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1. Some thoughts about the early IHES

I first visited the IHES roughly six decades ago, on the very first year
it established itself in Bures-sur-Yvette. The Résidence de l’Ormaille
hadn’t been set up yet. Professors and visitors were all lodged in the
Résidence Gratien. Thom was expanding our understanding of the fun-
damental notion of singularities in differential topology, of structural
stability and of morphogenesis. Grothendieck was transforming alge-
braic geometry, and—en passage—an impressive amount of the vocab-
ulary of mathematics, and of its practice.. A favorite phrase of his was:
“X” (i.e., whatever he began his discussion with) “n’est rien d’autre
que Y ” often thereby changing a point of view in some essential way.

And—at the same time—there were so many other important things
going on in this extraordinarily inspiring place. I’m so grateful for
having had the chance of learning a good amount of my mathematics
here, and am happy that the IHES continues to thrive, and to inspire.

And, of course, I’m overwhelmed by Will Hearst’s creation of a vis-
iting professorship chair at the IHES in Gretchen’s name and mine. I
don’t see that we deserve this extraordinary honor, but I do see this de-
velopment as, yet again, an example of Will’s wonderful generous spirit
for the grand culture of mathematics, for his devotion to our subject,
as he is even more broadly devoted to the world of science, literature,
and the arts.

How wonderful it is for me to see that Sasha Goncharov will be the
first recipient of this chair, and to see so many great friends here at this
event. Much thanks to Bernard Saint-Donat and Emmanuel Ullmo for
organizing it.
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Part 1. Questions

2. Differently quantified questions regarding
Diophantine stability

A. New points. This lecture is a survey of questions and issues that
Karl Rubin and I are currently are thinking about. The general topic
is ‘the appearance of new rational points on a variety, upon extension
of the base field.’ Much of this project is empirical: computations
to develop a sense of the nature of certain distributions1 that are—
conjecturally—connected to the issues we want to understand.

Definition 1. A variety V defined over K is Diophantine stable
(DS) for the field extension L/K if V ‘acquires no new rational points
when one extends the base from K to L. This is, if V (L) = V (K).

For example, if V contains the nonconstant image of an open sub-
scheme in P1

/K , then no nontrivial extension L/K is DS. Is the converse
true?

B. Quantification. If one formulates questions regarding a single no-
tion, but quantifies the fundamental data differently, the questions can
have quite different characters. The data regarding Diophantine sta-
bility consists of:

• the variety V/K ,
• the extension L/K and
• the isomorphism class of the Galois group G of the Galois

closure of L/K.

C. The question of Diophantine Instability for a fixed vari-
ety and fixed isomorphism class of the Galois group G of the
extension L/K.

This is somewhat akin to the “Inverse Galois Problem” of classical
Galois Theory.

Definition 2. Let G be a finite group, and V a variety over a number
field K. Say that V is significantly (Diophantine) stable for G if
there are only finitely many Galois extensions L/K with Galois group
isomorphic to G, relative to which V is Diophantine unstable.

1 of values of certain appropriately normalized “θ-coefficients”
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Moreover, if V = A is an abelian variety over K, and L/K is Galois
with group G, this relative question (Diophantine stability or instabil-
ity) has variants, such as ignoring torsion and considering

A(K)⊗Q ⊂ A(L)⊗Q,
and—fixing a given (irreducible, say) representation G with charac-
ter χ—asking whether for infinitely many Galois extensions L/K with
Galois group isomorphic to G the specific character χ occurs in the
G-representation A(K)⊗Q ⊂ A(L)⊗Q.

Proposition 2.1. Fix any positive integer n, any elliptic curve E, and
any number field K. There are infinitely many Galois extensions L/K
with Galois group isomorphic to the symmetric group Sn such that if
χ is the character of the ‘standard representation’ of Sn, χ occurs in
the Sn-representation E(L) ⊗ Q. (So, following Definition 2) E is
Diophantine unstable for Sn.

Remarks 1. (i) The proof of Proposition 2.1 is given first by
combining the two files2:
• simple.branching.lemma.pdf sent to us by Joe Harris, and
• For.Sn.result.

and then by applying the triple of results: The Hilbert Irre-
ducibility Theorem, Faltings’ Theorem and the (proved) Manin-
Mumford Conjecture. See a bit more about this in Section 4
below.

(ii) One has a similar conclusion for abelian varieties—but not as
sharp:

Proposition 2.2. Fix an abelian variety A over a number field
K. For n �A 0 there are infinitely many Galois extensions
L/K with Galois group isomorphic to the symmetric group Sn
such that if χ is the character of the ‘standard representation’
of Sn, χ occurs in the Sn-representation A(L)⊗Q.

For more, see Section 4 below.

(iii) We don’t know whether the same is true for the Alternating
groups An. But we’re trying to prove:

Proposition 2.3. (?) For any algebraic j-invariant j0 and
any positive odd integer n there is an elliptic curve E over a
number field K with j-invariant equal to j0 for which there

2 that I will include in the next draft of these notes
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are infinitely many Galois An-extensions L/K such that the
standard representation of An occurs in the An-representation
space E(L)⊗Q.

For the idea behind the hoped-for proof of this, see Section
4 below. See also Corollary 6.14 below for an explicit example
over an explicit number field.

(iv) For the question of whether there are elliptic curves that are
Diophantine unstable relative to certain fixed Galois extensions
(of low degree) see [25].

(v) The above type of question, framed in arithmetic language, has,
conjecturally, a closely related question framed in analytic lan-
guage.

Specifically, letting L(A/K , χ; s) be the Hasse-Weil L-function
of the abelian variety A twisted by the character χ, then—
conjecturally—the character χ occurs in the G-representation
A(K)⊗Q ⊂ A(L)⊗Q if and only if L(A/K , χ; 1) = 0.

D. The question for varying curves of genus > 1, and a fixed
Galois extension L/K.

In [6], Lucia Caporaso, Joe Harris and I made a conjecture3 that
implies the following:

Conjecture 1. Let K be a number field and g > 1. Then for any
Galois extension L/K with simple Galois group of order |Gal(L/K)| �
0, only finitely many curves of genus g defined over K are diophantine
unstable for the extension L/K.

We include the possibility that Gal(L/K) is cyclic of prime order.

E. The question of Diophantine Stability for a fixed curve (of
genus > 0) and cyclic Galois extensions.

3 In our paper [6] (published over a quarter of a century ago) we claimed to
show that our conjecture follows from the “Strong Lang Conjecture,” but thanks
to correspondence with Jacob Stix we see that the argument published was not
correct, or at the very least: incomprehensible. We’re actually currently preparing
a revision of [6]. Nevertheless we do believe the truth of our conjecture.
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Karl Rubin and I proved—a few years ago—the following theorem
(stated for a given single curve of positive genus or abelian variety; see
[20]).

Theorem 2.4. Let C be a (smooth geometrically irreducible projec-
tive) curve of genus > 0 over a number field K0; let—respectively— A
be any geometrically simple abelian variety over K0. There is a finite
extension K/K0 and a ‘Cebotarev class’ (and consequently a class of
positive density) of prime numbers ` (both K/K0 and the arithmetic
progression depending on C—respectively, on A) such that for any pos-
itive integer n there are infinitely many cyclic (Galois) extensions L/K
with Galois group isomorphic to Z/`nZ for which C—respectively, A—
is Diophantine stable.

We expect that a good deal more than this is true. (See Conjecture
3 below.)

Note: A corollary (an easy exercise) of Theorem 2.4 is that for any
elliptic curve E over K there are uncountably many fields of algebraic
numbers M/K for which E(M), the group of M -rational points of E,
is finitely generated. This implies, for example, that there are un-
countably many fields of algebraic numbers for which Hilbert’s Tenth
Problem has a negative solution.

F. The question of Diophantine Stability for elliptic curves
and cyclic field extensions.

For cyclic Galois extensions of degree d ≥ 2 prime, let Narith
E,d (X)

denote the number of such extensions in Q̄ and of conductor < X for
which an elliptic curve E acquires a higher Mordell-Weil rank; i.e.,
higher than rank E(Q).

G. Quantitative guesses. The classical BSD conjecture would have

Narith
E,d (X)

?
= Nanal

E,d (X) :=
1

d− 1
|{χ of order d; cond(χ) < X | L(E,χ, 1) = 0}|.

The following conjecture is due to Conrey, Keating, Rubinstein, and
Snaith [8] for p = 2, and David, Fearnley, and Kisilevsky [9, 10] for p
odd.

Conjecture 2 ([8, 9, 10]).

(i) Nanal
E,2 (X)�E X

3/4 log(X)cE,2, with cE,2 ∈ R depending on E,
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(ii) Nanal
E,3 (X)�E

√
X log(X)cE,3, with cE,3 ∈ R depending on E,

(iii) Nanal
E,5 (X)�E log(X)3/2,

(iv) Nanal
E,p (X) is bounded independently of X if p ≥ 7.

Remark 2.5. These conjectures stated for Nanal
E,d (X) imply (uncondi-

tionally) the corresponding conjectures for Nalg
E,d(X).

H. The question for abelian Galois groups G. The question is
open, for example, for cyclic groups of prime order. The conjecture
(2 above) of David-Fearnley-Kisilevsky that (in effect) for any elliptic
curve over Q a cyclic group of prime order p is significantly unstable if
and only if p ≤ 5 is based on random matrix heuristics.

Inspired by their result (and dependent on a certain naive heuris-
tic related to modular symbols—see Part 2 below)—a heuristic sup-
ported by computations regarding our conjectured distributions of θ-
coefficients (Section 2 below) suggests:

Conjecture 3. Any elliptic curve over Q has finitely generated Mordell-
Weil group over any abelian field that contains only finitely many sub-
fields of order < 7.

3. Pencils of Diophantine instability

In seeking examples of varieties and isomorphism classes of groups
G for which they are significantly unstable (as in Definition 2 above)
it is natural to look for rationally parametrized Galois coverings; i.e.,
maps C → P1 with Galois group isomorphic to G (for which C admits
a (nonconstant) K-rational map to the variety in question). There
are a few different ways of searching for such structures, and we will
discuss two such ways below—restricting attention to the case where
the variety is an elliptic curve E.

A. G-pencil coverings of E. Let G be a finite group and M a free
abelian group of finite rank r, with a linear G-action. We view M as
Z[G] module. Set V := M ⊗Z Q. Assume that V = M ⊗ Q is an
irreducible G-representation, and let χ denote its character.

If E is an elliptic curve over a number field K, form X (E,M) :=
E ⊗Z M , the r-dimensional abelian variety with G-action defined in
the evident way, noting that any choice of Z-basis of M allows us to
pinpoint an isomorphism

E ⊗Z M ' Er.
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Now form the r-dimensional quotient variety over K,

E ⊗Z M
π−→ Y (E,M) := E ⊗Z M/{action of G}.

If y = Spec(K) ↪→ Y (E,M) is a K-valued point, let

(3.1) Xy
π

��

// X = E ⊗Z M

π

��
Spec(K) = y

↪→ // Y (E,M).

be the corresponding Cartesian diagram, the top line being, naturally,
a G-equivariant mapping.

If, in addition, y is not a branch point of X π−→ Y (E,M), i.e.,
if Xy = Spec(A) where A is an étale K-algebra of rank |G|, write
A =

∏ν
j=1 Kj where Kj/K are field extensions. We have the natural

action of G on

Spec(A) = tνj=1Spec(Kj) = tνj=1ξj ↪→ X

For j = 1, 2, . . . , ν, denote by Gj ⊂ G the isotropy subgroup of G
relative to Spec(Kj) = ξj; that is Gj := {g ∈ G | g · ξj = ξj}. So we
have a natural injection ηj : Gj ↪→ AutK(Kj). By comparing the rank
of A over K and the order of G we see that these injections ηj must be
isomorphisms, i.e., the extensions Kj/K are all Galois and the ηj can
be interpreted as natural isomorphisms

(3.2) Gj ' Gal(Kj/K).

Proposition 3.3. Suppose there exists a K-rational point y ∈ Y (E,M).
(With the notation as above) suppose further that the set

ξj ⊗Spec(K) (C) ⊂ E ⊗Z M(C)

does not consist of torsion points, Then the Gal(Kj/K)-representation
E ⊗Z M(Kj) contains a (positive) number of copies of the restriction
of χ to Gal(Kj/K).

Corollary 3.4. Suppose, in addition to (and in the notation of) Propo-
sition 3.3 that—relative to the point y, ν = 1 or equivalently A = K1;
and so, by 3.2, we have

(3.5) G = AutK(A) = Gal(K1/K) = G1.

The set ξj⊗Spec(K) (C) ⊂ E⊗ZM(C) does not consist of torsion points.
Then, denoting again by χ the character on GK := GalK̄/K) induced
by χ on Gal(K1/K) = G via the isomorphism 3.5,we have that χ occurs
in the GK-action on the Mordell-Weil group of E over K1.
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Now suppose that Y (E,M) contains P , the birational image of a
projective line over K, and let P1 → P ' Y (E,M) be the correspond-
ing (nonconstant) mapping. Suppose, further, that P contains a point
y satisfying the hypothesis in Corollary 3.4. Consider the projective
smooth curve C over K that is the normalization of the inverse image
in E ⊗Z M :

(3.6) C

π
��

j// E ⊗Z M ' Er

��
P1 // Y (E,M)

,

Remark 3.7. Here, the curve C/K is stable under the action of G, and
(using diagram 3.1) the corresponding total quotient ring of C/K is a
field F . More specifically, letting t denote a parameter for P1 so that
the total quotient ring of P1

/K is K(t) then F/K(t) is a Galois extension
with Galois group G.

Projecting to the first factor in Er we get:

(3.8) C

π
��

j // E

P1 ' C/G

Definition 3. By a G-pencil covering E let us mean a diagram
such as 3.8 (defined over a number field K; and where C is a smooth
projective geometrically irreducible curve with G action).

We are in a position to apply the classical Hilbert Irreducibility The-

orem4 to the Galois extension of curves C
i−→ C/G ' P1 over K, the

Galois group being G.
It follows that:

3.9. There are infinitely many K-rational points yj ∈ P1(K) such that
π−1(yj) = Spec(Lj) with Lj/K a Galois field extension with Galois
group isomorphic to G; and as long as π−1(y) does not consist of torsion
points the G-representation space E(Lj) ⊗ Q contains the irreducible
representation corresponding to the character χ.

4noting that the Irreducibility theorem does not require C to be geometrically
irreducible. For related issues regarding the arithmetic of branched coverings of P1,
see [3].
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At this point one should distinguish between the cases where C is of
genus 1, and of genus > 1

(i) C is of genus 1.
discussion to be included

(ii) C is of genus > 1.
In this case, that there are only finitely many y such that

π−1(y) ⊂ C is torsion follows from the Manin-Mumford Conjecture—
the form of it proved by Michael McQuillan (see [27], [21]). For
Lj (any j = 1, 2, . . . ) there are only finitely many Lj-rational
points on C by Faltings Theorem—consequently that must be
infinitely many different extensions Lj/K. This shows that in
the above situation we have:

Corollary 3.10. If E has a G-pencil covering as in Definition
3, E is significantly Diophantine unstable for G.

B. G-pencils arising from rational functions on E.

Digression 1. Let f be a nonconstant K-rational function f on E.

We can view f as a mapping E
f−→ P1 of curves over K; and also as

an element f ∈ K(E) the field of fractions of E, this element being
transcendental over K. Forming the Galois closure L/K(f) of the
field extension K(E)/K(f) and passing to C := the integral closure
of Spec(L) → Spec(K(f)) over P1 we can view L as K(C), the total
quotient ring of C. One obtains a diagram:

(3.11) C

π
��

j // E

f{{
P1 ' C/G

Here G = Gal(K(C)/K(f)).

Hypothesis 3.12. Suppose that there is no nontrivial finite étale ex-
tension of K in K(C) or—equivalently—that C is geometrically irre-
ducible.

If Hypothesis 3.12 holds and the diagram 3.11 came—as 3.6—from
a mapping of P1 to Y (E,M) for some character χ of G we would
get an explicit description of the corresponding Galois representation
on the Mordell-Weil groups E over the extension fields Lj discussed
above. The (possible) advantage of these G-pencils covering elliptic
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curves that come from rational functions f on E (leading to diagrams
such as 3.1 above) is that these may well occur in families of elliptic
curves of varying j-invariant. Specifically, viewing 3.1 as a diagram of
Riemann surfaces:

(3.13) C(C)

π
��

j // E(C)

fxx
P1(C) ' C(C)/G

and composing f with a diffeomorphism

P1(C) = S2 h−→ S2 = P1(C),

an application of the Riemann Existence Theorem ([13]) yields a new
analytic structure on E and on C leading to an interesting variation of
3.1 dependent on h in the group of diffeomorphisms of S2:

(3.14) Ch

π
��

j // Eh

fzz
P1 ' Ch/G

Here h 7→ Eh may or may not provide a variation over the moduli
stack M1.5

4. Regarding the standard representation of the
symmetric groups

We thank Joe Harris for explaining this to us.
First note that for any integer n, any elliptic curve E over (say) any

number field K admits an embedding into a projective space Pr as a
curve of degree n (this embedding being defined over K).

Theorem 4.1. If X ⊂ Pr is a smooth curve over a field K of charac-
teristic 0 and Λ ' Pr−2 ⊂ Pr a general codimension 2 plane in Pr then
the projection map from Λ,

f = fΛ : X → P1,

5 I want to thank Curt McMullen for explaining to us that if ν is the number of
branch points in P1(C) of the mapping π in the diagram 6.12 then h 7→ Eh comes
from a mapping

M′0,ν −→M1,

where M′o,ν is a finite cover of the moduli stack M0,ν .
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is simply branched.

Note: We can attach Joe Harris’s one-page proof of this (sim-
ple.branching.lemma.pdf) as an appendix—or perhaps there’s a pub-
lished reference for it.

Proposition 4.2. A simply branched mapping, fΛ, as guaranteed to
exist by Theorem 4.1, has ‘Galois group’ Sn.

The proof of this is in the file: For.Sn.result.

If E is an elliptic curve over K we therefore can find an Sn-pencil
covering E (Definition 3 above):

C → E
fΛ−→ P1

where C → P1 is the Galois closure of E
fΛ−→ P1 for Λ rational over

K and ‘general .’ We can apply Corollary 3.10 finishing the proof of
Proposition 2.1.

The proof of Proposition 2.2 is similar. Let A/K be an abelian vari-
ety. We can find a K-rational curve (irreducible over K—can we find
such that is geometrically irreducible?—passing through the origin in
A. Letting E be the normalization of this curve, and n greater than
the genus of E plus 2, we take D = n · origin and apply Riemann-Roch
to find an embedding of E in some projective space Pr as a curve of
degree n, and then proceed as in the proof of Proposition 2.1.

5. Regarding the standard representation of the
alternating groups

Here we’ll almost be proving Proposition 2.3: For any algebraic j-
invariant j0 and any positive odd integer n there is an elliptic curve
E over a number field K with j-invariant equal to j0 for which there
are infinitely many Galois Sn-extensions L/K such that the standard
representation of An occurs in the An-representation space E(L)⊗Q.

Proof: Our proof is actually over the field of complex numbers and
even more: purely complex analytic. We’ll consider algebraicity (and
number fields as fields of definition) afterwards.

Let U := P1 minus four (distinct) points: {u1, u2, u3, u4}. The fun-
damental group of U is free on three generators, but it is better to
think of it—in the usual way— as having four generators x1, x2, x3, x4

with the single relation:



NEW RATIONAL POINTS OF ALGEBRAIC CURVES 13

x1.x2.x3.x4 = 1.

One chooses these xi again in the usual way: by fixing a base point
u ∈ U and (nonintersecting) paths γi from u to ui (for i = 1, 2, 3, 4).
Define xi to be the class in the fundamental group represented by the
closed loop in U obtained by following γi from u to a neighborhood of
ui; then circling ui clockwise; then returning to u via the path γi.

Now Sn is generated by g1 := (1, 2) and g3 := (1, 2, 3, 4, ..., n). so if
we set g2 = g−1

1 = (1, 2) and g4 = g−1
3 = (n, ..., 3, 2, 1) we have that

g1.g2.g3.g4 = 1

so the rule: xi 7→ gi (i = 1, 2, 3, 4) gives us a surjective homomorphism

(5.1) π1(U) −→ Sn.

The induced cover C → P1 (i.e., the smooth projective curve con-
taining, as Zariski dense open, the quotient of the universal cover of U
by the kernel of 5.1) is ramified at the four points {xi; i = 1, 2, 3, 4} in
P1 with Galois group Sn and inertial groups at the xi generated by the
gi.

Note that if n is odd, then g3 and g4 are both in An so we have that
the quotient C/An is ramified over P1 only over x1 and x2, and hence
is of genus 0.

Consider Sn−1 ⊂ Sn (for notational convenience, suppose that it is
the Sn−1 that fixes 1 ∈ {1, 2, ..., n}). Let E denote the quotient of C
by Sn−1 so the induced map h : E → P1 is of degree n.

Lemma 5.2. :

(i) The mapping h is simply branched at x1 and x2.
(ii) The mapping h is totally ramified at x3 and x4.

Proof: The ramification subgroups at x1 and x2 are the cyclic
groups of order two generated by (1, 2), (2, 3), (3, 4) etc. All but one
of these lie in our Sn−1. This shows (1). On the other hand Sn−1 is
disjoint from the subgroup generated by g3 “or” g4, showing (2).

Now, using Riemann-Hurwitz we compute the Euler-characteristic
of E to be

2n− 1− 1− (n− 1)− (n− 1) = 0

This construction depends on the relative homotopy classes of the
paths γi in π1(U ;u, ui) and hence so does the elliptic curve E. Now let
j(γ1, γ2, γ3, γ4) ∈ C denote the j-invariant of E. To finish the proof of
Proposition 2.3 it remains to show:
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Lemma 5.3. ?? The function j(γ1, γ2, γ3, γ4) is not constant.

and

Lemma 5.4. If the points xi are algebraic, the curves and mappings
C → E → P1 are defined over some field K of finite degree over Q.

I think that Lemma 5.3 must be true; but why?

6. Cyclic groups

Let G be a cyclic group of order d, and χ the irreducible represen-
tation of G over Q of dimension φ(d) (Euler’s function). Let E be
an elliptic curve over Q, and let Y (E,M) the φ(d)-fold as defined in
Section 3 above.

A. The case φ(d) = 2.

A.1. d = 3. This case is beautifully discussed in [12]. Here Y (E,M)
is a surface over K that is a twist of the double cover over the plane
of the (degree six) dual curve to E. This surface has nine singularities,
and when desingularized, yields a K3 surface of Picard number 19. It
would be of interest to find K-rational rational curves in Y (E,M) for
any elliptic curve over K.

Points of Y (E,M) are the image of triples of points (P,Q,R) of E
such that P +Q+R = 0. These are then in correspondence with lines
in P2. This represents Y (E,M) as a double cover of the dual space of
P2. The ramification locus of this double cover consist of elements of
(P2)∗ corresponding to the image of triples of points (P, P,−2P ) of E,
i.e., tangent lines to E. So:

Lemma 6.1. The ramification locus of the double cover

Y (E,M)→ (P2)∗

is E∗ ⊂ (P)∗, the dual curve to E in (P2)∗. The curve E∗ is a sextic with
nine singular points corresponding the the points (P, P, P ) for P ∈ E[3].

Remark: If E = Ea,b : y2 = x3 + ax+ b, then Y (E,M) is given by
the equation w2 = ∆(u, v) where

∆(u, v) = −4a3 + a2(u4 + 24uv) + a(−18bu2 − 4u5v − 30u2v2)

−27b2 + b(4u6 + 36u3v + 54v2)− 4u3v3 − 27v4.

For example, for E : y2 = x3−9x+9 (i.e., a = −9, b = 9) and r(t) :=
8(t2 − 162t)/(t2 + 8748) one computes to find that the points (x, y) on
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the curve E with y = 3x + r(t) for rational values of t parametrize
cubic cyclic points on E.

Problem: Find K-rational rational lines in Y (E,M) for any E over
K.

Lemma 6.2. If E admits a cyclic 3-isogeny over K, then E is covered
by a cyclic pencil of degree 3 (but possibly only defined over a quadratic
extension of K).

Proof. (Or, at least, a sketch of a proof:) Let Z ⊂ E[3] ⊂ E∗ be the
cyclic group of order 3 which is the kernel of that isogeny. Draw the
straight line in the dual projective plane that contains the image of the
two nonzero points in Z. The inverse image of this line splits into two
genus zero curves in Y (E,M). �

A.2. d = 4. Again Y (E,M) when desingularized, yields a K3 surface. . .
that we should study, but haven’t yet.

B. The case d = 5. The classical “Bring’s Curve” C (cf. [5], [11], [16])
is defined over Q and will provide an example (e.g., over the field of
Gaussian numbers Q[i]) of a cyclic pencil of genus 4 for a certain elliptic
curve E . ”Bring’s curve” is the (smooth, projective) curve in P4 defined
by three equations—in the five homogenous variables (x1, x2, x3, x4, x5):

(6.3)
∑
i

xni = 0 for n = 1, 2, 3.

Visibly C admits the symmetric group S5 as group of automorphisms
(all of this defined over Z) the action being by permutation of the five
variables. The group S5 is the entire group of its automorphisms since
C is a curve of genus 4. Also, C has no real points since its quadratic
defining equation has none.

Let τ := (12345), and σ := (1234) be the indicated 5- and 4- cycles,
respective.

Proposition 6.4. (i) There are exactly four fixed points of τ in C.
Namely: {(1, ζ, ζ2, ζ3, ζ4)} where ζ runs through the nontrivial
fifth roots of 1. These are the only points of ramification for
the mapping

C → C/{action of τ}.
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(ii) There are exactly two ramified points for the mapping

C → C/{action of σ}.
Namely: {(1,±i,−1,∓i, 0)}. These two points are all fixed
points of σ; i.e., they are ‘totally ramified.’

Proof. Taking the indices 1, 2, 3, 4, 5 mod 5, for a (C-valued) point
(x1, x2, x3, x4, x5) to be a fixed point of τ we must have, for some λ ∈ C
that xk+1 = λxk for all k ∈ Z/5Z which forces λ to be a fifth root of
unity, and by the linear equation in 6.3 it must be a nontrivial fifth
root of unity. For each such λ there is exactly one such point, proving
(1).

For (2):

Lemma 6.5. If x = (x1, x2, x3, x4, x5) is a fixed point of σ2 = (13)(24),
then x5 = 0.

Proof. If x is such a fixed point, then there is a λ ∈ C such that
σ2(x)k = λ · xk for all five coordinates xk. In particular,

x3 = λx1; x4 = λx2;x5 = λx5.

By the latter equality (if x5 6= 0) it would follow that λ = 1. That
is, x = (a, b, a, b, c) for some a, b, c, with c 6= 0. The linear equation in
6.3 gives c = −2(a + b) so a and b cannot both be zero. Without loss
of generality, suppose that a 6= 0, and scale it so that a = 1. So, the
linear equation in 6.3 gives

(6.6) c = −2(b+ 1)

and combined with the quadratic equation in 6.3,
i.e., c2 = −2(a2 + b2), we get that

(6.7) b =
5

3
or

11

3
.

Now comparing 6.6 with the cubic equation in 6.3 gives the relation
b3 + 1 = 4(b+ 1)3 and neither value in 6.7 satisfies this. �

Now let x = (x1, x2, x3, x4, 0) be a fixed point of σ2 = (13)(24). Such
a point satisfies the relations x3 = λx1 and x4 = λx2 for λ ∈ {±1}.
Again, without loss of generality we may suppose that x1 6= 0, and
scaling suitably, x1 = 1. So, putting x2 = b, our point is of the form
x = (1, b, λ, λb, 0). The linear equation in 6.3 then gives: (1+λ)(1+b) =
0; i.e., either b = −1 in which case the quadratic equation in 6.3 is
violated, or else λ = −1 and the quadratic equation in 6.3 tells us
that b = ±i. Therefore {(1,±i,−1,∓i, 0)} are the only fixed points of
σ2 = (13)(24).



NEW RATIONAL POINTS OF ALGEBRAIC CURVES 17

Noting that {(1,±i,−1,∓i, 0)} are actually fixed under σ concludes
the proof of Proposition 6.4. �

Corollary 6.8. Let P (resp: E) denote the quotient of C (over the field
Q) by the action of τ = (12345) (resp: σ = (13)(24)). Then P is of
genus 0 and E is of genus 1.

Proof. Recall that the Euler characteristic of Bring’s curve is −6. If
u and v denotes the Euler characteristics of P and E respectively, the
Riemann-Hurwitz formula and Proposition 6.4 give:

(6.9) − 6 = 5u− 4 · 4 and− 6 = 4v − 2 · 3
That is: u = 2 and v = 0. �

If K is a number field over which C has a K-rational point, then
P ' P1 (over K) and taking the image of that point in E as the
’origin’ we view E as an elliptic curve over K. The structure

(6.10) P Cπ
oo j // E ,

is a cyclic pencil of degree 5 (and genus 4) for the elliptic curve E over
K. Moreover, it induces a mapping of P into Y (E , χ) where χ is the
character of the irreducible representation of dimension 4 (over Q) of
the cyclic group of order 5.

As a consequence we have that E/K is significantly Diophantine un-
stable for a cyclic group of order 5.

Question 6.11. Are there cyclic pencils of degree 5 (and genus 4) for
other elliptic curves?

Note that since τ = (12345) and :σ = (13)(24) are both in the
alternating group A5 ⊂ S5, if we pass to the quotient of C by the
action of A5 we get a diagram:

(6.12) C
π
��

j //

zz

E

f��
C/{τ} ' P // C/G

with G = A5.
It follows that C/G is of genus zero, and more specifically , C/G/K '

P1, so 6.12 is a diagram of the 3.1 type:
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(6.13) C j //

π

""

E
f
��

C/G ' P1

as discussed in Section 3 above.

Corollary 6.14. E/K is significantly Diophantine unstable for (the
standard representation of) the alternating group A5.

Part 2. Some comments about heuristics

For E an elliptic over Q, F/Q a Galois extension, and χ a character
of an irreducible representation of Gal(F/Q), a standard conjecture
asserts that χ occurs in the Gal(F/Q)-representation space E(F )⊗Q
if and only if L(E,χ, 1) = 0 (where L(E,χ, s) is the Hasse-Weil L-
function of E twisted by χ).

So, F/Q is Diophantine unstable for E if and only if either L(E,χ, 1) =
0 or else E has more F -rational torsion points than Q-rational ones.
That is, the frequency of vanishing of L(E,χ, 1) for varying χ is largely
indicative of Diophantine stability.

In fact the conjectures we alluded to above, as formulated in [8] and
[9], [10], were phrased (analytically) in terms of vanishing of L(E,χ, 1)
rather than arithmetically in terms of acquisition of rational points.
Those conjectures were supported, as we mentioned, by random matrix
heuristics.

Karl Rubin and I have been considering another (perhaps more
naive) heuristic based (in effect) on the distribution of values of L(E,χ, 1).
Our predictions are qualitatively in accord with those bolstered by ran-
dom matrix statistics. Our heuristic takes off from the fact that the
values of L(E,χ, 1) are expressible in terms of (certain sums of) mod-
ular symbols. The statistics for modular symbols has great interest
in itself, results about it having recently been achieved by three dif-
ferent collaborations (working independently, and focusing on different
aspects of the general problem: [23], [24]; [18]; [4]).

Let E be an elliptic curve over Q. To give the basic idea we will only
discuss here the case where E is semistable. Consider fields F/Q that
are finite cyclic extension of odd degree d.
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The θ-element6 (over F , associated to E) is an element in the inte-
gral group ring,

θF ∈ Z[Gal(F/Q)]

We have

(6.15) θF =
∑

γ∈Gal(F/Q)

cF,γ · γ ∈ Z[Gal(F/Q)]

We will refer to the cF,γ ∈ Z as θ-coefficients.
The basic feature of theta elements of interest to us is the following:

Proposition 6.16. Suppose F/Q is a finite real cyclic extension of
conductor m and χ : Gal(F/Q)→ C∗ is a character Then

(6.17) χ̄(θF ) = (a nontrivial factor) · L(E,χ, 1)

7

Note the simple proposition (following from 6.17):

Proposition 6.18. These are equivalent:

• χ̄(θF ) = 0 for some nontrivial character χ cutting out F (equiv-
alently for all such characters).
• L(E,χ, 1) = 0 for some nontrivial character χ cutting out F

(equivalently for all such characters).
• In the case where the degree d = p is prime the above two

bullets are equivalent to the statement that θ-coefficients are
all equal; i.e.,

cF,γ = cF,γ′

for all γ, γ′ ∈ Gal(F/Q).

These are strong constraints for vanishing of L(E,χ, 1) = 0—e.g.,
the last item of the above proposition.

C. ‘Regularities’. Of course there are other relevant relations be-
tween the theta coefficients. . . e.g., as imposed on them via various
structures, for example:

(i) The sum of all the θ-coefficients of a given θ-element:

6—cf. *** for an exposition of this material and in a more general context
7 E.g., when χ : Gal(F/Q) ↪→ C∗, then χ̄(θF ) = (δE

τ(χ̄))L(E,χ,1)
Ω where δE is the

l.c.m. of the orders of the rational torsion points of E times the Manin Constant
[1]. on E) and Ω := ΩE is the real period of E.
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Let F/Q be cyclic of order p > 2 and of conductor m with
Galois group G. Suppose, further that:

(*) m is squarefree and relatively prime to the conductor of
E.

Then one has:

(6.19)
∑
γ∈G

cF,γ =
∏
` | m

(a` − 2) · uE.

where a` is the `-th Fourier coefficient of the newform fE at-
tached to the elliptic curve E and where uE is a rational num-
ber, dependent only on E, and zero if and only if L(E, 1) = 0.

Note that when (*) holds, the equivalent conditions of 6.18
are also equivalent to the statement that:

(**) the value of all the θ-coefficients cF,γ is equal to

1

p
·
∏
` | m

(a` − 2) · uE,

allowing us the side-comment that if p �E 0 then for any
character χ of order p, of squarefree conductor m prime to the
conductor of E then L(E,χ; 1) = 0 implies that there exists a
prime divisor ` of m such that a` ≡ 2 mod p.

(ii) A duality coming from the classical functional equation—or
equivalently the Atkin-Lehner relation:

Namely, for F/Q cyclic of prime degree, let

e := g.c.d.(N,m),

where m := the conductor of F and (recall:) N = the con-
ductor of E. There is an involution (of sets, not necessarily of
groups), ιe : Gal(F/Q) → Gal(F/Q) such that if γ′ := ιe(γ)
for γ ∈ Gal(F/Q), then

(6.20) cF,γ = −we · cF,γ′
where we ∈ {±1} is the eigenvalue of the Atkin-Lehner opera-
tor We acting on the modular form fE.

Definition 4. In the above context an element γ ∈ Gal(F/Q)
is called generic if ιe(γ) 6= γ and special if it is fixed by ιe.
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Note that one might expect somewhat different statistical
behavior for the data consisting of the values cF,γ when γ is
special, in contrast to when γ is generic. For example, if w = 1
we see from Equation 6.20 that cF,γ = 0 when γ is special.

7. The distributions

For every odd d > 1, let Σgeneric
d denote the collection of data

Σgeneric
d :=

{
cF,γ
√
d√

ϕ(m) log(m)
: F/Q real, cyclic of degree d,

m = cond(F ), γ ∈ Gal(F/Q) generic

}
,

ordered by increasing m. If the Atkin-Lehner eigenvaue w that appears
in Equation 6.20 is equal to −1, let Σspecial

d be defined in the same way,
for γ special. instead of generic.

A side-comment: In the case when d = p is a prime and (*) holds,
we have that L(E,χ, 1) = 0 if and only if (**) above holds, so that
the normalized data coming from such θ-coefficients is given by the
equation:

(7.1)
cF,γ
√
p√

ϕ(m) log(m)
=

∏
` | m(a` − 2)√

p · ϕ(m) log(m)
· uE.

The size of these terms is bounded in absolute value by a constant
times ∏

` | m

2(
√
`+ 1)√
`− 1

· 1√
logm

.

I think that this tends to zero as m goes to infinity. If so, of particular
interest to us would be the statistics of the data Σgeneric

d near 0.

Conjecture 7.2. (i) For every d ≥ 2, the collections of data

Σgeneric
d and Σspecial

d , ordered by increasing m, have limiting dis-

tribution functions Λgeneric
E,d (t) and Λspecial

E,d (t).

(ii) The distribution functions Λgeneric
E,d (t) and Λspecial

E,d (t) are contin-
uous except possibly at t = 0.
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(iii) ΛE,d(t)
generic is bounded near t = 0 by a constant times | log(t)|αd

for some αd. Moreover, limd→∞ αd = 0.

(iv) For large d, ΛE,d(t)
generic and Λspecial

E,d (t) are continuous for all t.

As d grows, Λgeneric
E,d (t) (resp., Λspecial

E,d (t)) converges to a normal
distribution with variance 2CE (resp., 4CE), where

CE := 6/π2
∏

` | m=cond(F )(1 + `−1)−1L(Sym2(E), 1).

These (conjectured) distributions seem interesting enough as con-
cepts of their own.

Question 7.3. Can we find (even conjecturally) an explicit formula

for the distribution Λgeneric
E,d (t), depending—as it does—only on d and

the Fourier coefficients of the newform fE?

Our heuristic makes use of only gross features of the distributions
ΛE,d(t). For example: we need only understanding the behavior of

ΛE,d(t)
generic and Λspecial

E,d (t) (we call it a growth bound) in some germ
about t = 0.

We do, however, depend on the relative lack of correlation in the
values of the different θ-coefficients of a given θ-element. The strict
correlation as described in Subsection C suggests that there are at most
roughly φ(d)/2 statistically independent coefficients—but our heuris-
tic would suggest qualitatively similar conjectures even if there were
roughly log(d) statistically independent coefficients.
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8. Conjectures

As a result of this—and the data we have gathered— we make the
following conjecture:
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Conjecture 8.1. Let X := the set of all even Dirichlet characters of
order at least 7 and different from 8, 10, or 12. Then the set {χ ∈ X :
L(E,χ, 1) = 0} is finite.

An arithmetic conjecture analogous to (and conjecturally equivalent
to) Conjecture 8.1 is:

Conjecture 8.2. Let E be an elliptic curve over Q and M an abelian
(Galois) field of algebraic numbers that contains only finitely many sub-
fields of order 2, 3 or 5. Then E(M), the Mordell-Weil group of E over
M , is finitely generated.

.
In connection with this conjecture, recall the classical result of Kato,

Ribet and Rohrlich that guarantees the same conclusion for E an ellip-
tic curve over Q and M any abelian (Galois) field of algebraic numbers
that is unramified except at finitely many primes. For more about
these matters, see [19].
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