J. Parks, B. Poonen, J. Voight, M. Wood arXiv:1602.01431v3
3 They actually conjecture the corresponding statement for nonvanishing of spe-

cial values of the relevant L-functions.
4 A variety V over a field K is saidto be Diophantine stable for the field

extension L/K if V ‘acquires no new rational points’ under the base change from
K to L; i.e., if V (L) = V (K).
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How many rational points are there? Theorems. Specific computations:

We will have presentations about new results regarding Selmer groups
(which allow us to use Galois cohomology to control the size of the rank
of the Mordell-Weil group of abelian varieties) and regarding Selmer
varieties which occur in the method of Chabauty-Coleman-Kim. This
new approach has been used5 to compute rational points of curves in
cases that were beyond the reach of older methods6.

3. Basic references

(i) Modular symbols, θ-elements and L-functions.

(a) The basics
(b) Some statistics
(c) Applications to theorems (and conjectures) regarding ra-

tional points.

A few relevant references:

• S. Lang, Introduction to Modular Forms, Springer-Verlag
(Chapters IV, V) https://wstein.org/edu/Fall2003/

252/references/lang-intro_modform/Lang-Introduction_

to_modular_forms.pdf

• J. I. Manin, Parabolic points and zeta functions of mod-
ular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972),
19-66. https://wstein.org/edu/Fall2003/252/references/
Manin-Parabolic/Manin-Parabolic_points_and_zeta_

functions_of_modular_curves.pdf

• B. Mazur, Courbes elliptiques et symboles modulaires,
Séminaire Bourbaki, 24‘eme année (1971/1972), Exp. No.
414, Springer, Berlin, 1973, pp. 277- 294. Lecture Notes
in Math., Vol. 317.

• B. Mazur-K. Rubin (to be specified; various articles)

• Y. N. Petridis, M.S. Risager, Arithmetic statistics of mod-
ular symbols, arXiv:1703.09526

5 by J. S. Balakrishnan, N, Dogra, J.S. Müller, J. Tuitman, J. Vonk, and by
people in this seminar

6 Among these are some of the the (very interesting) curves X = X0(p)+ for p
prime.

https://wstein.org/edu/Fall2003/252/references/lang-intro_modform/Lang-Introduction_to_modular_forms.pdf
https://wstein.org/edu/Fall2003/252/references/lang-intro_modform/Lang-Introduction_to_modular_forms.pdf
https://wstein.org/edu/Fall2003/252/references/lang-intro_modform/Lang-Introduction_to_modular_forms.pdf
https://wstein.org/edu/Fall2003/252/references/Manin-Parabolic/Manin-Parabolic_points_and_zeta_functions_of_modular_curves.pdf
https://wstein.org/edu/Fall2003/252/references/Manin-Parabolic/Manin-Parabolic_points_and_zeta_functions_of_modular_curves.pdf
https://wstein.org/edu/Fall2003/252/references/Manin-Parabolic/Manin-Parabolic_points_and_zeta_functions_of_modular_curves.pdf
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• W. Stein, Modular Forms, a Computational Approach,
AMS https://wstein.org/books/modform/stein-modform.

pdf (Chapter 3, especially and Chapter 8)

• W. Stein, Statistics of modular symbols: https://sites.
math.washington.edu/~bviray/NTS/SteinApril7.pdf

• W. Stein,Introduction to modular symbols, https://wstein.
org/edu/Fall2003/252/lectures/09-26-03/intro_to_

modular_symbols.pdf

(ii) Selmer groups

(a) The basics
(b) Results about statistics
(c) Applications—especially to theorems regarding rational

points, and (perhaps) Diophantine Stability.

A few relevant references:

• M. Stoll, Selmer groups and Descent https://people.

maths.bris.ac.uk/~matyd/Trieste2017/Stoll.pdf

• B. Poonen, Selmer group heuristics http://math.mit.

edu/~poonen/papers/aws2014.pdf

• M. Bhargava, D. Kane, H. Lenstra, B. Poonen, E. Rains,
Modeling the distribution of ranks, Selmer groups, and
Shafarevitch-Tate groups of elliptic curves, https://math.
mit.edu/~poonen/papers/rst_distribution.pdf

• Z. Djabri, E. F. Schaefer, N.P. Smart, Computing the p-
Selmer group of an elliptic curve http://www.hpl.hp.

com/techreports/98/HPL-98-178R1.pdf

• B. Mazur, K. Rubin, M. Larsen, Diophantine Stability,
https://arxiv.org/abs/1503.04642

(iii) Rational points

(a) some basics, but on to:
(b) Chabauty’s method and its refinements.

A few relevant references:

https://wstein.org/books/modform/stein-modform.pdf
https://wstein.org/books/modform/stein-modform.pdf
https://sites.math.washington.edu/~bviray/NTS/SteinApril7.pdf
https://sites.math.washington.edu/~bviray/NTS/SteinApril7.pdf
https://wstein.org/edu/Fall2003/252/lectures/09-26-03/intro_to_modular_symbols.pdf
https://wstein.org/edu/Fall2003/252/lectures/09-26-03/intro_to_modular_symbols.pdf
https://wstein.org/edu/Fall2003/252/lectures/09-26-03/intro_to_modular_symbols.pdf
https://people.maths.bris.ac.uk/~matyd/Trieste2017/Stoll.pdf
https://people.maths.bris.ac.uk/~matyd/Trieste2017/Stoll.pdf
http://math.mit.edu/~poonen/papers/aws2014.pdf
http://math.mit.edu/~poonen/papers/aws2014.pdf
https://math.mit.edu/~poonen/papers/rst_distribution.pdf
https://math.mit.edu/~poonen/papers/rst_distribution.pdf
http://www.hpl.hp.com/techreports/98/HPL-98-178R1.pdf
http://www.hpl.hp.com/techreports/98/HPL-98-178R1.pdf
https://arxiv.org/abs/1503.04642
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• (A “learning seminar” for nonabelian Chabauty run
by Bjorn Poonen at MIT): http://math.mit.edu/
nt/old/stage_s18.html

• W. McCallum, B. Poonen The method of Chabauty
and Coleman http://www-math.mit.edu/~poonen/

papers/chabauty.pdf

• M. Kim, The motivic fundamental group of P1 0, 1,
and the theorem of Siegel, http://people.maths.
ox.ac.uk/kimm/papers/siegelinv.pdf

• M. Kim, The Unipotent Albanese Map and Selmer
Varieties for Curves, http://people.maths.ox.ac.
uk/kimm/papers/alb.pdf

• J. S. Balakrishnan, N, Dogra Quadratic Chabauty
and rational points I: p-adic heights https://arxiv.
org/abs/1601.00388

• J. S. Balakrishnan, N, Dogra, Quadratic Chabauty
and rational points II: Generalised height functions
on Selmer varieties, https://arxiv.org/abs/1705.
00401

• J. S. Balakrishnan, N, Dogra, J.S. Müller, J. Tuit-
man, J. Vonk, Explicit Chabauty-Kim for the split
Cartan modular curve of level 13 http://people.

maths.ox.ac.uk/vonk/documents/p_cartan.pdf

• B. Lawrence, A.Venkatesh, Diophantine problems
and p-adic period mappings arxiv.org/abs/1807.
02721

http://math.mit.edu/nt/old/stage_s18.html
http://math.mit.edu/nt/old/stage_s18.html
http://www-math.mit.edu/~poonen/papers/chabauty.pdf
http://www-math.mit.edu/~poonen/papers/chabauty.pdf
http://people.maths.ox.ac.uk/kimm/papers/siegelinv.pdf
http://people.maths.ox.ac.uk/kimm/papers/siegelinv.pdf
http://people.maths.ox.ac.uk/kimm/papers/alb.pdf
http://people.maths.ox.ac.uk/kimm/papers/alb.pdf
https://arxiv.org/abs/1601.00388
https://arxiv.org/abs/1601.00388
https://arxiv.org/abs/1705.00401
https://arxiv.org/abs/1705.00401
http://people.maths.ox.ac.uk/vonk/documents/p_cartan.pdf
http://people.maths.ox.ac.uk/vonk/documents/p_cartan.pdf
arxiv.org/abs/1807.02721
arxiv.org/abs/1807.02721
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Part 1. Modular symbols
modsymb0

4. Digression: ‘pre-modular symbols’

As an introduction to modular symbols, we might recall that such
symbols arise from the structure of uniformization of Riemann surfaces,
hyperbolic metrics and geodesics:

• Discuss the basic hyperbolic structure; i.e., H := the upper
half plane and its ‘ completion,’

H̄ := H tP1(Q) ⊂ C.

Let Γ be a discrete (congruence) subgroup of PSL2(Z) so
that Γ acts on H and H̄.

Passing to quotients, put

u : H→ Y := H/Γ,

ū : H̄→ X = Y t C,
where

C := P1(Q)/Γ = the cusps.

• Define, for a/b ∈ P1(Q) = Q ∪ {∞}, the element

� a/b, c/d� ∈ π1(X, C)

to be the image of the geodesic in H with endpoints a/b, c/d ∈
P1(Q) (and oriented as going from a/b to c/d) in this relative
fundamental set7 π1(X, C). This gives us a natural mapping

11 (4.1) P1(Q)×P1(Q)
φ−→ π1(X, C)

with various properties:

(i) The range of φ in Equation 4.1—i.e., π1(X, C)—has a nat-
ural partial multiplication law8 as does the domain where
(a/b, c/d) · (c′/d′, e/f) is defined only if c/d = c′/d′)—and
then defined to be (a/b, e/f).

7 One can also think of this π1(X, C) as a category, the objects being the elements
of C and the set of —it morphisms x→ y from one object to another being the set
of relative homotopy classes of paths in X from x to y.

8 —which is just composition of morphisms in the vocabulary of the previous
footnote—
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(ii) The mapping φ is invariant under the action of Γ; i.e., for
γ ∈ Γ,

� γ(a/b), γ(c/d)� = � a/b, c/d� .

(iii) If γ ∈ Γ has a pair of complex conjugate fixed points, then
for every r ∈ P1(Q)

� γ(r), r � = 1 ∈ π1(X, ū(r)),

i.e., it is the trivial element.

Query: Is there some literature about this? An easy exercise is that the
mapping φ is surjective. Do the above three relations generate an equiv-
alence relation rendering the mapping induced from φ an isomorphism
from (such) equivalence classes in P1(Q)×P1(Q) onto π1(X, C)?

We will be interested in this structure specifically when X = X0(N)
for some level N , noting for the moment that X = X0(N) has a natural
definition as a curve over R such that the involution X(C) → X(C)
given by complex conjugation is compatible the involution z 7→ −z̄ in
connection with the uniformization H→ Y ⊂ X.
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Now suppose that we have an optimal uniformization9 of an elliptic
curve E over Q by X0(N), i.e., a mapping defined over Q:

λ : X = X0(N)→ E

that doesn’t factor through another elliptic curve (and sends the cusp
∞ to the origin of E).

This induces a mapping π1(X(C); C) → π1(E(C); CE) where CE is
the image of the cusps in E. By a theorem of Manin-Drinfeld, CE
consists of elements of finite order in E.

Exercise: Let δ be the lcm of the orders of rational torsion points
of E. There’s a natural mapping

π1(E(C); CE)→ 1

δ
H1(E(C),Z) ⊂ H1(E(C),Q).

(Given this uniformization) there are natural generators

η± ∈ H1(E(C),Z)±,

in the ± eigenspaces of complex conjugation acting on H1(E(C),Z)
such that for any element r ∈ Qt {∞} = P1(Q) the symmetrized and
anti-symmetrized images of �∞, r � in H1(E(C),Q) can be written

9 Here are a few comments on the notion of optimal uniformization of
elliptic curves:

A very good discussion of the issue is in William Stein’s Optimal Elliptic Curve
Quotients https://wstein.org/papers/ars-manin/html/node2.html.

If u : X0(N) → E is a uniformization (i.e., a nonconstant map to an elliptic
curve E over Q) its “modular degree” is the degree of the map u. If there were a
factorization of u

X0(N)
u′

−→E′ v−→E
with v not an isomorphism, u′ would have smaller degree .This can’t go on indefi-
nitely. An optimal uniformization is just one that doesn’t factor nontrivially. An
equivalent way of thinking of such a thing is to consider the mapping induced from
u on the jacobian J0(N) of the modular curve X0(N): uJ : J0(N)→ E, noting that
the kernel of uJ is a subgroup (scheme) G of J0(N) and if it were not connected,
the quotient J0(N) by Go, its identity component, would produce a nontrivial fac-
torization of u. So, u is optimal if and only if uJ is connected. That an optimal
uniformization is unique (up to multiplication by ±1, the only automorphisms of
elliptic curves that are defined over Q) follows from the multiplicity one theorem
regarding Hecke newforms (this opens up another discussion). There is, of course,
also a good deal more to say about uniformizations—the fact that a uniformization
orients the connected component of the real locus of E (by considering the image
of the tangent vector at the cusp i∞ that points downward in H) and about the
connection between unformizations and Ω±E .

https://wstein.org/papers/ars-manin/html/node2.html
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as [r]± · η± ∈ 1
δ
H1(E(C),Z)±. Note that

[r]± ∈ δ−1Z

and these are the normalized modular symbols that will be (re)-
introduced in a moment..

5. Basic properties of modular symbols

For a neat introduction to modular symbols, with some examples of
data, see William Stein’s Introduction to Modular Symbols referenced
above.

Fix once and for all an elliptic curve E defined over Q. We will
usually suppress E from the notation. Let N be the conductor of E,
and fE the corresponding newform on X0(N).

fE(q) =
∑
n≥1

anq
n.

Definition 5.1. Let Ω±E = Ω± denote the real and imaginary periods
of E. For every r ∈ Q define the (raw) modular symbols

{r}E = {r} := 2πi

∫ r

i∞
fE(z)dz ∈ C

and the plus/minus normalized modular symbols

[r]±E = [r]± :=
{r} ± {−r}

2Ω±
.

We make the convention that Ω+ and [r]+E are denoted simply Ω and
[r] respectively, when the context makes it clear that that’s what they
should be.

The modular symbols have the following well-known properties.

manybullets Lemma 5.2. Let N be the conductor of E. Let δ = δE ∈ Z>0 be the
lcm of the orders of the torsion points in the Mordell-Weil group E(Q).

For r ∈ Q t {∞} we have:

(i) [r]± ∈ (2δ)−1Z,

(ii) [∞]± = 0,

(iii) [r]± = [r + 1]±,

(iv) [r]± = ±[−r]±,



11

(v) Invariance:
If

A :=

(
a b
cN d

)
∈ Γ0(N) ⊂ SL)2(Z),

so that for r ∈ Q t {∞},
A(r) = (ar + b)/(cNr + d) ∈ Q t {∞},

we have the following relation in modular symbols:

[r]± = [A(r)]± − [A(∞)]±,

and if A ∈ Γ0(N),as automorphism of H, has a complex (qua-
dratic) fixed point, then [A(∞)]± = 0, and therefore:

[A(r)]± = [r]±

for all r ∈ Q t {∞},

(vi) Atkin-Lehner relation: Suppose m ≥ 1 and write N = ef
where f := gcd(m,N). If a, d ∈ Z, and ade ≡ 1 (mod m),
and we is the eigenvalue of the Atkin-Lehner operator We on
fE, then

[d/m]± = −we · [a/m]±,

(vii) Hecke relations: Suppose ` is a prime, and a` is the `-th
Fourier coefficient of fE.
(a) If ` - N , then a` · [r]± = [`r]± +

∑`−1
i=0 [(r + i)/`]±.

(b) If ` | N , then a` · [r]± =
∑`−1

i=0 [(r + i)/`]±.

Proof. The proofs of (i)—(v) are evident. For (vi), here is a construc-
tion of the Atkin-Lehner operator We. Let f = gcd(m,N) and N = ef.
The We operator is given by (any) matrix of the following form:

We :=

(
ae b
cN de

)
,

with a, b, c, d ∈ Z and det(We) = e.
Let c = m/f . Then (since e and f are relatively prime) we can find

a and b to make a matrix of the desired form, and then

We(∞) = ae/cN = a/cf = a/m,

and (computing)
We(d/m) =∞

Thus We takes the path {∞, d/m} to the path {a/m,∞}. It follows
that [d/m] = −wE[a/m] where wE is the eigenvalue of We acting on
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the newform uniformizing E, and ade ≡ 1(mod f) (the latter because
det(We) = e).

The proof of (vii) is straightforward. �

6. Modular symbols and L-values
modsymb1

Definition 6.1. Suppose χ is a primitive Dirichlet character of con-
ductor m. Define the Gauss sum

τ(χ) :=
m∑
a=1

χ(a)e2πia/m

and, if L(E, s) =
∑
ann

−s, the twisted L-function

L(E,χ, s) :=
∞∑
n=1

χ(n)ann
−s.

If F/Q is a finite abelian extension of conductor m, we will identify
characters of Gal(F/Q) with primitive Dirichlet characters of conductor
dividing m in the usual way.

Proposition 6.2. If F/Q is a finite abelian extension, then

L(E/F , s) =
∏

χ:Gal(F/Q)→C×

L(E,χ, s).

Corollary 6.3. If the Birch and Swinnerton-Dyer conjecture holds for
E/Q and E/F , then

BSwDBSwD (6.4) rank(E(F )) = rank(E(Q)) +
∑

χ:Gal(F/Q)→C×

χ 6=1

ords=1L(E,χ, s).

BS Theorem 6.5 (Birch-Stevens). If χ is a primitive Dirichlet character
of conductor m, then

BStBSt (6.6)
m∑
a=1

χ(a)[a/m]ε =
τ(χ)L(E, χ̄, 1)

Ωε
.

where the sign ε is equal to the sign of the character χ, i.e., ε =
χ(−1).

Note: If χ is of order p > 2, a prime number, so

χ : Gal(F/Q→ µp := {e(2πij)/p; j = 0, 1, . . . , p− 1} ⊂ C∗,
and if χ′ is any Galois conjugate character to χ—equivalently: χ′ = χa,
for some exponent a not congruent to 0 mod p— then the following are
equivalent:
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(i) L(E, χ̄, 1) = 0.
(ii) L(E, χ̄′, 1) = 0.
(iii) The value of [a/m] is independent of the numerator a.
(iv) (conditional on BSD:)

rank(E(F )) ≥ rank(E(Q)) + p− 1.

7. θ-elements and θ-coefficients

Definition 7.1. Suppose m ≥ 1, and let Gm = Gal(Q(µm)/Q). Iden-
tify Gm with (Z/mZ)× in the usual way, and let σa,m ∈ Gm be the
Galois automorphism corresponding to a ∈ (Z/mZ)× (i.e., σa,m acts
on µm as raising to the a-th power). Define

θ±m := δ
∑

a∈(Z/mZ)×
[a/m]± σa,m ∈ Z[Gm].

If F/Q is a finite abelian extension of conductor m, so F ⊂ Q(µm),
define the θ-element (over F , associated to E) to be:

θ±F := θ±m|F ∈ Z[Gal(F/Q)]

where θ±m|F is the image of θ±m under the natural restriction homomor-
phism

Z[Gal(Q(µm)/Q)]→ Z[Gal(F/Q)].

By Lemma 5.2(i) we have

intvalintval (7.2) θ±F =
∑

γ∈Gal(F/Q)

c±F,γ · γ ∈ Z[Gal(F/Q)]

where

c±F,γ = δ
∑

a (mod m)
σa,m|F=γ

[a/m]±.

We will refer to the c±F,γ ∈ Z as θ-coefficients. Since we will most
often be dealing with the ‘plus’-θ-elements, we will simplify notation
by letting θF := θ+F , cF,γ := c+F,γ, and Ω := Ω+. If F is a real field, then
σ−1,m|F = 1, so

tctc (7.3) cF,γ = 2δ ·
∑

a∈(Z/mZ)×/{±1}
σa,m|F=γ

[a/m].

With this notation, Proposition 6.5 can be rephrased as follows:
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thetaL Corollary 7.4. Suppose F/Q is a finite real cyclic extension of con-
ductor m and χ : (Z/mZ)× � Gal(F/Q) ↪→ C× is a character that
cuts out F . Then

χ̄(θF ) = δ
τ(χ̄)L(E,χ, 1)

Ω
.

A natural project: Give a corresponding formulation of θ-elements
for abelian varieties over any number field.
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