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Abstract

Since Diophantus the question of rational solutions to polynomial equations has gripped the
imagination of mathematicians, and yet we are—now in 2018—still attempting to understand
the general lay of the land. There are questions we confront for which we still don’t have the
experience to conjecture their answer, let alone answer them. I will give an overview of this,
as well as recent work on arithmetic statistics—i.e., the study of specific, or general families of
curves or abelian varieties in terms of the statistical behavior of their Diophantine properties.
This is largely due to Manjul Bhargava and his co-authors. I will discuss how this connects
with, and sharpens, our more general expectations.

Introduction: The scarcity of rational points

1 Lang’s (and Lang-type) Conjectures

By a number field we mean a subfield of finite degree over Q in the the
field of algebraic numbers in C—equivalently, a field generated over Q by a
single algebraic number. Visibly, any curve defined over the field of algebraic
numbers has plenty of algebraic points—these are dense in the locus of com-
plex points of the curve, and it is striking how many different number fields
are generated by the coordinates of the rational points of any one curve. Of
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course, the algebraic points of P1 ‘generate’ all number fields; and the alge-
braic points of hyperelliptic curves—i.e., curves that are double covers of
P1— generate selected quadratic extensions of all number fields.

Now fix a number field K. it was Serge Lang’s firm belief that on the whole,
algebraic varieties over K tend not to have all that many K-rational points
unless either

• there is some specific algebraic geometric structure generating them, or

• a functional equation (proved, or conjectured) and a corresponding root
number computation predicts the parity of the rank of a Mordell-Weil
group (which in many cases allows one to expect the existence of more
rational points than is in evidence without this prediction).1

But lacking either reason for rational points to be abundant, the sense is that
they are scarce.

For example, consider the question of algebraic varieties possessing infinitely
many rational points over number fields. It is easy to see that if V is an
algebraic variety defined over Q̄, that admits a non-constant mapping G→ V
of where G is a connected positive dimensional algebraic group, then there
is a number field K over which V is defined and possesses infinitely many
K-rational points.

But an implication of one of Serge Lang’s conjectures is that any algebraic
variety V over Q̄ that does not contain a positive-dimensional image of an
algebraic group (over Q̄) possesses only finitely many K-rational points over
any number field K (over which it is defined)2.

Following in this spirit, one might fix a number field K and ask if the following
is true:

1 Heegner points excepted, these two types of reasons don’t seem to be available together. We rarely see an
algebraic geometric mechanism explaining a parity prediction.

2 A related question is the following: Let V be an algebraic variety possessing an automorphism α of infinite order
(both variety and automorphism being defined over Q̄). Does V possess a non-periodic algebraic point? If so, then
there will be a number field K over which V and α are defined, for which V (K) is infinite. (An elementary argument
shows that V does contain a non-periodic C-valued point.)
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Question 1. Is it true that a variety V over K possesses infinitely many K-
rational points if and only if there exists a connected (geometrically simple)
algebraic group G over K possessing infinitely many K-rational points and a
nonconstant mapping G→ V defined over K?

This lecture consists of three parts:

1. Arithmetic Statistics.

Here, as in the introduction above, we will consider the general phe-
nomenon of structure (scarcity or abundance; usually scarcity) of ratio-
nal points, the average number of of rational points in certain families
of curves, etc.

2. Arithmetic Specifics.

In certain cases, one wants, explicitly, in contrast to general structure,
the answer to some Diophantine problem, since that ‘answer’ tells us
something we want to know about a particular mathematical issue. We
might want to actually know the set of rational points on some particular
curve, or a variety, because of the specific significance of each of those
rational points. This happens most frequently when one is dealing with
modular curves or varieties.

3. Algorithmic issues in arithmetic.

Here the issues is solvability or unsolvability via algorithms, and the
various modes of effectiveness.

I propose to touch on all these three facets of arithmetic.
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Part I

Arithmetic Statistics

2 Hyperelliptic curves over Q

Thanks to the work of Manjul Bhargava, Benedict H. Gross, Bjorn Poonen,
Arul Shankar, Michael Stoll, and Xiaoheng Wang,we are beginning to get a
picture of the arithmetic statistics regarding rational points on hyperelliptic
curves—i.e., curves that are double covers of curves of genus zero.

For example, consider curves C of the form y2 = f(x) where f(x) ∈ Q[X]
is a polynomial with no multiple roots and of odd degree (d ≥ 5) so C is of
genus g = (d− 1)/2 > 1. Any such curve has the property that the point at
∞ is a Weierstrass point, and—of course—then represents a rational point
of the smooth projective curve C.

Here —as we shall presently see—is an atypical family of such curves:

C : y2 = (x− a1)(x− a2) . . . (x− ad) + c2 (1)

where the ai are distinct rational numbers, and c is a nonzero rational number
chosen such that C is smooth.There are (at least) 2d ∼ 4g rational points on
such curves C.

Fixing g and ordering isomorphism classes of hyperelliptic curves defined
over Q by the discriminant of their defining polynomial f(x), we may ask
statistical questions about the set of all isomorphism classes of hyperelliptic
curves:

Question 2. Is it true that with probability 1 the rational point ∞ is the only
Q-rational point of C?

• A theorem of Manjul Bhargava, Benedict H. Gross, and Xiaoheng Wang
may be roughly interpreted as showing that most hyperelliptic curves of
high genus have relatively few rational points ([B-G-W]).
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• Bjorn Poonen and Michael Stoll [P-S] have shown that most odd degree
hyperelliptic curves have only the one rational point ∞.

• More specifically, for g ≥ 3 a positive portion of such curves have ∞ as
their only rational point, and this proportion tends to 1 as g tends to
infinity.

• Following these results, Arul Shankar and Wang show ([S-W]) that when
g ≥ 9, a positive proportion of hyperelliptic curves of genus g having two
non-Weierstrass Q-rational points curves have exactly those two rational
points, and that this proportion tends to 1 as g tends to infinity.

This suggests that it might be interesting to frame more delicate questions
making a triage in terms of numbers of rational points. . .

For elliptic curves, Jennifer Park, Bjorn Poonen, John Voight, and Melanie
Wood have shored up some possible evidence (by a heuristic argument) for
the remarkable guess (originally made by Honda for families of quadratic
twists of a single elliptic curve) that there is a finite upper bound to the
Mordell-Weil ranks of all elliptic curves over Q. See [P-P-V-W]. Moroever,
they conjecture that the maximal rank is quite small.

3 Uniformity Conjectures

Older results—based on conjectures—also imply that there’s a striking paucity
of K-rational points on curves (hyperelliptic or not) of genus > 1. For exam-
ple, Lucia Caporaso, Joe Harris, and I conjecture the following (which itself
is an implication of [SLC], the Strong Lang Conjecture):

Conjecture 1. Let g > 1. There is a (finite) bound N(g) with the property
that for every number field K only finitely many curves of genus g defined
over K have more than N(g) K-rational points.

For this, see [C-H-M] and note that there is an error in this article pointed
out to us by Jakob Stix; a correction will be on archiv soon.
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The curious point here is that N(g) doesn’t even depend on the field K. Of
course, such a consequence of [SLC] might force one to have second thoughts
about the likelihood of [SLC], and hence of Conjecture 1, being true. But let
us continue this discussion supposing that Conjecture 1 does hold, and that
the following limit is finite:

N(g) := max
K⊂Q̄

lim sup
C: curves over K of genus g

|C(K)|. (2)

By considering the curves given in Equation 1 alone, we see thatN(g) ≥ 4g+4
if g > 1, but not much more is known in the way of lower bounds; less, of
course, is known in the way of upper bounds. The record lower bounds
for genus 2 and 3, so far are: N(2) ≥ 226 (cf: Genya Zaytman [Z]) and
N(3) ≥ 100 (cf: Noam Elkies [E]).

Can one find a lower bound for N(4) that beats 4× 4 + 4 = 20?

Defining ν := lim supN(g)/g so that 4 ≤ ν ≤ +∞ we might ask:

Question 3. Is ν finite? Is it 4?

Conjecture 1 implies that the ’average number of points’ on a curve of genus
g > 1 is bounded. That is, ordering the set C of K-isomorphism classes of
(projective smooth) curves of genus g in any way:

C = {C1, C2, . . . }

the Strong Lang Conjecture implies that the ‘average number’ is finite; i.e.,we
have:

λ(g,K) := lim sup
n→∞

1

n

n∑
i=1

|Ci(K)| ≤ N(g) < +∞.

To be sure, this ‘average number’, λ(g,K), may depend on the ordering, so
it would be only reasonable to ask such questions ordering the curves Ci in
some natural way.

Question 4. Might λ(g,K) simply be 0?
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4 Diophantine Stability

Say that a variety V defined over K is diophantine stable (cf. [M-R]) for
the field extension L/K if V (L) = V (K); that is, if V acquires no new rational
points when one extends the base field from K to L. We will be discussing
theorems and conjectures that point to the prevalence of diophantine stability
in a range of contexts.

Proposition 1. Assume Conjecture 1. Let K be a number field and g > 1.
Then for any Galois extension L/K with simple Galois group of sufficiently
large order (i.e., of order |Gal(L/K)| �K 0) only finitely many curves of
genus g defined over K are diophantine unstable for the extension L/K.

We include the possibility that Gal(L/K) is cyclic of prime order.

Proof: Any nontrivial action of a simple group G on a set of cardinality
n defines an embedding of G in the symmetric group on n letters, forcing
|G| ≤ n!. Assume SLC and therefore that N(g), as in Equation 2 of Section
3. is finite. Let G = Gal(L/K) and assume that G is simple and |G| > N(g)!.
Let C be any K-rational curve of genus g that is not diophantine stable for
L/K. Any nontrivial orbit of G on C(L) then contains more than N(g)
L-rational points, and therefore exhibits C as an L-outlier—that is, Under
SLC there are only finitely many L-outliers. Consequently only finitely many
curves of genus g defined over K are diophantine unstable for L/K.

Question 5. Let K be a number field.

1. Are there Galois extensions L/K with simple Galois group of arbitrarily
high order having the property that only finitely many elliptic curves de-
fined over K of conductor prime to the discriminant of L are diophantine
unstable for L/K ?

2. Are there Galois extensions L/K with simple Galois group of arbitrar-
ily high order having the property that there are infinitely many elliptic
curves defined over K that are diophantine unstable for L/K?

7



5 Is a curve of genus g uniquely determined by its diophantine
stability properties?

That diophantine instability relative to merely one such extension L/K cuts
out—admittedly only conjecturally—a finite set of curves of any fixed genus
g > 1, is suggestive to us that one might even single out a curve X unam-
biguously if one considers all extensions relative to which X is diophantine
unstable.

More explicitly, let V be a variety over a number field K. We define, as in the
paper with Karl Rubin [M-R], L(V ) to be the set of number field extensions
L/K contained in K̄/K which belong to V in the sense that there is an
L-rational point of V that is rational over no proper intermediate field of
the extension L/K. By the primitive element theorem any variety V over K
containing a curve birationally isomorphic to P1 has the property that

(*) L(V ) is the set of all finite field extensions of K.

One might ask about the converse:

Question 6. If V is a geometrically irreducible smooth projective curve over
a number field K, does L(V ) determine V ?

Karl Rubin and I have at least proved ([M-R]) the following:

Theorem 2. Let V be an irreducible projective curve over the number field K.
Then every field extension L/K belongs to V if and only if V is birationally
isomorphic (over K) to the projective line.

Moreover, we show that for any curve of positive genus there are many ex-
tension fields do not belong to it:

Theorem 3. Let X be an irreducible curve over a number field K whose nor-
malization and completion is not of genus 0. Then there is a finite extension
K ′/K such that for any positive integer n, there are infinitely many primes
` where, for each of them, there are infinitely many cyclic extension fields
L/K ′ of degree `n such that X(K ′) = X(L).
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We show this by relating curves to abelian varieties, via their jacobians.

Our result was primarily a result about simple abelian varieties, from which
we deduced the corresponding result for curves of genus ≥ 1. Suppose, then,
that A is a simple abelian variety, and make a base change if necessary so
that all endomorphisms of A are defined over K. For a prime power `n,
let us order (by the size of the norm of their discriminant) the set of cyclic
`n-extensions L/K (contained in K̄).

We prove:

Theorem 4. For a set of primes ` of positive density, and for any n ≥ 0 there
is a (positive, unfortunately) number α = α(`) such that for N a positive
number, among the ’first’ N such cyclic extensions of K of degree `n the
simple abelian variety A is diophantine stable for at least N/ log(N)α of them
if N � 0.

In view of Theorem 1, a natural question to ask is:

Question 7. Fixing a number field K Is there a bound `(K, g) such that for
any abelian variety A of dimension ≤ g over K and for any prime ` > `(K, g)
there are only finitely many cyclic extensions L/K of degree ` with respect to
which A is Diophantine Unstable?

Examples show that—at the very least— `(K, g) > g.

Part II

Arithmetic Specifics: Rational points on
modular curves

Aspects of the general problem (a variant of a problem initially posed by
J.-P. Serre) regarding the action of Galois on torsion points of elliptic curves
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over number fields has animated the study of noncuspidal K-rational points
on modular curves for number fields K.

Question: For a fixed number field K is there a finite bound `0(K)
such that for every non-CM elliptic curve E over K the natural
image of Gal(K̄/K) to the automorphism group of E[`], the kernel
of multiplication by ` in E(K̄), is surjective if ` is a prime ≥ `0(K)?

The issue then, has been to classify all instance of nonsurjectivity and specif-
ically to classify instances where the action of Galois is contained in various
subgroups of GL2(Z/NZ). For example, to classify:

• K-rational points on the modular curve X1(N) corresponds to pairs con-
sisting of elliptic curves and points on them of order N—defined over K;

• K-rational points on X0(N) correspond to cyclic isogenies of elliptic
curves E → E ′ of degree N—defined over K.

Happily, for the ground-field K = Q, classical theorems fully determine the
answer to those two questions.

• The subtler question of Q-rational points on

X0(N)+ = X0(N)/action of wN

is currently tantalizing. Here wN is the Atkin-Lehner involution.

When N is `2, the square of a prime,

X0(`
2)+ = Xsplit Cartan(`) := X(`)/Csplit(`),

and so (noncuspidal) rational points on such a modular curve classify
instances of elliptic curves over Q where the image of Galois is contained
in a split Cartan subgroup Csplit(`) of GL2(Z/`Z). Thanks to the results
of Bilu-Parent-Rebolledo [B-P-R] who showed that there are no non-CM
instances of this if ` > 7 (` 6= 13); and thanks to Balakrishnan, Dogra,
Müller, Tuitman and Vonk [B-D-M-T-V] who took care of the rather
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subtle, last, case—i.e., ` = 13, we have a complete understanding of the
Q-rational points of Xsplit Cartan(`).

The question of Q-rational points on X0(13)+ (and on X0(N)+ for other
values of N and especially in the cases where N = ` is prime) is indeed
subtler.

Definition 1. A Q-rational Galois-conjugate cyclic N isogeny for
an elliptic curve E over a quadratic field K is given by a pair of isogenies

φ : E → E ′; φ′ : E ′ → E

where φ, φ′ are dual cyclic N isogenies defined over K and such that one
is the Galois conjugate of the other under the Galois involution of K.

The (noncuspidal) Q-rational points on X0(N)+ are in one-one corre-
spondence with Q-rational Galois-conjugate cyclic N isogenies.3. Here
we also allow the possibility that E, and even φ, be actually defined over
Q. In the latter case, no quadratic field K actually intervenes.

Remarks:

1. Note that if K is a quadratic imaginary field of class number one, and
E an elliptic curve with CM by K, E will ‘contribute to’ Q-rational
points on X0(N)+ for infinitely many values of N—for example, for
π ∈ OK any prime element of degree 1 with p := NK/Q(π) and

π ∈ EndK(E) ⊂ OK ,

let φ : E → E be multiplication by π; such points in X0(p)
+ will be

called ‘CM-points.’

2. Visibly, a Q-rational points on X0(N)+ is the image of some K-
rational point on X0(N).

3 Note that if E admits a Q-rational Galois-conjugate cyclic N isogeny, then E itself is a quadratic elliptic Q-curve
in the following sense:

Definition 2. An elliptic curve E—defined over a number field K that is Galois over Q—is called an elliptic Q-
curve if E is isogenous to all its Galois conjugates. It is called a quadratic elliptic Q-curve if it is defined over
a quadratic field (and is isogenous to its Galois-conjugate)

For discussion and information about elliptic Q-curves, see, for example, [G-L].
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For K ranging through quadratic number fields, here—at least roughly—is
where we have stood for the past two decades regarding points of finite order
and cyclic isogenies defined over K:

• Regarding K-rational points on the modular curve X1(N):

Thanks to the work of Kenku, Momose and Kamienny, no elliptic curve
over any quadratic field K has a K-rational point of prime order p ≥ 17;
for more precise information, see [K-M], [M1],[K-N].

Theorem 5. Let K be a quadratic field and E an elliptic curve over K.
Then the torsion subgroup E(K)tors of E(K) is isomorphic to one of the
following 26 groups:

Z/mZ, for 1 ≤ m ≤ 18, m 6= 17,
Z/2Z⊕ Z/2mZ, for 1 ≤ m ≤ 6,
Z/3Z⊕ Z/3mZ, for m = 1, 2,
Z/4Z⊕ Z/4Z.

• Regarding K-rational points on the modular curve X0(N):

Theorem 6. Let K be a quadratic field not quadratic imaginary of class
number one. Then for only finitely many primes p is there an elliptic
curve over K admitting a p-isogeny defined over K.

(See [M2])

• And regarding Q-rational points on the modular curve X0(N)+:

Theorem 7. Let N be a composite number. If N has a prime divisor
p such that p = 11 or p 6= 37 and p = 17, with the property that J−0 (p)(Q)
is finite then the Q-rational points of X0(N)+ consists of cusps and CM-
points. (Here J−0 (p) is the quotient J0(p)/(1 + wp)J0(p) of the jacobian
variety J0(p) of X0(p).)

See [M3], [M4].

But this still leaves open the question for general N and especially for prime
values of N (in light of Theorem 7 above).
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Definition 3. By an unexpected Q-rational point on X0(N)+ let us
mean a rational point that is not a cuspidal or CM (Q-rational) point, nor is
it the image of such a point under a Q-rational automorphism of X0(N)+.

Question 8. Is there a finite bound No such that for any N > No the curve
X0(N)+ has no unexpected Q-rational points? For any N such that X0(N)+

is of genus > 1, find all unexpected Q-rational points.

(See also the discussion about this in [G].)

There has been recent exciting progress—see [B-B-C-C-E], [B-D], [B-D-M-T-V],
[G]—in shaping algorithms for making Chabauty-Coleman explicit for com-
putation, and developing the more recent methods of Chabauty-Coleman-
Kim, to attack Question 8, the latter methods necessary especially for prime
values of N . At a workshop this summer at Fondation des Treilles Alex
Best, Francesca Bianchi, Nicholas Triantfillou, and Jan Vonk, following de-
veloped algorithms for the determination of rational points via the method
of Chabauty-Coleman-Kim for—quite specifically—the six curves4 X0(`)

+ of
genus 2, but with an eye toward shaping an effective usable and general algo-
rithm. See their forthcoming paper Les Treilles: Rational points on modular
curves.

Part III

Algorithmic questions about arithmetic

The fundamental starting point of such questions is “Hilbert’s Tenth Prob-
lem,” which can be posed for any (commutative) ring A:

Question 9. Does there exist a finite algorithm to determine whether any
finite system of polynomial equations in finitely many variables with coeffi-
cients in A has a solution in A or not?

A basic theorem of B. Poonen and A. Shlapentokh connects Diophantine
4 ` = 67, 73, 103, 107, 167, 191
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Stability for elliptic curves to issues of Diophantine un-solvability (cf. [P],
[Shl1], [Shl2]):

Theorem 8. (Poonen-Shlapentokh) If L/K is a finite extension of number
fields and:

• Hilbert’s Tenth Problem has a negative answer for OK, and

• there exists an elliptic curve E defined over K with positive Mordell-Weil
rank (i.e., such that E(K) is infinite) that is Diophantine Stable for the
extension L/K,

then Hilbert’s Tenth Problem has a negative answer for OL.

Using this theorem (and the classical work of Julia Robinson/Davis/Putnam/
Matiyasevich) Karl Rubin and I showed that—conditional on the Shafarevich-
Tate Conjecture—all number fields K (i.e., fields of finite degree over Q) have
the property that Hilbert’s Tenth Problem has a negative answer for their
rings of integers, OK . What, if anything, can one say about fields of algebraic
numbers of infinite degree over Q?

6 Rational points over large fields of algebraic numbers

Here are consequences of the results in our paper [M-R]:

Corollary 9. Let A be any simple abelian variety over a number field K,
such that all endomorphisms of A over K̄ are defined over K. Then there are
uncountably many algebraic extensions M/K, M ⊂ K̄, that are Diophantine
Stable for A.

Corollary 10. There are uncountably many fields of algebraic numbers M ⊂
Q̄, for which there does not exist an algorithm that determines whether or not
a finite system of polynomial equations with coefficients in the ring of integers
OM has a solution over OM ; that is, for which Hilbert’s Tenth Problem has
a negative answer.
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It is interesting to consider possible relations between the following conditions
formulated for a (possibly large) subfield of algebraic numbers M ⊂ Q̄.

1. There exists an abelian variety A defined over M with A(M) finitely
generated and of positive rank.

2. There exists a finite degree extension W/M and an abelian variety A
defined over W with A(W ) finitely generated and of positive rank.

3. There exists a variety V defined over a number field K ⊂ M such that
V (K) is infinite and V (K) = V (M).

4. There exists a finite degree extension W/M and a variety V defined over
W such that for some a number field K ⊂ W over which V is defined
and V (K) is infinite we have V (K) = V (W ).

5. There exists an infinite Diophantine subset of OM that is also a Dio-
phantine subset of the ring of integers in some number field contained in
M .

6. Hilbert’s Tenth Problem (HTP) has a negative answer for M .

Remarks:

• If (HTP) has a negative answer for a field of algebraic numbers W then
it also has a negative answer for any subfield M ⊂ W where [W : M ] <
+∞. This follows from writing OW as

∑ν
i=1wiOM so that any finite

system of polynomial equations with coefficients in OW can be converted
into a finite system of polynomial equations with coefficients in OM .
Therefore any finite algorithm to determine whether the latter system
has solutions converts to a finite algorithm to determine whether the
former system does. For essentially similar reasons, items (2) and (3) in
Question 9 are equivalent, since if A an abelian variety over W as in (3),
then the Weil Trace B := TrW/MA is an abelian variety over M as in
(2).

• Conditional on the Shafarevitch-Tate Conjecture, if (1) holds where A
is an elliptic curve then (6) holds. It would be interesting to prove this
implication in the more general case where A is an abelian variety of any
dimension.
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