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§1. TATE'S LIXEAR ALGEBRA

i
1.1 Crossed modules and central extensions of Lie algebras. We will need Lie and

associative algebra versions of crossed modules:

1.1.1 DEFINITION. (i) Let L be a Lie algebra. An L-crossed module is an L-module L#

together with a morp..~ism L# ~ L of L-modules. For t' E L we will denote the action of

Lon L# as [t',.]; so one bas 8[t',l] = [t',8l], lE L#.

(ii) Let R be an associative algebra. An R-crossed module is an R-bimodule R# together

with a morphism R# ~ R of R-bimodules. 0

We have canonical pairings {,} : Sym2 L# - L, (, ) : R# 0R R# - R# defined
by formulas {ml,m2} := [8ml,m2] + [8m2,ml]' (81,82) := (881)82 - 81(882). These are

morphisms of L-modules and R-bimodules respectively; one has 8{,} = 0, 8(,) = O.

Crossed modules in both versions form categories in an obvious manner. For example,

if R1 ~R2 is a morphism of associative algebras and Rf are Ri-crossed modules, then

an i-morphism of crossed modules is an i-morphism f# : R1 - R2 of bimodules such

that 8 f# = f8. If R is an associative algebra, then R, considered as Lie algebra with

commutator ab - ba, will be denoted RLie. If R# is an R-crossed module, then it has

also an RLie-crossed module structure R#Lie with [r,T] = rr - rr. One has {81,82} =

(81,82) + (S2,81) for 8i E R# = R# = R#Lie.

Below "dg algebra" means "differential graded algebra"; so "Lie dg algebra" is the

same as differential graded Lie superalgebra.

1.1.2 LEMMA. (i) Let Lo (resp. RO) be a Lie (resp. associative) dg algebra such that Li = 0
(Ri = 0) for i > o. Then L-1~Lo (resp. R-1~RO) is a Lie (resp. associative) algebra

crossed module. For m1,m2 E L-1 (resp. 81,82 E R-l) one has {ml,m2} = d[m1,m2]

(resp. (81,82) = d(8182))'

(ii) Conversely, let L#~L (resp. R#~R) be a crossed module, and i : ..'V C L# (resp.

i : T C R# ) be an L-submodule (resp. R-sub-bimodule) such that {L #, L #} C N C ker 8

(resp. (R#,R#) C T C ker8). Then N~L#~L (resp. T~R#~R) is a dg Lie

(resp. associative) dg algebra placed in degrees -2, -1, O. 0
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In other words, the lemma claims that dg algebras zero off degrees -2, -1,0 and acyclic

off degrees -1,0 are in 1-1 correspondence with pairs (L#~L; N), where L#~L is a

crossed module and N C L# is a submodule as in (ii) above. For example, one may take

N = image of {,} (or image of (,) in the associative algebra version); we will say that the I
corresponding dg algebra is defined by our crossed module.

1.1.3 The simplest example of a Lie algebra crossed module is a central extension L -. L

of a Lie algebra L (the bracket on L factors through an L-action); note that here {,} =

O. Conversely, let Lo be a dg Lie algebra. Then L-1/dL-2, equipped with the bracket

[1!1,1!2] := [dI!1,1!2]O,-1 is a Lie algebra, and d : L-1/dL-2 -. Lo is a morphism of Lie

algebras such that (H-1 -. L-1/dL-2 -. d(L-1)) is a central extension of dL-1 by H-1.

Hence if L # ~ L is an L-crossed module such that 8 is surjective, then ker 8/ {L #, L #} -.

L # / {L # , L #} -. L is a central extension of L. If tr : ker 8/ {L # , L #} -. C is any linear

functional, then it defines, by push-out, a central C-extension Lt of L.

1.1.4 The following example of a crossed module will be used below. Let L be a Lie

algebra, and let L+, L- C L be ideals. Then we have an L-crossed module L+ ffi L_~L,

8(1!+, I!_) = I!+ +I!_. We have isomorphism i : L+ nL- -;::j' ker 8, i(l!) = (I!, -I!) E L+ ffiL_.

Or we _may take an associative algebra R equipped \vith 2-sided ideals R+, R_, and get an

R-crossed module ~ ffiR_~R. Note that {,} vanishes on L+ and L- (and (,) vanishes

on R+ and R-) and one has {I!+,e_} = i([e_,I!+]), (r+,r_) := -i(r+r_),{r_,r+) =

i(r_r+).
If L+ + L- = L, then we get a central extension L+ n L_/[L+, L-] -3-. L -. L of L,

where L = L+ffiL_/i([L+, L_]). This central extension is equipped with obvious splittings

s: : L: -. £ such that s:(L:) are ideals in £; it is easy to see that £ is universal among

all central extensions of L equipped with such splittings. Note also that the embedding

s+ : L- '-+ £ factors to isomorphism L+/[L+,L_] -;::j' £/s--(L_) and we have the cartesian

square £ - L/s_(L_) +;::;- L+/[L+,L_]

1 1 1
L - L/L- ~ L+/L+ n L-

and the same for ::r. interchanged.

1.1.5 Now let tr : L+ n L_/[L+, L-] -. C be any linear functional. According to 1.1.3 it
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defines a central C-extension Itr of L. One has the splittings s+ : L+ -+ Itr, s- : L- -+ Ltr

such that s:(L:) are ideals and (s+ -s-)IL+nL- = ir. Clearly Ltr is the unique extension

equipped with this data.

1.1.6 The above constructions are functorial with respect to (L, L:). Hence if L,: CLare

other ideals such that L: C L,:, then we get a canonical morphism L -+ I' between the

corresponding central extensions of L. H ir : L+ n L_/[L+, L-] -+ C extends to tr : L+ n

L,-/[L+, L,-] -+ C, then Ltr = L~r. In particular, assume that tr : L+ n L_/[L+, L_] -+ C

extends to tr : L-/[L-,L-] -+ C. Then we may take L+ = L,L,- = L- to get the same- - -
extension Ltr, hence we get the splitting s+ : L -+ Ltr that extends our old s+ : L+ -+ Ltr.

Explicitly, s+(t'+ + t'_) = s+(e+) + s_(t'_) + trt'_; clearly s+ - s- = tr: L- -+ C. In the

same way, an extension of tr : L+ n L- -+ C to L+ determines the splitting s- : L -+ Ltr

that extends the old s- : L- -+ Ltr. H we have the trace functional on the whole L, i.e.

tr : Lj[L, L] -+ C, then s+ - s- = tr : L -+ C.

1.1.7 We will often use the following notation. H 9 is a Lie algebra, V is a vector space,

an-d 0 -+ V -+ 9 -!- 9 -+ 0 is a central V -extension of g, then for any c E C we will denote

bygc a V -extension of 9 which is the c-multiple of g. So we have a canonical morphism

9 ~ gc of central extensions of 9 that restricted to v"s is multiplication by c. For example,

in situation 1.1.3 one has (Lt)c = L~r'

1.2 Tate's vector spaces. For subspaces Yo, VI of a vector space V we will write Vo -< VI

if VolVo n VI is of finite dimension, and Vo ,..., VI (~ are commensurable) if Vo -< VI and

VI -< Yo. Clearly -< is partial order on a set of commensurability classes of subspaces.

1.2.1 A Tate'3 topological vector 3pace (or, simply, Tate'3 3pace) V is a linearly topolo-

gized complete separated vector space V that admits a basis {VQ} of neighbourhoods of

0 with V Q mutually commensurable. Equivalently, V is the projective limit of a family of

epimorphisms of usual vector spaces with finite dimensional kernels: V = li!!lV/Va,
Q

Let L C V be a vector subspace. We will say that L is bounded if for any open

U C V one has L -< U, and L is di3crete if for some open U one has U n L = O. Clearly

simultaneously bounded and discrete subspaces are just finite dimensional ones.

A lattice V+ C V is a bounded open subspacej equivalently, this is a maximal (with re-
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spect to -<) bounded closed subspace. The lattices form a maximal basis ofneighbourhoods

of 0 that consists of mutually commensurable subspaces.

A co lattice V - C V is a maximal discrete subspace. Equivalently, this means that

for (any) lattice V+ one has V+ n V- 0, V+ + V- V (or for some lattice V+ one has

V + ffi V_--=::.. V).

Tate's vector spaces form an additive category TV with kernels and cokernels. The

category TV is self-dual: Namely, for a Tate's space V its dual V* is H om(V, C) with open

subspaces in V* equal to orthogonal complements to bounded subspaces in V. This V* is

a Tate's space, and V** = V. Note that V+ 1---+ Vf is 1-1 correspondence between lattices

in V and V*; and the same for colattices.

1.2.2 Let V be a Tate's vector space. One has a canonical Z-torsor Dimv together with

a map dim: { Set of all lattices in V} -t Dim V such that for a pair V +1, V +2 of lattices

one has dimV+1 - dimV+2 := dim(V+IIV+I n V+2) - dim(V+2IV+1 n V+2) E Z. One

has a natural map codim : { Set of all colattices in V} -t Dimv defined by formula

codimV- = dimV+ + dim(VIV+ + V_) - dim(V+ n V_), where V+ is any lattice. The

Z-torsor Dimv* coincides with the opposite torsor to Dimv: one has dimVf = -dimV+.

The grqup Aut V acts on Dimv; if V is neither bounded nor discrete, then the action is

non-trivial.

1.2.3 Let VI, V2 be Tate's vector spaces. We will say that a linear operator f E H om(V1, V2)

is bounded if 1mf is bounded, is discrete if kerf is open, and is finite if 1mf is finite

dimensional. Denote by H om+ , H om - and H omoo respectively the corresponding spaces

of operators; put Homo := Hom+ n Hom_. Clearly Hom+ + Hom- = Hom, Hom?

(where? = +, -,0,00) is a 2-sided ideal in H om (i.e., if for vIA v2A V3 either it or h

is in Hom?, then hit is in Hom?), and Hom_Hom+ C Homoo.

REMARK: Let TV+, TV- C TV be full subcategories of bounded, resp. discrete, spaces.

Then TV_coincides with the category of usual vector spaces, and * identifies TV + with the

dual category TV~; in particular these are abelian categories. Consider the quotient cate-

gories TV I +, TV I -, TV 10, whose objects are Tate's vector spaces, and H om's are the cor-

responding quotients H om 1::1::: := H om I H om~, H om/O := H om I Homo (clearly TV 1::1::: are

just the quotient categories TV ITV~). These quotient categories are abelian. In fact, the
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projection TV 10 -+ T"v I +ffiTV- is the equivalence of categories, and embeddings TV:f:; c-+

TV composed with projections define equivalences TV + IV ect -z TV I-, TV-IV ect -z TV I +
(here Vect = TV+ n TV- is the category of finite dimensional vector spaces).

1.2.4 For V E TV consider the algebra EndV equipped with 2-sided ideals End:f:; ~

Endo :) Endoo. We will write gf = gfV for EndVLie = EndV considered as Lie algebra.

Since En4 C Endoo, we have a canonical trace functional tr : gfo -+ C which vanishes on

[gt'+, gt'_]

According to 1.1.4, we get an End-crossed module End+ffiEnd- -+ End. By 1.1.5, tr

defines a central C-extension gl -+ gf of gf, together with canonical Lie algebra splittings

S:f:; : gf:f:; -+ gf such that s+ - s - = tr on glo.

1.2.5 Let T c V be a Tate's subspace (= a closed subspace with induced Tate structure),

and V IT be the quotient. Denote by PT ~ gfV the parabolic sub algebra of endomorphisms

that preserve T; let 7r = (7rT, 7rv /T) : PT -+ gfT x gfV IT be an obvious projection. Let
~ -

gfT x gfV IT be a central C-extension of gfT x gfV IT which is the Baer sum of glT and
- ~ --
gt'VIT; one has gfT x gfVIT = gfT x gfV/T/{(al,a2) E C xC: al + a2 = O}. Clearly

gfT x:gfVIT coincides with the C-extension constructed by the recipe of 1.1.4,1.1.5 using

the ideals gf+T x gf+ VIT, gl_T x gf- VIT and the trace functional tr = trT + trv/T.

Let PT = i*ifv be the C-extension of PT induced by ifv. Since PT = PT+ + PT-,

where PT:f:; = PT n gf: V, this C-extension coincides with the one constructed by means

of ideals PT: and the trace functional trvlPr. Note that 7r(PT:) = gl:T x gl:f:; VIT and

trvlPr = tr 0 7r. By 1.1.6 this defines a canonical morphism '7F : PT -+ glT x9lVIT of

C-extensions that lifts 7r. In other words, PT is canonically isomorphic to the Baer sum of

C-extensions induced by projections 7rT, 7rV/T from ifT, ifv IT.

Let us consider an important particular case of this situation. Assume that T = V + is

a lattice. Then we have a canonical splitting s+ : gfV+ = gf+ V+ -+ ifv+, s- : gfVIV+ =- -
gt'- VIV+ -+ gt'VIV+, hence a canonical splitting sv+ = s+7rv+ + S_7rv/v+ : Pv+ -+ gt'v.

Note that sv+ actually depends on V+: if V.;. is another lattice, then sv+-sv.i. : pv+nPv.i.-+

C is given by formula (sv+ - sv.j.)(a) = trv+/v+nv.j.(a) - trv.j./v+nv.j.(a).

Similarly, if T = V_is a colattice, then we have the splittings $- : gt'V - = gt'- V - -;

ifv-, s+ : gt'VIV- = gl+ VI V- - ifVIV-, hence the splitting sv- = S_7rv- + s+7rv/v- :

5



Pv- -., gfv. On Pv- n Pv+ the difference sv+ - sv- : Pv- n Pv+ -., C is given by formula

(sv+ - sv_)(a) = trv_nv+(a) - trvlv_+v+(a).

The following subsection 1.3 could be omitted on first reading.

1.3 Elliptic complexes. Let (V', d) be a finite complex of Tate's vector spaces. We will

call it elliptic, if for some (or any) sub complex (V+,d) c (V',d) formed by lattices in V'

both V+ and V' /V-i- have finite dimensional cohomology spaces.

Clearly, elliptic complexes have finite dimensional cohomology.

REMARK: V' is elliptic iff its image in abelian category TV /0 (see 3.2.2) is acyclic.

1.3.1 Let (U', d), (V', d) be elliptic complexes. Then H om = H om(U., V') := II Hom(Ui, Vi)

carries a bunch of subspaces. First, one has the subspaces Hom:!: := II Hom:!:(Ui, Vi),

Homo, H omoo that have nothing to do with differential. We may enlarge those spaces as

follows. Put Hom~ := {f E Hom: [I,d] E Hom:!:(U', V'+l)}, Homg := Hom~ n Hom~,

Homd ;= {f E Hom : [I,d] = O} (= usual morphisms of complexes). Clearly Hom:!: C

Hom1,Homo C Homg, and all Hom~ are compatible with :J: decomposition: one has

Hom~ = (Hom~ n Hom+) + (Hom~ n Hom_).

The following easy technical lemma is quite useful. Assume that we picked sub com-
,

plexes U+ C U+ c u, V+ c V+ C V formed by lattices. Put P:= {f E Hom(U.,V.):

f(U~) C V~',f(U+) C V+}, P+d := {f E P : [f,d](U') C V++1}, P-d := {f E P :
,[f,d](U+) = O},Pod = P+d n P-d.

1.3.2 LEMMA. One has Hom1 = P:!:d + Homoo, Homg = POd + Homoo.

PROOF: Consider, e.g., the case of Homi. One has Homi = (P n Homi) + Homo. An

element f E P n H om~ induces the linear map f: U' /U+ -., v. /V-i- such that 0: = [J, d]

is of finite rank. One may find g of finite rank such that [g, d] = 0:. Lift g to an element

9 E P n Homo; then f - 9 E P+d, and we are done. 0

Now let us define the traces. Consider a single elliptic complex (V', d). We have a !
. , ibunch of Lie sub algebras in gf. = gf.V. = llgf.VI. Pick sub complexes V +. C V+ c V. formed I
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by lattices; we get the corresponding parabolic sub algebra P C gl! and its standard sub-

algebras. Define the trace functional tr: POd -+ C by formula tr f := ~(-l)i(trHi(vlv+) +

trvi I v'i + trHi(v' »). In particular, if V/V+ and V.+. are acyclic, then tr = ~(-l)itrvi I Vi'.+ + + + +
The algebra gl!oo also carries the trace tr = ~( -1 )itrvi. Clearly on POd n gl!oo these traces

coincide, so, by 1.3.2, they define tr : gl!g -+ C.

1.3.3 LEMMA. The trace functional tr : gl!g -+ C does not depend on the choice ofV.+, V~'

and vanishes on [gl!g, gl!g]. 0

Let it' be the central extension of gl! by C which is the alternating Baer sum of gl!Vi.

Equivalently, to get it' take the ideals gl!:t: C ge and the trace functional tr = ~(-l)itrvi

on gfo, and apply constructions 1.1.4, 1.1.5. We have canonical splittings S:t: : gl!:t: -+ gl!.
j

~- '1.3.4 LEMMA. These splittings extend to canonical splittings S:t: : gl!~ -+ ge; one has ~

S+ - s- = tr : gl!g -+ C.

-d - dPROOF: Consider, say, the case of S+. Let ge+ be ge restricted to gl!i. Note that gl!+ =
-d dgl!+ + {gl!- n gl!i), so gl!+ comes from constructions 1.1.4, 1.1.5 applied to gl!+, its ideals

gt'+ and gl!- n gl!i and the trace functional tr. We may even replace gl!- n gl!i by the

larger ideal gl!g and, since tr extends to gfg by 1.3.3, according to 1.1.6 we get the desired

section s+ : gfi -+ gf. One treats s- in a similar way; the formula s+ - s- = tr results

from 1.1.6. 0

1.4 Clifford modules. Let W be a Tate's space, and let ( , ) be a non-degenerate

symmetric form on W (which is the same as symmetric isomorphism W -;::j' W*).

1.4.1 For a lattice W+ C W let Wf be the orthogonal complement with respect to ( , ).
This is also a lattice, and the parity of dim vVf - dim W + E Z does not depend on W +

(and depends on (W, ( , )) only). We will say that W is even or odd dimensional if

dimWf - dimW+ is even or odd, respectively.

1.4.2 A Clifford module M is a module over Clifford algebra Cliff(W, ( , )) such that

W acts on M in a continuous way (in the discrete topology of M). This means that for

any m E M there is a lattice W+ such that W+m = O. Denote by CMw the category of

Clifford modules.

...,
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Let W+ C W be a lattice such that ( , )ll-v~ = o. Then the finite-dimensional
Ivector space wt /W + carries an induced non-degenerate form. H M is a Clifford mod- '

ule, then Mw+ := {m EM: W+m = O} is a Wt-invariant subspace of M, hence a

Cliff(Wt/W+,(, ))-module.

1.4.3 LEMMA. The functor CMw -+ CMw;/w+, M 1--+ Mw+, is an equivalence of

categories. The inverse functor is given by formula N ~ C Ii f f(W) ~ aliI f( W;) N. 0

In particular, we see that CMw is a semisimple category. There is 1 irreducible object

if W is even-dimensional, and 2 such if W is odd-dimensional.

Denote by Cf.W the completion lim Cliff(W)/Cliff(W) . W+, where W+ runs the

set of all lattices in W, It is easy to see that the multiplication extends to this completion

by continuity, so C f.~V is an associative algebra. Clearly, it acts on any Clifford module.

1.4,4 Let L+ C W be a maximal ( , )-isotropic lattice (so either Li = L+ or dimLi/ L+ =
1 depending on parity of dimension of W). H L,+ is another such lattice, put '\(L+ : L,+) :=

det(L+/ L+nL,+). One has a canonical embedding i : '\(L+ : L,+) ~ Cf.W/Cf.W.L,+, given

by formula VI /\.. . Vn ~ VI . , . vn mod Cf.~V, L,+' Here {Vi} is a basis of L+/ L+ n L,+, Vi

are any liftings of Vi to elements of L+. For a Clifford module M one has a canonical

isomorphism '\(L+ : L,+) 0 ML+ -;;:j' ML+, V 0 m ~ i(v)m.

Now let L- C L be a maximal isotropic colattice (so codimL- = dimL+ in case dim W

is even, or codimL- = dimL+ + 1 if dimW is odd). Put '\(L+,L_) = det(L+ nL_), For a

Clifford module M put ML- := M/L__i'v'I. One has a canonical isomorphism '\(L+,L_) 0

ML- -;;:J ML+, defined by formula V 0 m ~ vm, where v E '\(L+,L_) C Cliff(W),

m E ML_, and m E ML_, and m E .!vI is any element such that m mod L_M = m and

vm E ML+. H M is irreducible, then dimML+ = dimML- = 1, and we may rewrite the

above isomorphisms as

'\(L+ : L,+) = ML+/ML+, '\(L+,L_) = ML+/ML_.

1.4.5 The algebra"CfW carries a natural Z/2-grading such that W lies in degree 1 compo-

nent. Denote by CM~2 the corresponding category of Z/2-graded Clifford modules. This

is a semisimple category. If dimW is odd, then it has a single irreducible object; if dimW

is even, then there are two irreducible objects that differ by a shift of Zf2-grading.

8
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If dimW is even, then each M E CMw carries a natural Z/2-grading defined up

to a shift. Precisely, consider the set of all maximal isotropic lattices. This breaks into

two components: lattices L+, L,+ lie in the same component iff dimL+/ L+ n L,+ is even.

Denote the two element set of these components by Z/2w; we will consider it as Z/2-torsor.

Then any M E CMw carries a canonical Z/2w-grading determined by the property that

ML+ C Mo for L+ E Q E Z/2w.

1.4.6 Let CfLiew denote the Clifford algebra considered as Lie (super)algebra (with the

above Z/2-grading; the (super)commutator is defined by the usual formula [a, b] = ab -

(-1)ofJba for a E CfLiewo, b E Cf.Liew~). Denote by aW the normalizer of W C

CfLiewl in Cf.Lietv. This is a Lie subalgebra of Cf.Liew. As a vector space aW is

the completion in C f.t-v of the subspace of all degree ~ 2 polynomials of elements of W.

One has aWl = t-v. The Lie algebra 00' := aWo is called the spinor algebra of W.

The subspace C C CfW coincides with center of aW. One has a canonical isomorphism

aW/C = OW ~ W. Here OW is the orthogonal Lie algebra of all ( , )-skew symmetric- -
elements in gfW; the projection 7r : Ot-V - OW /C = OW is given by the adjoint action

onW=aWl.

The Lie superalgebra at-V acts on any AI' E C M ~2 in an obvious manner. If Mo

is irreducible, this action identifies aW with the normalizer of W in the Lie superalgebra

EndcM.. Similarly, Qiii acts on any M E C,,\;iw, and, in case M is irreducible, OW

coincides with the normalizer of tV in Endc.7vf.

1.4.7 Here is another construction of Qiii. For a E gfW denote by ta E gfW the adjoint

operator with respect to ( , ); for a E gf- W one has ta E gf.+ W. Consider now the ideal

gf- W C gfW as an OW -module with respect to Ad-action. Then gf- W together with the

surjective morphism gf.- W ~ OW, a 1--+ a - fa, is an OW -crossed module. The pairing

{, } : gf- W x gf- W - ker EJ (see 1.1.1) is given by formula {aI, a2} = [aI, ta2] + [a2, tal]'

Clearly kerEJ C gfo W. The usual trace tr(1.2.4) v-anishes on {kerEJ,kerEJ}; put air = 1/2tr.
-I

By 1.1.3 we get a central C-extension OW = (gf.- W)o tr of OW.
-I -

We define a canonical isomorphism Q : OW ~ OW of central C-extensions of OW as

follows. One has a canonical identification W 0 W ~ gfoo W, w10w2 corresponds to a linear

operator W f--+- (W2, W)WI' This isomorphism extends by continuity to the isomorphism of

9
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completions li;!!1 W~(1tVjW+) ~ gt'- W. Hence the map gt'oo W = W~W -+ Cliff(W, (, )),
w+

al ~ a2 f--+ ala2, extends by continuity to the map a# : gt'_W -+ c.ew. Clearly a#

maps gt'_W to aWo = o:fii. For al,a2 E gt'_W,w E W one has [a#(a),w] = 8(a)(w),

[a#(al),a#(a2)] = a#([8al,a2])' For bE ker8ngt'00W one has b = 1j2(b+tb) =
E(Wi ~ wi + wi ~ Wi), hence a#(b) = E(Wi,W~) = 0 tr b; by continuity this holds for any

-I -
b E ker 8. This implies that a# yields a map a : g.e- W / ker tr = 01tV -+ OW, which is

the desired isomorphism of C-extensions of 0 W .

1.4.8 Let L+ C W be a maximal isotropic lattice; denote by PL+O C OW the "parabolic"

sub algebra of operators that preserve L+. One has a canonical Lie algebra splitting SL+ :

PL+O -+ OW defined by formula sL+(a) = a#(b), where b E g.e- W is any operator

such that 8(b) = a, b(L+) = 0, (a - b)(W) C L+. For any Clifford module M one has

sL+(a)(ML+) = 0 (and sL+(a) is a unique lifting of a to OW with this property).

Similarly, let L- C W be a maximal isotropic colattice. The corresponding parabolic

sub algebra PL- 0 C OW also has a canonical Lie algebra splitting S L- : PL- 0 -+

~ defined by formula SL- (a) = a#(b), where b E gt'- W is an operator such that

8(b) = a, blL- = aiL_' b(1tV) C L_. For a Clifford module one has SL- (a)(ML_) = 0
(i.e., SL- (a)(M) C L_M).

According to 1.4.4 for a E PL+O n PL- 0 one has (SL- - sL+)(a) = trL_nL+(a) E

C C o:fii. If L,+ is another maximal isotropic lattice, then for a E PL+ 0 n PL+ 0 one has

(SL+ - sL+)(a) = trL+/L+nL+(a).

1.4.9 Let V be any Tate's vector space. Then W := V E9 V*, equipped with the form

((v, v*), (v', V*')) := v*( v') + V*' (v), is an even-dimensional space. For any lattice V+ C V

and a colattice V - C V a lattice L(V +) = V + E9 V f C W and a colattice L(V -) =
V - E9 V..:- C W are maximal isotropic ones; clearly one has a canonical isomorphisms

A(L(V+) : L(V-'r)) = det(V+/V+ n V-'r)/ det(V-'rjV+ n V-'r)
A(L(V+),L(V_)) = det(V+ n V_)jdet(VjV+ + V_).

The algebra C.eW gets a natural I-grading such that the subspaces V, V* (C W c

C.eW) lie in degrees 1, -1, respectively. Any Clifford module M has a canonical Dimv-

grading such that ML(V+) lies in degree dimV+.

10



The embedding i : giV '-+ OvV, i 1-0+ i e (-ti), lifts canonically to a morphism of

C-extensions i : ilv --+ OW constructed as follows. For i+ E gi+ V choose a lattice

V+ :) Imi+. Then i(i+) E PL(v+)O. Put i+(i+) = sL(v+)i(i+) E O"ii;rj by 1.4.8 this

element is independent of a choice of V+. Similarly, for i- E gi- V choose a lattice

V+ c Ker i_j then i(i_) E PL(V,+)O, and i_(i_) := sL(v,+)i(i_) E O"ii;r depends on i-

only. For io E gio V one has (£- - £+)(io) = trL(v+)/L(v+)nL(v,+)(iio) = trio by 1A.8.

According to 1.2.3 we get a canonical morphism £ : if-I V --+ O"ii;r of C-extensions such

that is~ = £~ : gi~ V --+ O"ii;r (here 9l-IV = (9lV)-I, see 1.1.7).

The action of ifv on .U preserves the Dim v-grading. If M is irreducible, then it

is natural to denote the ie_IV-module !vIa, a E DimV, as Aav ("semi-infinite wedge

power"). Note that I\av (as well as ]vI itself) is defined up to tensorization with 1-

dimensional C-vector space. :i

1.4.10 We will need a version "with formal parameter" of the above constructions. Namely,

let C) = C[[q]] be our base ring. Consider a fiat complete C)-module V (so limVjqnV). A-
Tate structure on V is given by Tate's C-vector space structure on each Vjqnv such

qnthat each short exact sequence 0 -. Vjqmv --+ Vjqm+nv -. Vjqnv -. 0 is strongly

compatible with the Tate structures (i.e., Vjqmv is a Tate's subspace of Vlqm+nv and

V j qn V is the quotient space). A lattice V + C V is an C)-submodule such that V IV + is

C)-fiat, V+ = limV+lqnV+ and V+lqnv+ is a lattice in Vlqnv for each n. One defines a-
colattice V - C V in a similar way. For a Tate C)-module V one defines its dual V* in an

obvious way; one has V* Iqnv* = (Vlqnv)*, V** = V.

Let W be Tate's C)-module and (,) : W x W -. C) be a non-degenerate symmetric

form (i.e., a symmetric isomorphism vV -z W*). Let CIiff(W) be the Clifford C)-algebra

of (,). A Clifford module 1\11 is a C Ii f f(W)-module such that M is fiat as C)-module,

M = limM I qn M, and WI qn W acts on each ]vII qn M in a continuous way (in discrete-
topology of M j qn M). Such M carries the action of completed Clifford algebra

CiW = lim lim CIiff(W)jqnCIiff(W) + CIiff(W)W~n)- -
n w(n)

+

(where W~n) is a lattice in Wlqnw). Clearly Mo; = MlqM is Clifford module for (Wo, (, )0) :=

(WjqW, (, )modq)j if M' is another Clifford module, then H om(M, M') is a fiat C)-module

11



and H om(M, M')JqH om(M, M') = H om(Mo, M~). In particular, if (Wo, (, h is even-

dimensional, then there exists a Clifford module M, unique up to isomorphism, such that

Mo is irreducible; one has EndM = O. All the facts 1.4.3-1.4.9 have an obvious C([q]]-

verSIon.

..
,

';
,...

1.2



§2. TATE'S RESIDUES AND VIRASORO-TYPE EXTENSIONS

2.1 Tate's construction of local extension. Let F be a I-dimensional local field,

and 0 F C F be the corresponding local ring. A choice of uniformization parameter

t E OF identifies OF with C[[t]], and F with C((t». Let E be an F-vector space of

dimension n < 00. Denote by DE the algebra of F-differential operators acting on E.

A choice of a basis of E identifies DE with the algebra of matrix differential operators

aN8f +... + a18t + ao, ai E Matn(F).

2.1.1 The space E, considered as C-vector space, is actually a Tate's vector space in a

canonical way. A basis of neighbourhoods of 0 is formed by 0 F-submodules of E that

generate E as F-module. We will denote by EndE, gC:::E, etc., the corresponding algebras

of endomorphisms of E, considered as Tate's C-vector space.

Clearly'VE C EndE. We may restrict to 'VELie C fIlE the central extension iRE to

get the central extension 0 -+ C -+ VB -+ 'VELie -+ 0 of Lie algebra 'VELie.

It is easy to compute a 2-cocycle of this extension explicitly. Namely, let us choose a

parameter t E OF and an F-basis {Vi} in E. Put E+ = LOFVi, E- = Lt-1C[t-1]Vi:
. .
I I

this is a lattice and a colattice in E and E = E+ e E_. For £ E fIlE define the operator

£+ E g£+E by formula£+IE+ = £IE+,£+IE- = o. Clearly this map fIlE -+ g£+E, £1---+ £+,

lifts the canonical projection geE -+ geE/g£_E = g£+E/g£oE. Hence by 1.1.4 it defines

the section 0- : fIlE -+ g£E; a corresponding 2-cocycle is given by formula £1, £2 1---+

aba(£1,£2) = [0-(£1),0-(e2)] - 0-([£1,£2]) = tr([e1+,£2+] - [£1,£2]+). Take now £1 = AtaiT,
b'

£2 = A'ta'~, where A, A' E Matn(C), a, a' E Z,b,b' E Z?;o. Clearly a(t'1,£2) = 0 if

a - b # b' - a'. Assume that a - b = b' - a'; since Q is skew-symmetric we may assume

that n = a - b ;::: o. Then one has

a(£1,t'2) = -Tr(AA')~ (;,) (i ~n).

2.1.2 Let AE C 'VELie be a Lie sub algebra that consists of operators of order $ 1 with

scalar symbol (i.e., the operators of type ao + a18t,ao E EndFE,a1 E F). Denote by

T F the Lie algebra of vector fields on F. One has a canonical short exact sequence of

Lie algebras 0 -+ EndFELie -+ AE ~ TF -+ 0, o-(ao + a18t) = a18t. Let AE be the

13
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C-extension of AE induced from 'DE. The above formulas reduce to the following ones:

a - a2 n
"' (Ata Btb ) = bS-btrAB Q(Ata tb+18 ) = S-btrA Q(ta+18 tb+18 ) = - (a3-a )S-b'""', a , , t 2 a' t, t 6 a .

This is Kac-Moody- Virasoro cocycle. I
2.1.3 Consider the case E = F. One has an obvious embedding TF C AF which defines

the C-extension TF of TF with cocycle QVir(ta+18t,tb+18t) = i(a3 - a)S;:b. This TF is

called (a local) Virasoro algebra. For any c E C consider the C-extension TFc (see 1.1.7).

Since T F is perfect, T Fc has no automorphisms. One knows that any central C-extension

of TF is isomorphic (canonically) to a unique TFc (one has H2(TF,C) ~ C).

2.1.4 Now consider for j E Z a I-dimensional F-vector space i.IJ~j of i-differentials (the

elements of i.IJ ~j are tensors f dtl8>j , f E F). The Lie algebra T F acts canonically on i.IJ ~j

by Lie derivatives, i.e., we have a canonical embedding TF '-+ AI.IJ~j. Denote by Tij) the
18>'

corresponding C-extensions of T F induced from A-:; FJ. The explicit formula for this action

is c,o8t(fdtl8>j) = (c,o8t(f) +jf8t(c,o))dtl8>j, i.e., with respect to the basis dtl8>j a field ta+18t

acts as ta+18t +j(a + l)ta. The formulas 2.1.2 immediately show that a 2-cocycle for Tij)

coincides with (6j2 - 6j + l)avir. Hence Tfj) coincides with TF(6r-6j+l).

2.2 A geometric construction of a global extension. Let us describe the above

extensions in geometric language.

2.2.1 Let C be a smooth algebraic curve (non necessary compact). Denote by i.IJ = nh a
sheaf of I-forms, and by H = HhR = nh/dOc the de Rham cohomology sheaf (in Zariski

topology of C). For a vector bundle E on C let 'D = 'DE denotes a sheaf of differential

operators on E, and Eo := i.lJE*. Then E is left V-module, Eo is right 'D-module (so

one has a canonical anti-isomorphism t : 'DE -+ VEo, see, e.g., [B]), and the pairing

Eo 0 E 11 i.IJ quotients to the pairing Eo @ E -+ H.
"DE

Let L'l : C -+ C X C be the diagonal; we will identify the sheaves on C with ones on

C x C supported 'on L'l. Consider the sheaf E ~ Eo := pi E 0 P2Eo on C xC. Recall that

one has a canonical isomorphism S: E~EO(ooL'l)/E~Eo -;:j' 'D. Explicitly, for a "kernel"

k(tl,t2) = e(tl)eO(t2)f(tl,t2), e E E,eo E EO,f(tl,t2) E Ocxc(ooL'l), the correspond-

ing differential operator S(k) acts on sections of E according to formula (S(k)l')(tl) =

14
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ReSt2=tl(k(tl,t2)t'(t2)) = e(tl)Rest2=tl!(tl,t2)(eO(t2)t'(t2))' Here t' E E, (eO(t2)t'(t2)) E

tIJ, (k(tl,t2)t'(t2)) E E~tIJ(oo~)j we take the residue along the t2 variable. The right action

of6"(k) on sections of Eo is given by formula (m6"(k))(t2) = Restl=t2!(X, t2 )(m(tl )e(tl)) )eO(t2)'

2.2.2 Put PEn := lim_E ~ EO«n + 1)~)/E ~ EO(-i~), PE = UPEn, so we have an
i

isomorphism 6" : P E /P E-l -;:j 'DE. Clearly P E is 'DE-bimodule (the left and right actions

are the obvious actions along the first, resp. the second variable), and 6" is the morphism

of bimodules, i.e., P E is a DE-crossed module (see 1.1). Let t : P E -+ P Eo be minus

the isomorphism "transposition of coordinates" (here minus comes since E, Eo have "odd"
nature). Then for k E PE one has t6"(k) = 6"(tk), and t is an "anti-isomorphism" between

crossed modules.

The pairing () : PE0PE -+ PE_1 from 1.1, (k1,k2) = 6"(k1)k2 - kl6"(k2), is given
'DE

by formula

(k1k2)(t1,t2) = (Res:=tl + Resz=t2)(k1(tl,Z)k2(z,t2)) = 1 (k1(tl,Z)k2(z,t2))'
'YI1,12

Here (k1(t1,Z)k2(z,t2)) is the I-form of variable z (with values in in Etl @ E~2)' and

"Ytl,t2 is a loop round z = t1 and z = t2. The corresponding Lie algebra pairing { } :

S2PE -+ PE_1 is {k1,k2}:= (k1,k2) + (k2,k1). Let tT: PE_1 -+ tIJ be the composition

P E-l -+ P E-l/P E_2 = E @ Eo -+ tIJ. We have

tT{k1,k2} = (Resl - Res2)(k1(tl,t2)k2(t2,tl))'

Here k2(t2,t1) = tk2 E PEo is k2 with coodinates transposed, (k1(tl,t2)k2(t2,tl)) is a

2-form with poles along the diagonal and Resl, Res2 : nbxc( oo~) -+ tlJc are residues

round diagonal along first and second coordinates, respectively. Clearly, Resl - Res2

vanishes on nbxc(~) and takes image in exact forms. In fact, there is a canonical map

&s : nbxc(oo~)/nbxc(~) -+ (:Jc such that d&s = Resl - Res2 (see [B Sch] (2.11)).

An explicit formula for Res is

&s(!(tl,t2)(tl - t2)-i-ldtl A dt2) = i!-l L af1a:2!(tl,t2)ltl=t2=t'

a+6=i-l

15
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Here f(tl,t2) E Ocxc. Hence one has tr{k1, k} = d&s(k1, tk2). Note that the symmetric

pairingPE~PE-+Oc, k1,k2f--t{k1,k2}-:=&S(k1,tk2)vanisheson L PEa~
a+b=-1

PEb; in particular, it induces the pairing on PE1/PE_2.

According to 1.1.2, 1.1.3 we get a central extension DE of Lie algebra DELie by 1-{

defined by a following commutative diagram:
k

0 --+ PE_I --+ PE ~ VE --+ 0 "~

ltr 1
1.1)
! -

0 --+ 1{ --+ 'DE --+ VELie --+ o.

2.2.3 Denote by AE C VELie a Lie sub algebra of differential operators of order $ 1 with

scalar symbol. In other words, AE is Lie algebra of infinitesimal symmetries of (C, E):

the elements of AE are pairs (r, 'i), where r E Pc is a vector field, and 'i is an action of r

on E (so 'i is an order 1 differential operator with symbol equal to r).

The constructions of 2.2.2 give rise to a differential graded Lie algebra Ao E defined

as follows. One has Ao E = AE, A-IE is pre-image of AE C VE by the projection

'PE/kertr ~ VE (so we have short exact sequence 0 -+ 1.1) -+ A-IE ~ AE -+ 0),

and finally A -2 E = Oc; all the other components of A' E are zero ones. The differential

d : A-2 E = Oc -+ 1.1) C A-IE is de Rham one, and A-IE -+ AE is 8. The bracket

components [ ]ij: Ai E x Aj E -+ Ai+j E are the following. [ ]°0 is the usual bracket

[ ]°-1 comes from VLie-action on 'P E, [ ]°,-2 is the action of AE on Oc via 0" : AE -+

ITc, and [ ]-1-1 is { , }- defined above. So A' E contains de Rham complex !2c[2] as an

ideal, A'E/!2c[2] is acyclic and the central extension AE = A-IE/dA-2E of AE by 1-{
I(see 1.13) coincides with restriction of DE to AE C VELie. "

2.2.4 Consider the case E = Oc. An obvious embedding 'Pc '-T AOc defines the central

1{-extension Pc called a global Virasoro algebra. As in 2.1.3 for c E C we will denote by

Pcc the 1-{-extension of Pc which is c-multiple of Pc. Since Pc is perfect (see 2.5 below),

the extensions Pcc have no automorpmsms.

2.2.5 Consider for j E Z the sheaf l.I)i&>j. A natural action of Pc on Lj)i&>i by Lie derivatives

defines a canonical embedding of Lie algebras Pc '-T ALVi&>j. Denote by f>g) the induced
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H-extension :4:;~jl'Pc' Given a local coordinate t, one may consider elements of Pg) as

expreSSIons

<pU) = [ f(tl) + j..<?!.!.l~ + 9(tl)
] dt~i dt?l-i,(f,g) (t2 - tl)2 t2 - tl

where f, 9 E Oc, modulo the ones of type <P(0,8th)' The map Pc = p~) -+ Pg) de-

fIned by formula <P~~~g) ~ <P~~(6j2-6j+l)9) is a morphism of Lie algebras, and does not

depend on a choice of a local coordinate t. Hence it defines a canonical isomorphism

PC(6j2-6j+l) -;::J Pg) of H-extensions of C (see [B Sch]). Unfortunately, we do not know

any "coordinate-free" explanation of this isomorphism.
I

I

2.3 Compatibility with Tate's construction. Let x E C be a point. We may consider

the constructions of 2.2 locally at x. Namely, let O~ be a completed local ring of C

at x, O(z,z) be the one of C x C at (x, x), F Z :) O~ be the local field at x, so if t is-

a parameter at x then O(z,z) = C[[t1, t2]]' Denote by R the localization of O(z,z) with

re~pect to t;-l, t;;l, (tl - t2)-1. Put l.IJ(z) := F x 00~, E(z) := F Z 00 E, 'D(z) = 'DE(z) :=

Fz00 'DE(z), p(z) = P E(z) = E 00 R 00 Eo: these are local versions of the objects in

2.2. We can manage all the constructions of 2.2 purely locally. In particular we get the- - L . . Res
central extension 'D(z) of'D(;) by H(z) = l.IJ(z)/ dF Z -;::J C.

2.3.1 By 2.1, E(z) is a Tate's vector space, and \ve have the embedding iz : 'D(z) ~ EndE(z)'

For k = k(tI,t2) E p(z) let k_,k+ E EndE(z) be a linear operator defined by formulas

[k_(e)](t) = -Rest2=0(k(t,t2)e(t2)}, [k+(e)](t) = (ReSt2=tl + Rest2=0)(k(t,t2)e(t2)}'

Here e(t) E E(z), (k(t, t2)e(t2)} E E 0 R 0 I.IJ, and the residues are taken along the second

variable. According to 2.2.1 one has izt5(k) = k- + k+. Denote by i~:i:; : p(z) -+ EndE(z)

the maps i~:i:;(k) = k:i:;.

2.3.2 LEMMA. (i) For k E p(z) one bas k:i:; E End:i:;E(z).

(ii) Tbe commutative diagram j

i#=(i# i#) ~r~%) : :+, :-; End+E(z) r End_E(z) r

.
'D t: I End E( z) I

17 ,. I
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is an ix-morphism of crossed modules (see 1.1).

(ill) For k E kerb C p(x) one has Resxtr(k) = trif(k)(= trk+ = -trk_).
(iv) Let us identify E(x) with E(x) via the pairing ( , ) : E x Eo -+ C, (e, eO) = Res(e, eO);

this gives the anti-isomorphism t : EndE(x) -+ EndE(x). Then the diagram

.#
1+P E(x) I End+E(x)

t 11 t 1 /

.#o 1 o
P E(x) -. End_E(x)

commutes.

PROOF: Assume for simplicity of notations that E = Oc, so E(x) = Fx. The statement

k- E End_Fx from (i) is clear, since k- vanishes on the lattice tNO~ C Fx for N equal to

the order of pole of k(t1,t2) at divisor t2 = o. Now the fact that k+ E End+Fx will follow

from (iv). The statements (ii), (iii) are obvious. To prove (iv) let us compute the residues

integrating the forms along cycles. Let "Y:r(t) be the following loops in the t2-complex plane

t1 = t:

Then for any function f E Fx one has [k:r(f)](t) = ~ f-r:r.(t) k(t,t2)f(t2).

Denote by U a small neighbourhood of zero in C x C with coordinate cross and

diagonal removed. One has the following 2-dimensional cycles C:r in U. Fix a small

real numbers 0 < e < r ~ 1. Then C+ = {(Zl,Z2) E C xC: IZ11 = e, IZ21 = r},

C- = {(Zl, Z2) E C xC: IZ11 = r, IZ21 = e}j the orientation of C+ is a standard orientation

of 51 x 51, and the one of C - is minus the standard orientation.

The above formula for the action of k:r implies that for a I-form 9 E F2 = l.AJ(x) one

has (g, k:r(f)) = fc:r. g(tl)k(t1, t2)f(t2). Since the transposition of coordinates identifies

C+ with C_, this implies that (g, k+(f)) = ((tk)_(g), f). 0
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2.3.3 Now the morphism it 2.3.2(ii) of crossed modules together with compatibility 2.3.2(iii)

defines the morphism of the corresponding C-extensions ix : 15(x) -+ ggE(x), ix(k) =

s+(k+) + s_(k_), or, equivalently, the isomorphism of C-extensions ..5(x) -;::j VE(x) (see

2.1.1).

2.3.4 Assume now that our curve C is compact. Let .¥ = {Xi} C C be a finite non empty

set of points, and E be a vector bundle on U = C\X. Put E(x) = nE(x,),V(X) = nv(x,).
-. -

Denote by V(x), a C-extension ofvtz,e) which is Baer sum of C-extensions V(x,), so V(x) =

n15(x;)/{(ai) E CX : 2:::ai = a}. Clearly 15(.\') coincides with C-extension 15E(x) induced

from g.eE(x) via the embedding V(.\') c p n End E(x;) ~ End E(x).

Put Vu := HO(U, VEu) and consider the central extension 0 -+ HbR(U) -+ 15u -+

Vu -+ 0 constructed in 2.2.2. One has the localization around Xi maps Vu ~ n V(x;), Vu -+
n 15(x;). The composition Vu -+ n V(x;) -+ V(.\,) vanishes on HbR(U) (since 2:Resx; =

x
0). Hence it defines a canonical morphism S.\' : v&ie -+ 15(x) that lifts the embedding

Vu ~ V(x).

This morphism could be constructed by purely linear algebra means. Namely, consider

a colattice Eu = HO(U, E) c E(.\,). Clearly v&ie C PEu C g.eE(x), hence we have the

splitting SEul'Du : v&ie -+ VE(.\') = V(.\,) (see 1.2.5).

2.3.5 LEMMA. Tbis splitting coincides with the above sx. -

PROOF: Let 8 E Vu be a differential operator. Choose a section k E HO(U x U, E ~

EO(oo~)) such that c5"(k) = 8. Denote by k- = (k:') E Hom(E(x),Eu) the morphism

given by formula k_(ex;) = ~k:';(ex,), k':'(ex;) = -Resx,(k . ex;) E Eu. Here ex, E

Ex" (k. ex;) E HO(U x SpecFx;, E~~(oo~)) is a section obtained by convolution of k and

ex; (where ex; is considered as a section of Ou ~ E(x;) independent of first variable), and

Resx, is residue along the second variable at Xi. Clearly k- is morphism of Tate spaces

(here Eu is a discrete space).

Let j = Ux;): Eu ~ E(.\,) be the embedding. The residue formula implies that for

e E Eu one has k_U(e)) = 8(e). Hence j 0 k- E PEu C g.eE(x) , one has j 0 k- E g.e_E(x),

a - j 0 k- E g.e+E(x), and, according to 1.2.5, sEu(8) coincides with s-U 0 k_) + s+(8-

j 0 k_).
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Now consider j 0 k- as a matrix (j 0 k_);; E H om(E(z;), E(zj»). Let j 0 k~iag =

~(j 0 k_);~ E End E(x) be the diagonal part of j 0 k_. According to 2.3.2, one has

sx(a) = s_(j 0 k~iag) + s+(a - j 0 k~iag). Hence sx(a) - SEu(a) = tr(j 0 k- - j 0 k~iag).

This is a trace of a matrix in gfoE(x) with zero diagonal component which is zero, q.e.d.

0

2.3.6 We will often use the morphism sx for appropriate sub algebras of 'Dbie, say, for

AEu.

2.4 Spinors and theta-characteristics. Let W be a vector bundle on our curve C

equipped with a symmetric non-degenerate pairing ( , ) : W x W -+ i.J).

2.4.1 One may consider ( , ) as an isomorphism W ~ t1'.o, hence we have the involution
t : 'DW -+ 'DW such that t (a1 ~) = t a2 t 81, and t acts on degree n symbols as multiplication

by (-I)n. Denote by CJ'DW the anti-invariants of tj this is a Lie subalgebra of 'DwLie.

The isomorphism W ~ WO also defines an involution t : 'PW -+ 'PW (see 2.2.2) such

that tb = bt. Let CJ'PW be the anti-invariants of t in 'PvVj put ob = blo'Pw. The action

of 'DW on 'PW defines the CJ'DW -action on CJ'PvV, and ob : CJ'PW -+ CJ'DW is an CJ'DW-

crossed module. The trace otr which is -~ of the composition kerob -+ W~Wo ~ i.J) --+

?i defines by 1.1.3, a canonical central ?i-extension CJ'VW of CJ'DW. In CJ'DW we have a

Lie sub algebra CJA W = AWn CJ'DW of infinitesimal symmetries of (C, W, ( , )): this is an-
extension of 'Pc by an orthogonal Lie algebra CJvV C End W. Denote by CJAW the central

extension CJVWIOAW. Note that if rkvV = 1, i.e., if W = i.J)~1/2 is a theta-characteristic,

then CJi.J)~1/2 = 0, hence CJALIJ~1/2 = Tc. The formula from 2.2.5 applied to j = 1/2 gives- -
a canonical isomorphism CJALlJI/2 = TC-l/2.

2.4.2 If E is any vector bundle, and W = E E9 Eo with obvious ( , ), then the Lie algebras

embedding j : 'DE -+ CJ'DW, a ~ (a, _fa), lifts to a morphism of crossed modules

j# : 'PE -+ CJ'PW, k ~ (k,-tk). For k E kerb one has otr(j#k) = -irk. So we get a

canonical morphism J : -DE-I -+ CJ'VW of ?i-extensions (see 1.1.7 for -1 index).

2.4.3 Let us consider a local version of the above construction. Now our curve is a punc-

tured disc SpecFz, so one has the identification Resz : ?i(Fz) ";::j C. The Tate C-vector
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space W(x) carries a non-degenerate symmetric form ( , ). defined by formula (WI,W2). =

Resx( WI, W2). The action of VW(x) on W(x) gives the embedding oix : OVW(x) '-+ OW(x).

It lifts to an oix-morphism oi1'= : O'PW(x) --+ gt'- W(x) of crossed modules (for the latter

crossed module see 1.4.7), oi1'=(k) = k_, according to 2.3.2 (i),(ii),(iv). For k E ker8 one

has otr(k) = !trk- = otr(k_) by 2.3.2 (iii), 1.4.7. Hence oi1'= defines a canonical morphism

of C-extensions 01: : oi5W(x) '-+ O'W(x).

2.4.4 Assume we are in a situation 2.3.4, i.e., we have a compact curve C, a finite set of

points X C C, and our bundle (vV, ( , )) on U = C \ X. We get a Tate vector space W(x) =
n W(Xi) with the form ( , )Cx) = 2:::( , )(Xi)' a central C-extension OVW(X) C OW('X)

of OVW(X) = n OVVV(Xi) C Ot,V(..-y). Just as in 2.3.4 a localization at X morphism

OVWu := HO(U, OVvV) --+ OVWC.\') lifts canonically to a morphism sx : OVWu --+

OVW(X)j as in 2.3.5 this Sx coincides with the lifting SWu lo'Dwu from 1.4.8. Certainly sx

extends in an obvious manner to a morphism of Lie superalgebras OVWu ~ Wu -+ aW(X)

(here Wu has odd degree, for aW(..-\,), see 1.4.6).

2.4.5 According to Serre's duality WtT is a ma.."'Cimal iso tropic co1attice in W(X).

2.5 Simplicity of Lie algebra of vector fields. The following lemma will be of use:

2.5.1 LEMMA. Let C be a smooth curve. Tben the Lie algebra T = Ho ( C, T c) of vector

fields on C is simple.

PROOF: The case of compact C is clear, so we will assume that C is affine. Let I C T

be a non-zero idealj we have to show that I = T. Let 7 E I be a non-zero vector field.

Note that if 9 E O( C) is a function such that g7 E I and f E O( C) is any function,

then 7(f)g7 = !([g7,f7] + [7,fg7]) E I. Let A C O(C) be the subalgebra of functions

generated by all functions 7(f), f E O( C). The previous remark implies (by induction)

that Ar7 C I. One may describe Ar explicitly, namely AT consists precisely of those

f E O( C) that take equal values at zeros of 7 and ordxU - f(x)) ~ ordx( 7) for any x E Cj

certainly this condition is non empty only for x = zero of 7. (To see this, consider the

morphism 7r : C -+ Cf = SpecAr. Clearly Ar is a curve. An easy local analysis at points

at 00 of C shows that 7r is finite. If x, y E C, x =1= y, are not zeros of 7, then a finite jet
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at x, y of the functions r(f), f E CJ( C), could be arbitrary ones, hence 7r is isomorphism

on the complement of zeros of r. An easy local analysis at zeros of r finishes the proof).

In particular, any function that vanishes at zeros of r with large order of zero lies in Ar.

Hence I contains any vector field that vanishes at zeros of r with sufficiently large order

of zero (namely, twice that of r). A trivial local analysis at zeros of r (take brackets of

elements of I with vector fields non-vanishing at zeros of r) shows that I = T. 0

2.5.2 COROLLARY. If C is an alEne curve, tben T bas no non-trivial finite dimensional

representations. 0

t7
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§3. LOCALIZATION OF REPRESENTATIONS

3.1 Harish-Chandra modules. Recall some de.finitions.

3.1.1 Let K be a pro-algebraic group. A K -module M is a comodule over the co-algebra

O(K). Equivalently, M is a vector space with an algebraic K(C)-action. Here "algebraic" ~
ie'means that M is a union of .finite dimensional K(C)-invariant subspaces MQ such that "

K(C) acts on MQ via an algebriac action of a factor group KI KQ of .finite type. Any

K -module is a Lie K -module in a natural way.

3.1.2 A Harisb-Cbandra pair (g, J{) consists of a Lie algebra 9 and a pro-algebraic group

K together with an '~adjoint" action ..4.d of K(C) on 9 and a Lie algebra embedding

i : LieK ~ 9 that satisfy the compatibilities:

(i) Tbe embedding i commutes with adjoint actions of K.

(ii) Tbe action Ad is ~~pro-algebraic": for any normal subgroup K' c K such that KI J('

has .finite type the action of K(C) on g/i(LieK') is algebraic.

(iii) The ad 0 i-action of Lie J{ on 9 coincides with the differential of Ad-action.

3.1.3 Let (g, K) be a Harish-Cbandrapair. A (g, K)-module, or a Harish-Cbandra module,

is a C-vector space equipped with g- and J( -module structures such that

(i) For k E K,h E g,m E M one has .4.dk(h)m = khk-l(m).

(ii) The two Lie K -actions on M (the one that comes from g-action via i, and the differntial

of K -action) coincide.

We denote by (g, J()-mod the category of (g, J()-modules.

3.1.4 Let T be any K-torsor. Denote (g,K)T = (gT,KT) the T-twist of (g,K) with

respect to adjoint action; this is Harisb-Cbandra pair. H M is a (g, K)-module, then the

T-twist MT is a (gT, KT )-module, and M 1--+ ,,\IT is equivalence of categories (g, K)-mod

~ (gT, KT )-mod.

3.1.5 A following version of the above de.f1nitions is quite convenient.

A pro-algebraic groupoid V is a groupoid such that for any object X the group AutX

carries a pro-algebraic structure and for any f : X -+ Y the map Ad! : AutY ~ AutX

preserves the pro-algebraic structures (tbe objects of V form a usual set with no algebraic
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structure). A V-module is a functor M : V -+ Vectc sucl1 that for any X E V the

AutX -action on Mx is algebraic.

A Harisb-Chandra groupoid (g, V) is a pro-algebraic groupoid V together with a func-

tor X ~ (gx,Kx) from V to the category of Harish-Chandra pairs equipped with a

canonical identification of "group part" Kx of the functor with AutX; we assume that

for g E AutX = Kx the "functorial" action ofg on gx coincides with the Ad-action from

3.1.3.

One defines a representation of our Harish-Chandra groupoid (or simply a (g, V)-

module) in an obvious manner. For any X E V one has a canonical "fiber" functor

(g,V)-mod -+ (gX,](.\,)-mod, M ~ .L"vI,,\,. If V is connected, this functor is equivalence

of categories. Note that if T is a ](.\'-torsor, and ..YT E V is T-twist of X (i.e., XT is an

object of V equipped with isomorphism of Kx-torsors T ";::j' Hom(X,XT), then one has a

canonical isomorhism (gXT' ](.\'T) = (g.\', ](X)T, MXT = (MX)T (see 3.1.4).

3.1.6 We will need to consider the above objects that depend on parameters.

Let 5 be a scheme, and K be a pro-algebraic group. A K -torsor on 5 is a projective

limit of ~/ K'-torsors in e'tale topology of 5; here K' C ]( is any normal subgroup such

that K / ](' has finite type.

Let V be a pro-algebraic groupoid. An 5 -object Y s of V is a rule that assigns to

eacl1 object X E V on AutX -torsor Y s(..Y) = 1[Qm(X, Y s) on 5 together with canonical

identifications of AutX-torsors Ys(..:Y) = YS(.Y')Hom(X,X') (= the twist of Ys(X') by

Aut."Y'-torsor H om(X, X'») for each _\'", _Y' E V; these identifications should satisfy an

obvious compatibilty condition for three objects X,X',X" E V. In other words, Ys is

a functor from V to schemes over 5 such that the AutX -action defines on Y s(X) the

structure of AutX -torsor, and for any connected component 5' of 5 the objects X for

whicl1 Ys,(X) = Ys(X)s' is non-empty are isomorphic. If M is a V-module, then an

5-object Ys of V defines a locally free Os-module Mys on 5. If Ys(X) for X E V is

non-empty then Mys coincides with Ys(.\'")-twist of.L\1x 0 Os.

Let now (g, V) be a Harish- Chandra groupoid, and Y s be an 5 -object of V (considered

as pro-algebraic groupoid). We get a sheaf gys of Os-Lie algebras; gys is a projective limit

of locally free Os-modules. For any (g, V)-module M the Os-module Mys is gys -module.
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3.2 Lie algebroids. Let 5 be a scheme. ;1

3.2.1 A Lie algebroid on 5 (which is an infinitesimal version of Lie groupoid) is a sheaf A

of Lie algebras on 5 together with an Os-module structure on A and an Os-linear map 0- :

A -+ T s such that 0- is morphism of Lie algebras, and the formula [a, fb] = 0-( a )(f)b+ f[ a, b]

holds for a,b E A,f E Os. Clearly A(o) = kero- is a sheaf of Os-Lie algebras. In case

when 5 is smooth we will say that A is transitive if 0- is surjective.

The Lie algebroids form a categoric Lie(5) with final object Ts. This category has

products: for A, B E Lie( 5) we have A x B = A x T B in obvious notations. The categories

Lie( 5) form a fibered category over a category of schemes. For a morphism f : 5' -+ 5

of schemes and A E Lie(5) the inverse image f* A E Lie(5') is defined by formula f* A =

Tsl x f*(A). Here f*(A), f*(Ts) are inverse images in categories of O-modules, and the

fibered product is f*(Ts) taken with respect to projections Ts' -!!!-. f*(Ts)f~ f*(A). I

3.2.2 Let A be a Lie algebroid. An A-module is a sheaf:F of A-modules on 5 together

with an Os-module structure such that for a E A, f E Os, m E :F one has a(fm) =

o-(a)(f)m + f(am). vVe will also call such a structure an action of A on Os-module:F. H

A, B are Lie algebroids, :F is an A-module, G is a B-module, then :F@os G is A x B-module:

for (a, b) E A x 13, m E :F' n E G one has (a, b)(m @ n) = (am) @ n + m @ (bn).

3.2.3 Let A be a Lie algebroid, 9 be an Os-Lie algebra equipped with an A-action. An

A-morphism'l,iJ : A(o) -+ 9 is a morphism of Os-Lie algebras that commutes with A-action

(here the A-action on A(o) is adjoint one). Note that if ~ : A -+ 13 is a morphism of

Lie algebroids, then A acts on 13(0) by ad 0 cP, and <P(O) : A(o) -+ 13(0) is A-morphism.

conversely, for an A-morphism 'l,iJ : A(o) -+ 9 let AtJI be the quotient of semi-direct product

A ~ g by the ideal A(o) c--+ A ~ g, a 1--+ (a, -'l,iJ(a)). Then A1/J is Lie algebroid, A1/J(o) = g,

and we have a canonical morhism 'l,iJ :A -+ A1/J with '1/;(0) = old'l,iJ. These constructions are

mutually inverse: if 9 = 13(0)' <p : A -+ 13 is a morphism of Lie algebroids, and 'l,iJ = <P(O),
then we have a canonical morphism i : A1/J -+ 13 which is isomorphism if A is transitive.

3.2.4 Let A be a Lie algebroid. A central extension of A by Os is a Lie algebroid A
together with surjective morphism 7r : A -+ A and a central element 1 E ker 7r such that

the map Os -Z ker 7r, f 1--+ f . 1, is isomorphism. Note that adjoint action of A on A(o)

')-
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quotients to an A-action. We will call a central extension £ of T s by Os an invertible Lie

algebroid (so £(0) = Os).

3.2.5 REMARKS: (i) Let B be any Lie algebroid, and tr : 8(0) -+ Os be a 8-morphism ~
(we will call such tr a trace on 8). If 8 is transitive, then 8tr is an invertible algebroid.

(ii) Let A -.:::-. A be a central extension of A by Os, and l' : A(o) -+ A be an O-linear

section of 7i such that l' commutes with adjoint action of A. Then 1'(A(o») is ideal in A,

and A/1'(A(o») is invertible algebroid.

3.2.6 The invertible Lie algebroids form a category P Lie( S) which is a Picard category, and,

more generally, a "C-vector space" in categories. This means that for a,,8, E C, A,8 E

P Lie( S) we may form the linear combination C = aA + ,88 E P Lie( B): by definition

C = (A X 8)trQ.~, where trcx,i3(f,g) = af + ,8g. For A E PLie(S) we have AutA = n1cl:

for a closed 1 form w the corresponding automorphism of A is a f--+ a + (wO'( a)) . 1. A

trivial invertible algebroid is Tso = Ts ~ Os (where 0 : Ts(o) = 0 -+ Os is a trivial

trace map). The locally trivial invertible Lie algebroids form a full C-linear subcategory

canonically equivalent to the one of nlcl-torsors.

3.2.7 Fo: A E P Lie( S) define V A to be the sheaf of associative C-algebras on S together

with a morphism of C Lie algebras i : A -+ VA such that ilos is a morphism of associative

algebras (in particular, i(l) is 1 in VA) and one has i(f)i(a) = i(fa) for f E Os, a E A,

and universal with respect to these data. For example, if A is trivial, then V A is the

usual algebra of differential operators on S. For arbitrary A this is a twisted differential

operators ring, see, e.g. Appendix to [BK] for details. Clearly a V A -module :F is the same

as A-module such that 1 E A acts on :F as identity operator. Since V A carries an obvious

filtration with grVA = S.Ts, for a coherent VA-module :F we have its singular support

SS:F which is a closed conical subset in cotangent bundle of S. A VA-module :F is called

lisse if SS:F = (0): this condition is equivalent to the fact that :F is a vector bundle (as

Os-module).

3.2.8 The standard example of a Lie algebroid is current (or Atiyah) algebra A( E) of a

vector bundle E. This is Lie algebra of infinitesimal symmetries of E. The sections of

A(E) are pairs (0'(7"),7"), where 0'(7") E Ts and 7" is an action of 0'(7") on E, or, equivalently,
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a first order differential operator on E with symbol a(r). idE. Clearly A(E) is transitive

and A(E)(o) = gt'(E). If L is a line bundle, then A(L) is invertible algebroid; one has

A(L1 ~ L2) = A(L1) + A(L2), i.e., A : Pic(S) -+- P Lie(S) is a morphism of Picard

categories. The ring 'VA(L) coincides with algebra'VL of differential operators on L. If E

is any vector bundle, then tr: gt'(E) -+- Os is trace on A(E), and A(E)tr = A(det E): this

canonical isomorphism comes from a natural action of A(E) on det E given explicitly by

Leibnitz rule a( el 1\ . . . 1\ en) = ael 1\ e2 1\ . . . 1\ en + . . . + el 1\ . . . 1\ aen.

3.3 Localization of (g, K)-modules. Below we will explain a general pattern how to

transform representations to 'V-modules. We will start with some notations.

3.3.1 Let (g, V) be a Harish-Chandra groupoid. We will say that it is centered if for any

X E V there is a fixed central element 1 E gX, 1 ~ LieAutX, that depends on X in a

natural way. Put gx = gc/C1, so g"y is a central C-extension of gx.

Our (g, V) defines several Harish-Chandra groupoids with the same underlying proal-

gebraic groupoid V. Namely, we have the groupoid (g,V) that corresponds to gx; for any

c E C we have the centered groupoid (gc, V) with gcX equal to c-multiple of the central

extensiongx of gx. Denote by (g, V)c-mod the category of (gc, V)-modules on which

1 E C C gc acts as identity.

3.3.2 Let S be a smooth scheme, ]{ be a proalgebraic group and Y s be a K -torsor over S.

Denote by AY s the Lie algebroid of infinitesimal symmetries of (S, Y s). Its sections are

pairs (r,7Ys), where'T E Tys and Tys is a lifting of r to Ys that commutes with K-action.

Clearly AYs(o) = LieKys (= Ys-twist of Lie ](00s with respect to adjoint action of K);

AYs is a tr&lsitive groupoid. If (g,K) is a Harish-Chandrapair, then we have the Os-Lie

algebra gys (= Ys-twist of g00s with respect to adjoint action). The Lie algebroid AYs

acts on gys in an obvious manner, and a canonical embedding i : AYs(o) = LieK Ys '-+ gys

is an AY s-morphism. .A..ccording to 3.2.3 we get the transitive Lie algebroid Agys = AY Si

with Agys(o) = gys. If M is a (g,K)-module, then Mys (= Ys-twist of M ~ Os) is

Agys -module.

Now let (g, V) be a Harish-Chandra groupoid, and Y s be an S-object of V. The above
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construciton defines a transitive Lie algebroid Agys on S with Agys(o) = gys. If M is

a (g, V)-module, then Mys is an Agys-module in a natural way. Note that if (g, V) is a

centered groupoid, then Agy 5 is a central Os-extension of Agy 5 .

3.3.3 DEFINITION. Let S be a smooth scl:1eme and (g, V) be a centered Harish-Chandra

groupoid. An S-localizaiton data 'ItI for (g,V) is a collection (Ys,N,<p,I;5(o») where

(i) Ys is an S-object ofV.

(ii) N is a transitive Lie algebroid on S.

(iii) <p: N -+ Agys is a morphism of Lie algebroids.
(iv) 1;5(0) : N(o) -+ gys is a lifting of !"?(O) such that for n E N, m E N(o) one has ,.

I;5(O)([n,m]) = [!.,?(n)'!"?(O)(m)]. 0

3.3.4 A localization data 'ItI defines an invertible Lie algebroid AtiJ on S as follows. Consider

a fiber product AgysN = Agys XAgys N: this is a central Os-extension ofN. This central

extension splits over N(o) by means of section s : N(o) -+ AgysN(o), s(m) = (I;5(O)(m), m).

Put AtiJ := AgysN/s(N(o»). Let DtiJ = DAtil be the corresponding algebra of twisted

differential operators.

3.3.5 Let M E (g, V)l-mod be a Harish-Chandra module such that 1 acts as idM. Then My 5

is an AgysN-module (via the projection AgysN -+ Agys), and AtiJM = MYs/s(N(o))Mys

is AtiJ-module on which 1 E AtiJ acts as identity. Hence ~tiJM is a DtiJ-module. Clearly

AtiJ : (g, V)l-mod -+ DtiJ-mod is right exact functor; we call it S-localization functor that

corresponds to 'ItI. Note that for a point s E S we have a Lie algebra map N(o). -+ gys

(where N(o)" = N(o)/m"N(o»), hence the fiber AtjJ(.i\1)/m,,~tiJ(M) coincides with coinvari-

ants My./N(o)"Mys.

3.3.6 The above constructions are functorial \vith respect to morphisms of localization

data. Precisely, let (gl, VI) be another centered Harish-Chandra groupoid, and r : (g, V) -+

(gl, VI) is a morphism of centered groupoids. One defines a r-morphism of S-localization

data r# : 'ItI -+ 'ItI1 in an obvious manner. Such r# defines the isomorphisms r.1 : AtiJ -;::j' AtiJ"

r~ : DtiJ -;::j' DtiJ,. For M E (g, V)l-mod, M E (gl, V')l-mod and an r-morphism t' : M -+ M'

we have r~-morphism r! : AtiJ(M) -+ AtiJ,(M').
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One has also functoriality with respect to base change. If I: 5' -+ 5 is a morphism of

smooth schemes, and 1.fI is an 5-localization data for (g, V), then one gets an 5'-localization

data 1*1.fI for (g,V). One has Af.,p = 1* A,p, and for M E (g, V)l-mod one has a natural

isomorphism 1* A,p(M) = Af.,p(M) of Df.1jJ-modules.

3.3.7 An 5-localization data 1.fI for (g, V) defines in an obvious way for each c E C an

5-localization data 1.fIc for (gc, V). One has A1.iIc = cA1jJ (see 3.2.6).

3.4 Localization along moduli of curves. This section collects some basic examples

of the above localization constructions.

3.4.1 Let us describe a centered Harish-Chandra groupoid (7, V) called Virasoro groupoid.

The underlying connected pro algebraic groupoid V is groupoid of one-dimensional local

fields (with morphisms being isomorphisms). Precisely, let FE V be a local field, OF C F

be a corresponding local ring, m F C OF be the maximal ideal. A choice of uniformizing

parameter t identifies F with C((t)) and OF \vith CUt]]. The group AutF = AutOF

is projective limit of groups AutOFjmF = .4.utFjAutnF. These groups are obviously

algebraic groups, our .4.utF is a proalgebraic group, and V is a proalgebraic groupoid. Note

that AutFjAutlF = C*, and AutiFj.4.'uti+lF is isomorphic to C for i ~ 1; in particular

Aut1F is prounipotent radical of AutF. Explicitly, AutC((t)) coincides with the group of

power series al t + a2t2 +. . . , al # 0, with multiplication low equal to composition of series.

Now for F E V let TF be the Lie algebra of vector fields on F and TF be the Virasoro

C-extension of TF defined in 2.1.3. The Lie algebra TF carries a canonical filtration TiF;

for F = C((t)) one has TiF = ti+lC[[t]]8t. The sub algebra T-IF preserves the lattice

OF C F, hence we have a canonical splitting .sOF : T-1F -+ TF. Clearly LieAutF = ToF,- -
and the embedding .so F : LieAutF '-+ T F together with natural AutF -action on T F define

the Harish-Chandra pair (7 F, AutF). This defines our centered Virasoro groupoid (7, V).

3.4.2 Let 5 be a scheme. It is easy to see that an 5-object Y s of V is the same as a "family

of formal discs" over 5 or, equivalently, a formal C?s-algebra Oy locally isomorphic to

Os[[t]]. The corresponding Lie algebroid AYs consists of pairs (r,Tys) where r E Ts and

Tys E DerOys is a r-derivation of OYs.
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3.4.3 Now let 7r : Cs -+ S be a family of smooth projective curves and a : S -+ Cs be a

section of 7r. These define an S-localization data t/J = t/J( Cs, a) for (T, V) as follows. Our

y 5 is formal completion of C 5 along a( S), and N is Lie algebroid of pairs (T, TU) where

T E Ts and TU is a lifting of T to U = Cs \ a(S). Clearly ATys is Lie algebroid of pairs

(T,TyS\(G»)' where T E Ts and TyS\(G) is a lifting of T to a meromorphic vector field on Ys

with possible pole at a(S). Our 'r:? : N -+ ATys is just a restriction of a vector field TU on

Ys \ {a} = punctured neighbourhood of a. Now the lifting $(Q) : N(Q) = 7r.Tu/s -+ Tys

is the restriction of morphism Sa : 7r.Vu/s -+ D(a) (here D = Doc/s) defined in 2.3.4 to

Tu/s C Du/s (more precisely, in 2.3.4 we considered the case of a single curve, S = point;

the generalization to families is immediate). These (Y s, N, <p, cP(Q») is our localization data

t/J(Cs,a). According to 3.3.4, 3.3.5, 3.3.7 for any c E C \ve have the localization functor

A'I/lc(Cs.a) : (T, V)c-mod -+ VtjJc(Cs.a)-mod.

3.4.4 Here is an explicit description of AtjJ(Cs ,a) and A'I/l(Cs,a)' Choose (locally on S) a

formal parameter t at a, so OYs = Os[[t]]. Consider the space B of triples ('i, TU, Tv),

where'i E Ts, 'iU is a lifting of T to U, and Tv : S -+ Tc«t» is a lifitng of a vertical

component of 'iu, 'iv = 'iu(t)8t : S -+ Tc«t». This B is a Lie algebroid on S in an obvious

manner. We have a canonical morphism Tu/s -+ B(Q), v ~ (0, v, sa(v)), see 2.3.4. One

has AtjJ(Cs,a) = SITu/so Now let M be a (T, V)c-module. One has Mys = Mc«t» @ Os.

The algebroid S acts on Mys by formula ('i, 'iV, Tv)( m @ f) = m @ T(f) + Tv( m @ f). One

has AtjJ(Cs.a)(M) = -i\1ys ITv/sMys.

3.4.5 Variant. For any non empty finite set A we may consider the centered groupoid

(TA, VA). Here VA is the A-th power of V and T{}G} is the Baer sum of C-extension TFG,

a E A (so T{"j.G} is a C-extension of IITFG)' A family 7r: Cs -+ S of curves together with

aEA
a disjoint set A of sections (where "disjoint" means that for ai # aj E A and any S E S

one has ai(s) # aj(s) E Cs) defines an S-localization data t/J(Cs, A) for (TA, VA) in a way

similar to 3.4.2. For example, the corresponding Lie algebroid N consists of pairs (T, 'iV ),

where'i E Ts and TV is a lifting of'i to U = Cs \ Uai(S).
aEA .j

3.4.6 REMARK: Let B C .4. be a non-empty subset. The groupoids (TB, VB) and (TA, VA)
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are related by an obvious correspondence (TB,VB) ~ (TA,B,VA) ~ (TA,VA), where
-AB -B II -A .~F.} = T{Fh}hEB X T-IF. '-+ T{F.}. Any faInlly of curves 7r: Cs -+- S and a set A

aEA\B
of disjoint sections defines an S-localization data 1/J( Cs, A, B) for (TA,B, VA) in an obvious

11"# .
manner together with corresponding morphisms 1/J(Cs, B) ~ 1/J(Cc, A, B) ~ 1/J(Cs,A).

1
These define the corresponding isomorphisms Dt/Jc(Cs,B) ~ Dt/Jc(CstA,B) ~ Dt/Jc(CstA). For

MB E (TB, VB)c-mod, MA E (TA, VA)-mod a morphism f : MB -+ MA is, by definition, !

an iA-morphism between MB, considered as (TAtB, VA )-module via 7rB, and MA. Since -I

~t/Jc(cs,B)MB = ~t/Jc(CstA,B)MB, such f defines a morphism .6.(1) : ~1/Jc(cs,B)MB -+

~t/Jc(cs,A)MA. For example, if ]vIA = Ind~~.B (MB) and f is a canonical embedding, then

~(f) is isomorphism.

Note that the above canonical identification Dt/Jc(CstA) = Dt/Jc(Cs,B) for B C A actually

provides a canonical algebra Dt/Jc(cs) that depends on Cs only together with canonical

isomorphisms Dt/Jc(cs) = Dt/Jc(Cs,A) for any set A of disjoint sections. To construct Dt/Jc(cs)

we may assume, working locally in etale topology of S, that C s has many sections. To

construct Dt/Jc(cs) it suffices to define for any two sets A, A' of disjoint sections a canonical

isomorphismDt/Jc(cstA) = Dt/Jc(Cs.A/). Choose anon-empty set B of sections such that both

AuB, A' uB are sets of disjoint sections. Our isomorphism is Dt/Jc(Cs,A) = Dt/Jc(Cs,AUB) =
Dt/Jc(Cs.B) = Dt/Jc(Cs,A'UB) = Dt/Jc(Cs,A'). One verifies easily that this does not depends on

a choice of B. We will compute Dl,(lc(cs) explicitly in 3.5.6.

3.4.1 Variant. Often the Virasoro modules are integrable only with respect to subgroup

AutIF (see 3.4.1). To localize them one needs to consider the groupoid (T,VI). The

objects of VI are pairs (F, 1/), where F is a local field and 1/ E mF 1m}, v # 0, is a I-jet of

a paraIneter. One has Aut(F, v) = AutIF. The Lie algebra ~Ftll) is TF. If 7r : Cs -+ S is

a family of curves, a : S -+ Cs is a section, and v E a*nhs/s is a I-jet of parameters at a,

then we get an S-localization data 1/J(Cs, a, 1/) for (7, VI). Certainly, we may also consider

many points, as in 3.4.5.

We have a "forgetting of 1/" morphism r : (T, VI) -+ (7, V) and a corresponding

r-morphism of localization data 1/Jc( Cs, a, v) -+ 1/Jc(C" a). This defines a canonical isomor-

phism rv : Dt/Jc(Cs,a,lI) +;::; Dl,(lc(Cs,a) and for any M E (T, V)c-mod the Tv-isomorphism
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TM : ~,pc(Cs,a,v)M ~ ~,pc(Cs,a)M.

3.4.7.1 Let C be a fixed curve, a E C, v be a 1-jet of parameter at a. Consider a constant

C*-family Cc. = C x C* with constant point a, and put VV(u) = uv for u E C*. We get

the corresponding C*-localization data t/J = t/J( Cc., a, VV). One has D,p = D,p(cc. ,a,vV) =
D,p(Cc. ,a) = Dc* - the usual ring of differential operators. In particular, we have '\8>. E

D,pc. Let us compute the action of u8u on ~,pc(M) for M E (T,V1)c-mod. Choose a

parameter ta at a on C such that dt( a) = v. Then tau = ut is a C*-family of parameters

which identifies our OYc* with Oc* [[t]]. We have Myc. = Mc(t) 0 Oc*, and ~,pc(M)

is a quotient of Myc*' For m E Mc«(t» denote by 'Tn" its image in ~,pc(M). Put Lo =- -
SC[[t]](t8t) E Tc«t»). One has u8u('Tn") = Lorn. In particular, if M is a higher weight

module (see 7.3.1), then ~1?'M is smooth along C* with monodromy equal to the action

of T = exp(27riLo) (see 7.3.2).

.. 3.4.8 Now consider the case "vector symmetries". Our "Virasoro-Kac-Moody" centered

Harish-Chandragroupoid (A, VV) is the following one. The objects of VV are pairs (F,Eo)

where F is a local field, Eo is a free OF-module of finite rank; we put EF = F0Eo. The
"morphisms are defined in an obvious manner. Clearly Aut( F, Eo) is extension of Aut F ",

by GL(Eo) = AutoF(Eo); this is a proalgebraic group. We put A(F,Eo) = A'EF, see

2.1.2. A canonical embedding SEa: Lie Aut (F,Eo) -+ AEF defines the Harish-Chandra

pair (AEF, Aut(F, Eo)). This defines our centered groupoid (A, VV).

Let S be a scheme. An S-object of VV is a pair (Ys,Eys)' where Ys is an S-object of

V (see 3.4.2) and Eys is a locally free OYs-module of finite rank.

Assume that S is smooth. Let 7r : C S -+ S be a famly of smooth projective curves,

a : S -+ Cs be a section, and E be a vector bundle on Cs. These define an S-localization

data t/J(Cs,E,a). Namely, the corresponding S-object of VV is a completion of Cs,E

along a. The Lie algebroid N consists of triples (T, TU, TEv)' where T E T s, TU is a lifting

of T to U = Cs \ a(S), and TEv is an action of TEv on Eu. The morphisms <p, 'P(O), appear

precisely as in 3.4.3 from 2.3.4.

As above, this localization data gives rise to localization functor. The versions 3.4.5-

3.4.7 are immediate.
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3.4.9 Let us consider now the spinor or "fermionic" version. The corresponding cen--
tered Harish-Chandra groupoid (OA, OV) is the following one. Its objects are triples

Q = (F,Wo,( , )), where F is a local field, W is a free OF-module of finite rank, and

( , ): Wo x Wo -+ i.lJOF is a symmetric bilinear form with values in 1-forms of OF. We

assume that ( , ) is maximally non-degenerate, i.e., the cokernel of the corresponding map

Wo -+ wg = HomoF(vVo,~OF) is either trivial (such Q is called even) or a 1-dimensional

C-vector space (such Q is called odd). The morphisms in OV are obvious ones. For Q as

above, put W F = F 0 W{); our ( , ) extends to non-degenerate form ( , ) : W F X W F -+ i.IJ F.

Note that our condition means that Wo is a maximal isotropic lattice in WF. We may

consider W F as Tate's C-vector space with form ( , ). = Res( , ) (see 2.4.3); then W 0 is

also a maximal isotropic ( , ).-lattice so Q is even iff VVF is even-dimensional, see 1.4.1.

We put OA(Q) = OMt' F (see 2.4.1). The Lie algebra Lie Aut Q C OAWF preserves

Wo, hence we have a canonical embedding SWo : Lie Aut Q'-+ OA(Q). This defines the

Harish-Chandra pair (VA( Q), .A..ut Q), and we get the groupoid (VA, OV).

REMARK: Clearly Q is even (resp. odd) iff (WF, ( , ).) is even (resp. odd) dimensional,

see 1.4.1. The two objects of Q are isomorphic iff the W's have the same rank and parity.

Now let S be a smooth scheme. Let 7r : Cs -+ S be a family of smooth projective

curves, a : S -+ Cs be a section, W be a vector bundle on Cs, and ( , ) : W X W -+ i.lJcs/s

be a symmetric bilinear pairing. Assume that cokernel of the corresponding map W -+

WO = Hom(W,i.lJcs/s) is either trivial or supported on a(S) and is an Os-module of rank-1. These collections (Cs, a, W, ( , )) defines an S-localization data t/J for (OA, OV) in a way

similar to 3.4.3, 3.4.8. Namely, the formal completion of W along a defines an S-object

of OV. The Lie algebroid N consists of triples (T,TU,TWu)' where T E Ts, TU E Tu is a

lifting of T to U = Cs \ a(S), and TWu is an action of TU on Wu that preserves ( , ). The

corresponding map cp is obvious, and <;'5(0) comes from 2.4.4.

One has immediate variants of this construction for the case of several points and

points with 1-jet of a parameter (see 3.4.6, 3.4.7).

3.4.10 Note that we have a canonical morphism r : (A:-1, VV) -+ (VA, OV) of centered

Harish-Chandra groupoids. It assigns to (F, Eo) E VV the triple (F, Eo ffi Eg" ( , )) where
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( , ) is an obvious pairing. The morphism AE F -+ OA( E F ffi E~) was defined in 2.4.2.

Now for a scheme S and a collection (Cs,a,E) from 3.4.8 we have the one (Cs,a,E ffi

Eo, ( , )) from 3.4.9. We have an obvious r-morphism of corresponding localization data

r# : 1/Ic(Cs,a,E) -+ 1/I-c(Cs,a,EffiEO,(, )) (see 2.4), hence the isomorphism rD :

Dt/Jc(Cs,a,E) -;:;j Dt/Jc(Cs,a,EeEO,( , ».

3.5 Fermions and determinant bundles. In this section the rings of twisted differ-

ential operators Dt/J that appeared in 3.4 will be canonically identified with the rings 1)L

for some natural line bundles L (see 3.2.8). Equivalently, we will construct a Dt/J-module

L which is a line bundle (as O-module). This \vill be done by means of Clifford modules.

3.5.1 Let us start with situation 3.4.9. For Q = (F, Wo, ( , » E OV denote by MQ

the Clifford module (for Clifford algebra Ct'(Q) = Ct' (WF.( , ).), see 1.4) generated

by a single fixed vector v with the only relation Wov = o. If Q is even, then MQ is

irreducible; if Q is odd, then MQ is the sum of two non-isomorphic irreducible modules.

Note that MQ carries a canonical Aut Q-action (the only one) that leaves v invariant. By- -
2.4.3 MQ is OAW F = OAQ-module. Clearly these actions are compatible, hence MQ is

(0:4Q, Aut Q)-module. This way we get the (0:4, OV)-modue M.

Let S be a smooth scheme, and (Cs, a, W, ( , )) be the geometric data from 3.4.9 that

defines the corresponding S-localization data 1/1 for (OV, 0:4). Let Qs = (Fs, WoFs' ( , »)

be the corresponding S-object of OV (= the completion of our data along a), and MQs be

the corresponding Os-module with OAQs-action. Certainly, MQs is a Clifford module for

the Os-Clifford algebra Ct'(WFs'( , ).) generated by the section v with the only relation

WoFs v = o. Note that 7r. Wu = 7rlu.(Wlu) is an S-family of maximal isotropic colattices 1

in WFs (see 2.4.5). Put Lt/J = MQs/7r. WuMQs. This is a line bundle on S if Qs is even

(which means that ( , ) : W X W -+ Wcsis is non-degenerate). HQs is odd, then Lt/J is

a two-dimensional vector bundle which splits canonically in a sum of two line bundles on

2-sheeted covering of S that corresponds to a choice of i E Wa- /w 0 F with (i, i). = 1.
FS 5

3.5.2 LEMMA. Lt/J is naturally a Dt/J-module: it is a Dt/J-module quotients of~t/JM .
-

PROOF: Consider the action of Lie algebroid AOAQsN (see 3.3.4) on MQs. Since for
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- -
(a,n) E AOAQsN = AOAQsAOA 7r...OAWu and w E 7r...Wu one has [(a,n),w] = n(w)

Qs
(as operators on MQs), we see that this action quotients down to L1tI. It remains to

show that L1tI is actually an A1jJ-module. We need to prove that the Os-Lie subalgebra

s(N(o») c AOAQsN acts trivially on L1jJ. Note that s(N(o») = 7r...OAWu/s acts on L1jJ °s-

linearly, hence it suffices to consider the case S = point. Then N(o) = OAWu is extension

of Tu by the orthogonal Lie algebra OWu. Since both OWu and Tu are pefect C-Lie

algebras, we see that N(o) is perfect, hence every I-dimensional representation of N(o) is

trivial. Since L1tI is either I-dimensional or a sum of two I-dimensional N(o)-invariant

subspaces, we are done. 0

Actually we have proven that L1jJ is a quotient of D1jJ-module .6.1tI(M). Certainly, 3.5.2

implies

3.5.3 PROPOSITION. One bas a canonjcal jsomorpbjsm of twisted differential operators

algebras D1jJ = DL", ifQs is even, and D1jJ2 = DdetL", ifQs js odd. 0

3.5.4 REMARKS: (i) According to 1.4.4 the fibers L1jJ., s E S, are canonically identified

with det HO(C",W,,) if Qs is even, i.e., if ( , ) is non degenerate (if Qs is odd, one has

det L1tI. = det~2 HO(C.., W..)). Hence the automorphism - idw of our data acts on L1jJ as

::I: 1 depending on whether dim Ho ( C .. , }V ..) is even or odd. This proves the theorem of

Mumford that the parity of dim does not jump.

(ii) Of course we may consider the situation ...vith several points aI, . . . , an E C. By a reason

similar to 3.4.6 one may see that the corresponding line bundle L1tI actually does not depend

on points; certainly, we may delete only "even" points where ( , ) is non-degenerate. 0

Now let us consider the situation 3.4.8 of vector symmetries. By 3.4.10 we have a

canonical isomorphism D1jJc(Cs,a,E) = D1tI-c(Cs,a,EffiEO,( ,». By 3.5.4(i) the fibers of the

line bundle L1jJ = L1jJ(Cs,a,EEBEO,( , )) coincide with det HO(C",E)~detHO(C..,E~) =

detHO(C..,E)jdetH1(C..,E) = det Rr(C.., E). It is easy to see that L1tI = detR7r...E =

the determinant line bundle of E (about determinant line bundles, see e.g. [KM]). By 3.5.4

(ii) and a version of 3.4.6 for vector symmetries we may delete a point a above. Hence

3.5.5 COROLLARY. One bas a canonjcal isomorpbism D1tIc(Cs,E) = Ddet0-C R7r.E. 0
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Consider finally the pure Virasoro situation. We have an obvious embedding of Harish-- - - -
Chandra groupoids r : (V, T) -+ (VV, A), F t--+ (F, (:) F), T ~ AF (see 2.1.3). H Cs is an

S-family of curves, a is an S-point of as, we have an obvious r-morphism of localization

data ?jJ(Cs,a) --+ ?jJ(Cs,a,Ocs) which identifies D1/Ic(Cs,a) with D1/Ic(Cs,a,Ocs)' Now 3.5.5

implies

3.5.6 COROLLARY. One has a canonical isomorphism D1/Ic(cs) = Ddet@-c R7I". ocs' 0

3.6 Quadratic degeneration. In this section we will describe the determinant bundle

of a family of curves that degenerates quadratically. Below S = Spec C[[q]] is a formal

disc, 0 E S is special point q = 0, 1] = Spec C( (q)) is generic point.

3.6.1 LEMMA. There is a canonical 1-1 correspondence between the follo'Wing data (i)

and (ii):

(i) A proper S-faJDily of curves, Cs such that C1/ is smooth and Co has exactly one

singular point a which is quadratic, together with formal coordinates tl, t2 at a such

that q = t1t2.

(ii) A proper smooth S -faJDily of curves C.¥ together with two disjoint points aI, a2 E

C s( S) and formal coordinates ti at aj.

PROOF: Here is a construction of mutually inverse maps. Note that, according to Grothendieck,

we may replace any proper S-curve B s by the corresponding formal scheme fj s = the com-

pletion of B s along Bo.

(i) t--+ (ii). Let as, tl, t2 be a (i)-data. The corresponding C.¥, ai, tj are the following ones.

One has C.¥ = normalization of Co, so ti define formal coordinates at points al(O), a2(O) E

C.¥. To define C.¥ as a formal scheme, we have to construct the corresponding sheaf 8cv of
5

functions on C~. We demand that on U = c.¥ \ {aI, a2} = Co \ {a} our 8cv coincides with
s

8c;. Note that any function cp E 8cs(V), where V C U, has Laurent series expansions

CPi(tj, q) E C((ti))[[q]] at ai(O). We say that cP is regular at ai(O) if 'Pi(ti, q) E C[[ti, q]].

This defines 8cv. The points ai are defined by equations ti = O.
s

(ii) I---+- (i). Let C.¥,ai,ti be (ii)-data. The zero fiber Co of our curve Cs is Cd with

points aI, a2 glued together. The sheaf 8cs coincides with 8cv on U = Co \ {O} =s
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Cd \ {al,a2}. For a Zariski open V C U a function cp E 8cs(V) is regular at a if the i
I

ti-Laurent series expansions CPi E C((ti))[[q]] of cP at ai lie in C[[tl,t2]] C C((ti))[[q]] and I

CPl = CP2 E C[[t1,t2]]' Here the embedding C[[t1,t2]] ~ C((tl))[[q]] is t1 1---+ t1,t2 1---+ q/t1,

and the one C[[tl,t2]] ~ C((t2))[[q]] is t1 1---+ q/t2, t2 1---+ t2. This defines 8cs. 0

Below we will say that a vector bundle E on a scheme X is stratified at x E X if we

are given an isomorphism E ~ A IZIc Ox on a formal neighbourhood of x (here A is a

vector space; certainly A = E~).

3.6.2 LEMMA. Let Cs and C.¥ be the S-curves from 3.6.1. There is natural 1-1 COLTespon-

dence between the data

(i) A vector bundle E on C s together ~'ith a stratification of E at a.

(ii) A vector bundle Ev on C.¥ together with a stratifications of Ev at aI, a2 and an

isomorphism of fibers E;:l ~ E;:2' 0

3.6.3 PROPOSITION. Let (Cs, E), (C.¥, EV) be the related objects from 3.6.1, 3.6.2. Then

there is a canonical stratification of a line bundle I:. = det R7r.E / det R7r': Ev on S.

REMARK: Here "stratification" = "Stratification at 0" = (isomorphism I:. ~ 1:.0 g, Os).

Note that 1:.0 = det Rr(Co,Eo)/det Rr(Cd,Eri) is naturally isomorphic to det-1Ea, so

3.6.3 is canonical isomorphism det R7r':(CV, EV) = det Ea det R7r.(C, E).

PROOF. CONSTRUCTION: Let us compute our determinant bundles. Below we will use

notations from the proof of 3.6.1. Put A = Ea = Ed1 = Ed2' Our data identifies the formal

completion E- of E at a with A g, C[[tl,t2]], and the formal completion of E:f. of Ev at ai
a ai

with Ag,C[[ti, q]]. The restrictions of E and Ev to the formal scheme [j = (U, 8u) coincide;

put P = HO(U, Elf/) = I~O(U, E/qn E). Also put V = A g, {C((tl))[[q]] ffi C((t2))[[q]]},

V+o = Ag,{C[[t1, q]]ffiC[[t2, q]]}, V+1 = AIZI{C[[t1, till. We may compute R7r.E, R7r': Ev by

means of "adelic" complexes for our formal schemes. Namely, R7r.v Ev = Cone( P ffi V +0 -.
V)[-l], R7r.E = Cone(P ffi V+1 -. V)[-l]; here the map P -. V is minus Laurent series

expansion map, the map V +1 -. V is given by formula alZltft2 1---+ alZl {qnt~-n +qmt;-m}

(see the proof of 3.6.1), and V+o -. V is an obvious embedding.

Note that V is a fiat complete C[[q]]-module with an obvious Tate structure (see

1.4.10), V+o, V+1 are lattices in V and P is a colattice in V. So to compute our determinants

I
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we may use Clifford modules. Namely, take W = V ffi V* with the standard form (

, )j let M be a corresponding Clifford module such that Mo = M / qM is irreducible

Clifford module for (Wo, ( , )0)' Then L(P) = P ffi p.L, L(~+) = ~+ ffi ~i are maximal

Iisotropic colattice and lattices respectively. A C[[q]]-version of 1.4,9 shows that coinvariants

ML(p) and invariants ML(Vi+) are free C[[q]]-modules of rank one, and there are canonical

isomorphisms

det R7r: Ev = ML(Vo+)/ML(P), det R7r*E = ML(Vl+)/ML(P)'

Hence det R7r*E/ det R7r;' Ev = ML(Vl+)/lvIL(Vo+). In this description of the ratio of

determinants all the "global" data that may vary (encoded in P) disappeared; we've got

the standard "local" expression for it.

It remains to fix an isomorphism 'Y : ML(Vo+) -;. ML(Vl+) 0 det A; the desired

stratification of the ratio of determinants then will be 'Y( v ) / v for a non-zero generator

v (clearly it does not depend on .M"). Let al,"., at be a basis of A. Consider the vec-

tors e~l = aa 0 tt, e;2 = aa 0 t~, k E Z, Q = 1,..., £. This is a basis (in an obvious I

sense) of V; denote by e;i E V* the dual basis, The vectors {e~i}' k ~ 0, form a ba-

. f V; d h t f k.- k k -k f k '- k -k k 0 0 kSlS 0 0+, an t e vec ors al ,- eal + q e02' 02.- q eal + ea2,eal + e02' ~ 1,

form a basis of V1+, In a bit of a non-formal way our 'Y could be defined as follows. A

generator of ML(Vo+) is an infinite wedge product /\ e~i' a generator of ML(Vl+) 0 det A

k?;~
a,J

is /\ f~i t\ /\ (e~l + e~2) 0/\ ao, and 'Y just identifies these generators. To be precise,
k?;l a a
o,i

consider the elements 'Yn = II (f~lf~2e;2e~i) E Cliff(W). These 'Yn do not depend

l<k<n-a-
on a choice of basis {aa} in .4., and it is easy to see that 'YCX) = lim'Yn E Ct'W is cor-

n
rectly defined. Let Vo++ C Vo+, V1++ C V1+ be sublattices with bases {e~i}' k ~ 1,

and {f~i}' k ~ 1, respectively. It is easy to see that 'YCX)(ML(Vo++) = ML(Vl++) (pre-

cisely, 'Yn(ML(Vo+)) == ML(Vl+)modqn+l M). Since ML(Vo+) = /\e~i.ML(Vo++),ML(Vl+) =
a,i

/\(e~l + e~2) . ML(Vl++), we have /\(e~* - eg*) . 'YCX)ML(Vo+) = ML(V1+). Put /\(e~* -
a a a

eg*) . 'Y CX) 0/\ aa E C £W 0 det .4.. This 'Y does not depend on a choice of basis {aa} of A,

a
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and the desired ML(Vo+) -;::j ML(V1+) ~ <let A is just multiplication by 'Y. 0

3.6.4 Let Cv be a curve, aI, a2 E C+, al # a2, be a pair of points, ti be a formal

parameter at ai. Consider the constant S-family C~ := Cv X Sj let ai E C.¥(S),ti

be the "constant" points and parameters. According to 3.6.1 these define an S-curve

C s with quadratic singularities along zero fiber and smooth generic fiber. Consider the

trivial vector bundles Ocs, Oc~ j they correspond to each other by 3.6.2 correspondence.

Note that detR7r;'Oc" = det Rr(CV, OCII) ~ Os is obviously stratified, hence 3.6.3 de-
s

fines the stratification of det R7r.Ocs which is a natural generator 'Y of C[[q]]-module

det-1 Rr(CV,OcII) ~C[[q]] detR7r.Ocs. Let us compute 'Y in a couple of most simple

situations.

3.6.5 Assume that CV is a disjoint union of two copies of pI'S, CV = Pt II p~, al E

p~, a2 E p~ are "zero" points, ti are standard parameters at ai. Then the S-curve Cs

is compactification of the family of affine curves A2 -+ S, q = t2t2. This is a genus 0

curve, hence R7r.Ocs = Os, so we have a canonical trivialization a of det R7r.Ocs of

"global" origin. In fact, it coincides \vith our 'Y. To see this, note that (in the notations

of proof of 3.6.3) in our case P is colattice \vith basis {ef, e~}, k :5 0, so one has P EB

VI++ = V = P EB Vo++. The operator (e~ + eg). identifies ML(Vl++) with ML(Vl+), hence

detR7r.Ocs = ML(Vl++)/ML(P). The "global" trivialization a comes from isomorphism

ML(V1++) -;::j ML(p), m 1--+ m mod L(P)M. The trivialization 'Y comes from composition

ML(V1++) -;::j ML(Vo++) -;::j ML(p} where the first arrow is inverse to multiplication by 'YCX)

and the second one is projection m 1--+ m mod L(P)lVI. Since fik = ef mod P for k ?: 1, the

formula for 'YCX) shows that this composition coincides \vith projection ML(V1++) -+ ML(p),

hence a = 'Y.

3.6.6 Assume now that CV = pI, al = 0, a2 = 00 and tl t2 are standard parameters t and

t-1 respectively. Then the curve Cs coincides with standard Tate's elliptic curve (see,

e.g., [DR]), q is a .standard parameter on moduli space of elliptic curves at 00. The Tate

curve carries a canonical relative I-form 1/ (that corresponds to standard invariant form

on Gm via Tate's uniformization). One has R°7r.Ocs = Os, RI7r.Ocs = (R°7r.wcs).

by Serre's duality (here was is relative dualizing sheaf), hence det R7r.Ocs = R°7r.wcs
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and v is a canonical trivialization of det R7r * 0 C 5 . Let us calculate "Y. The colattice

P has basis {ef + e~}, k E Z. One has Os = R°7r*Ocs = Os(e~ + eg) = P n V1+,

Rl7r*Ocs = VIP + V1+ = VIP + V1++. The relative differential v in local coordinates ti

is ~ = - ~, and Serre duality is the sum of local residues at ai. Hence the functional

v E (Rl7r*Ocs)* = (VIP + V1+)* C V* is e~* - eg*. As above, the multiplication by

e~ + eg identifies lvIL(Vl++) with .LVIL(Vl), hence det R7r*Ocs = ML(Vl++) IML(p). The

trivialization v comes from isomorphism ML(V1++) -- ML(p), m ~ (e~m) mod L(P)M.

The trivialization "Y comes from composition ML(Vl++) -;::J ML(Vo++) -;::J ML(P) where

the first arrow is inverse to multiplication by "Y~ isomorphism ML(Vo++) -;::J ML(V1++)

and the second arrow is m 1--+ (e~m) mod L(P).rvI. Since if = (1 - qk)ef mod P,

i~ = (1 - qk)e~ mod P \ve see that "Y = [II(l - qk)2]v, or, in terms of Dedekind's

k?l
1J-function 1J(q) = ql/24II(1- qk), one has

k?l

"Y = q-l/121J(q)2v.

One may reformulate this as follo\vs. Recall that the line bundle). = det R7r*Oc = 7r*i.J)C on

moduli space of elliptic curves carries a canon1cal global integrable connection V' such that

the discriminant ~ is a global horizontal section of ). (8)12 (with respect to the corresponding

connection on ).(8)12). Since ~ = (1J(q)v)12, we see that our "Y is a horizontal section of a

connection V' + ~ 7 .
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§4. FUSION CATEGORIES

4.1 Recollections from symplectic linear algebra. Let V be a symplectic R-vector

space of dimension 29 with symplectic form ( , ). To (V, ( , )) there corresponds a

canonical transitive groupoid Tv. In 1.1-1.3 below we give three different constructions of

Tv. Assume first that V # O.

4.1.1 Let H = Hv be the Siegel upper half plane of V. A point of H is a complex

Lagrangian subspace L C Vc := V (8) C such that i(x,x) > 0 for x # 0 E L. Equivalently,

one may consider a point of H as a complex structure l' on V such that the form (', it.) is

symmetric and positive definite; here it E End V is multiplication by i E C with respect

to l' (the 1-1 correspondence l' --- L is l' ~ Lt:= the i-eigenspace of it, L ~ l'L :=

the complex structure that comes from the isomorphism V -;::j V c / L). The space H is a

complex variety, and the L's form a rank 9 holomorphic bundle .c on H. Put A := det.c :

this is a holomorphic line bundle on H. Denote by H the space of A (8)2 \ { zero section};

the projection H ~ H is a C.-fibration. Let 'H be the space of C=-sections H ~ H. One

has obvious maps

". 'H+--'HxH--tH, 'P+--'«r.?,h)~'P(h). (4.1.1.1) I

~'~nce H is contractible, these are homotopy equivalences. Note that for any a E H f

the map ia : 51 ~ H, ia( eiB):= eiB a, is a homotopy equivalence which defines a canonical I
identification

7rl(H,a)=Z. (4.1.1.2)

For a topological space ..\'" let T(X) be the fundamental groupoid of X: its objects

are points of X, and its morphisms are homotopy classes of paths. Put Tv := T(H).

4.1.2 Denote by A = Av the grassmannian of real non-oriented Lagrangian planes of V;

the planes form a canonical Lagrangian sub-bundle.cR of VA := V x A. Put AR := det .cR:

this is a real line sub-bundle ofAgVA. Let A' be the space AR \ {zero section} /:1:1: the map

x ~ x2 identifies A' with the "positive ray" of A~2. The obvious projection A' --t A is

an R+ -torsor, hence a homotopy equivalence. One has a canonical map

v: A' -- 'H (4.1.2.1)
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defined by the formula v(x2)(h) = >.2, where>. E det Lh C AgVc is the unique vector such

that vol(x A >') = 1 (here vol= Y E A2gV. is the canonical volume). The map v induces

an isomorphism of fundamental groups. Put Tv := T(A). According to (1.1.1), 1.2.1) we

have a canonical equivalence of groupoids

-rll ,.., -rl
a: .lV- .lV. (4.1.2.2)

4.1.3 Here is the third construction of Tv. For 3 Lagrangian planes one defines, according

to Kashiwara, their Maslov index r(L1, L2, L3) as the signature of the quadratic form B

on L1 E9 L2 E9 L3 given by the formula B(Xl,X2,X3) = (X1,X2) + (X2,X3) + (X3,X1) (see

[LV] ( )). Let Tv' be the following groupoid. Its set of objects is A. For L1,L2 E A we

put HomT:),(L1,L2) = Z, and the composition of morphisms L1-!2-..L2~L3 is given by

the formula m 0 n := m + n + r(Ll, L2, L3). Since r satisfies a co cycle formula [LV] ( ),

the composition is associative.

Let us define a canonical isomorphism

{3. -rIll -r" ( ). .lv -;::J .lv 4.1.3.1

which is the identity on objects. To construct {3 we need to choose for each pair L1, L2 E A

a canonical path "Y L1 ,L2 E HomT:.: (L2, L1) such that

"YLaL2 0 "YL2L1 = "YLaL1 +r(L1,L2,L3). (4.1.3.2)

Then one defines {3 by the formula {3(n) = n + "YL1,L2 for n E HomTv",(L2, L1) = Z (recall

that Hom7:,,(L2,L1) is a Z-torsor by 1.1.2).
v

To define "YLl L2 consider the subset U Ll L2 C A that consists of L's such that L1 +L2 :)

L ~ L1 n L2 = L n L1 = L n L2. A plane LEU Ll ,L2 defines a quadratic form 'P L on

L1/ L1 n L2 by the formula 'PL(a) = (b, a) where bE L2 is a vector such that b + a E L. In

this way one gets a 1-1 correspondence between U Ll L2 and the set of all non-degenerate

forms on L1 / L1 n L2. Let ut L2 CULl L2 be the subspace that corresponds to positive-

definite forms, so ut L2 is contractible. Now "YL1,L2 is the unique homotopy path from L2

to L1 which, apart from its ends, lies in UtlL2. One verifies (4.1.3.2) immediately.
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4.1.4 Below we will denote by Tv either of the groupoids Tv, TV', TV" identified via (4.1.2.2),

(4.1.3.1). In case V = 0, the groupoid Tv, by definition, has a single object 0 with End 0

= Z. For any V and y E Tv we will denote by "Yo the generator 1 E Z = Aut y.

4.1.5 The groupoid Tv has the following functorial properties. Let V be a symplectic
space, N c V a vector subspace such that ( ) IN = 0, and let N 1. be the ( )-orthogonal

complement to N. Then N 1. / N has an obvious symplectic structure. Since the pre-

image of a Lagrangian plane in N 1. / N is a Lagrangian plane in V, we have an embedding

ANJ./N '-+ Av, which defines a canonical equivalence of groupoids T~J./N ~ Tv.

4.1.6 Now let VI, V2 be symplectic spaces. One has an obvious map Av1 x Av2 --+ Av1$V2,

(LI,L2) ~ LI ffi L2, and a similar map Hv1 x Hv2 --+ Hv1$V2, which comes from

multiplication detlZ>2 LI x detlZ>2 L2 --+ detlZ>2 LI0detlZ>2 L2 = detlZ>2(LI ffiL2). These define

morphisms between corresponding fundamental groupoids, compatible with the canonical

equivalences (4.1.2.2). Hence we have a canonical morphism Tv1 x Tv2 --+ Tv1$v2.

4.2 The Teichmiiller groupoid. Here are two definitions: a "combinatorial" or "topo-

logical" one and a "holomorphic" one.

4.2.1 An object of the "topological" Teichmiiller groupoid Teich' is an oriented surface S

(possibly non-connected and with boundary) together with a set of points Ps = {xcr} of

the boundary as such that each connected component of as contains exactly one Xcr (we

will denote this component aSxa). The morphisms are isotopy classes of diffeomorphisms.
-,

Let us define an "enhanced" groupoid Teich. For a surface S denote by H(S) the

image of the canonical map H;(S, R) --+ HI(S, R) (which is the same as cohomology

of a smooth compactification of S). An orientation of S defines a symplectic structure
-,

on H(S) (intersection pairing). Now an object of Teich is a triple (S, Ps, y), where

(S,Ps) E Teich' and y E TH(s). A morphism (S,PS,y) --+ (S',PSI,y') is a pair ('p,"Y),

where 'p : (S, Ps) --+ (S', PSI) is a morphism in Teich', and"Y : 'P.(y) --+ y' is a morphism

in TH(sl); the composition of morphisms is obvious.
-,

TheprojectionTeich ~ Teich', (S,PS,y) t---+ (S,Ps), is surjective. For any (S,PS,y) E
-,

Teich the group Aut --:- I(S,PS,Y) is a central extension of AutTeichl(S,PS) by Z(=
TeIch -,

AutTHCS) (y»). So we may say that Teich is a central extension of Teich' by Z. We will
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denote the generator of this Z by ,0.

Consider the functor Teich' --+ Sets, (S, Ps) ~ Ps = set of boundary components

of S. Clearly Teich' is a fibered category over the groupoid of finite sets. For a finite set A

denote by Teich~ the fiber over A (the objects of this groupoid are pairs (( S, Ps), v), where

(S,Ps) E Teich', and v: Ps -;::j A is a bijection). For a bijection f: A -;::j B, X E Teich~,

Y E TeichB we will denote by Homf(X,Y) the set of f-morphisms (i.e., the ones that

induce f on the sets of boundary components). We put AutO(S, Ps) = Autidps (S, Ps).
-I

We will use the same notations for Teich.

For (S,Ps) E Teich' and Xa E Ps we denote by dxa E AutO(S,Ps) the Dehn twist

around aSXa' Since dxa acts as the identity on H(S) it lifts to the element (dxa,idy) E

Aut°-;- ,(S,PS,y), \vhich we will also denote by dx . These dx lie in the center. InTeich a a

particular, we have a canonical morphism ZPs --+ AutO(S,Ps), (nXa) 1---+ lld::aj Z x

ZPs --+ AutO(S,PS,Y), (ny,nXa) ~ ,;r x lld::a.

4.2.2 Here is a "holomorphic" definition of the Teichmiiller groupoid. An object of Teich"

is a complex curve C (smooth, projective, possibly reducible) together with a finite set

of points ~c = {Yo} C C equipped \vith non-zero co-tangent vectors Va E nhY . The, a

morphisms are I-parameter Coo-class families of such objects connecting two given ones,

these families being considered up to homotopy. In other words, Teich" is the Poincare
-"

groupoid of the modular stack M of the above structures. In the same way, Teich is the

Poincare groupoid of the modular stack ..';\;i of the data (C, Yo, Va, y), where (C, Yo, va) E

M, and Y E det02(HO(C,nh)) \ {OJ. Clearly, the second modular stack is a C*-fibration
-"

over the first one, hence Teich is a Z(= 7rl(C*))-extension of Teich".

-,
4.2.3 The groupoids Teich' and Teich", are canonically equivalent, as are Teich and- "
Teich. To define this equivalence, take (S,Ps) E Teich'. Consider the data (J.lj {ra}),

where J.l is a complex structure on S, and rcr : SI = {z E C : Izi = I} -;::j aSXa is

a parametrization such that ra(I) = Xcr and rcr extends J.l-holomorphically to the ring

{z E C : 1 ~ Izi ~ 1 + ~}. We may glue a collection of unit discs Dcr = {z E C : Izi :::; I}

(with their standard complex structure) to S using rcr. Denote the corresponding complex

curve C = C(S,PSi (J.l,rcr)). It is equipped with the set of points Ycr = 0 E Dcr, and the
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cotallgent vectors Vcr = dzo E nh o. Hence C(S, PSi (J.L, rcr)) E Teich". It is easy to see that,

for given (S,Ps) the data (J.Li {rcr}) form a contractible space. So (S,Ps) E Teich' defines

a callonical "homotopy point" in Teich". In this way we get a morphism of groupoids

Teich' ---+ Teich" which is an equivalence of categories.
-, -"

To lift this equivalence to Teich ---+ Teich, note that H(S) = Hl(C, R). The

complex structure on C defines the Hodge subspace HO(C,nh) C H(S)c, which is a

point hc on the corresponding Siegel half plalle (see 4.1.1). Now let us interpret TH(s)

as a fundamental groupoid of the space denoted by 'H in (4.1.1.1). For y E TH(s) put
-, -"

yc := y(hc) E det~2(HO(C,nh)) \ {a}. Our equivalence Teich ---+ Teich is given by

the formula (S,PS,Y) ~ (C,Ycr,vcr,Yc).

4.2.4 The above equivalence trallsforms 'Yy to the loop B ~ (C, Ycr, Vcr, eiBy), alld trans-

forms the Dehn twist dx~ to the loop B ~ (C,Ycr,eiB8$vcr,y).

4.3 Operations in Teich. We will need the following ones:

(i) One has a functor "disjoint union" U : Teich x Teich ~ Teich. According to 1.1.6 it- - - -
lifts in a callonical way to a functor U : Teich x Teich ~ Teich. Clearly Teich, Teich are

strictly commutative monoidal categories, alld the projection Teich ~ Sets, (S,Ps) ~

Ps, commutes with U.
(ii) Deleting of a point. For a finite set .4. and Q E A one has a callonical functor

delcr : TeichA ~ TeichA\{cr}, T~hA --+ T~h.4.\{cr}' In "holomorphic" lallguage (4.2.2)

this functor just deletes Ycr,Vcr. In "topological" language (4.2.1) one should delete the

component asXa by glueing a "cup" to asXa.

(iii) Sewing. Let A be a finite set, and Q, {3 E .4., a # {3, two elements. One has a callonioal- -
Sewing Functor 5cr,i3 : TeichA ~ TeichA\{Q,i3}' TeichA ~ TeichA\{cr,i3}. Let us define

5cr,i3 in combinatorial language first. For a surface (5, A) E Teich' choose a diffeomorphism

cp : aSXa~ asx~, cp(xcr) = Xi3, reversing orientations. Our 5cr,i3(S,A) E Teich~\{cr,i3}

is 5 with two boundary components identified by meallS of cpo Since the cp's form a

contractible space, this surface does not depend on the choice of cpo Note that either

H(S) = H(Scr.i3(S, A)) (if Q and {3 lie in different connected components of B), or H(S)

coincides with a sub quotient of H(5cr,i3(S, .4.») in a manner described in 4.1.5. In any case
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-I

one has a canonical equivalence TH(s) ';j' TH(Sa.~(S,A»' This defines Sa,p : TeichA -+
-I

TeichA\{a,p}' I

4.3.1 To define Sa,p in holomorphic language, taJce (C,Y-y,v-y) E Teich~. Consider a I
curve Ca,p with a single quadratic singularity obtained from C by "clutching" Ya and

Yfj together. One knows that curves with a single quadratic singularity form a smooth

part of the divisor of singular curves in the modular stack MA\{a,fj} of curves with at

most quadratic singularities. The fiber of the normal bundle N to this divisor at Ca,p is

canonically identified with Tc,Ya ~Tc,y". Hence v;;I. viI is a non-zero vector of this normal

bundle. It defines a "point at infinity" of the modular stack MA\{a,(J} of smooth curves (for

a detailed account on "points at infinity" see [D]), which is a correctly defined (up to unique

canonical isomorphism) object Sa,fj(C, Y-y, v-y) E Teich~\{a,fj}' To lift gt'afj to a functor- II
between Teich's, notice that the line bundle ,\ over M with fibers '\c := det HO( C, nh)

extends canonically to a line bundle ,\ over M: if C' has quadratic singularities, one has

'\c' := detHO(C,i.lJc'), where i.lJc' is the dualizing sheaf. Define the C*-bundle oM -+ M

to be ,\02 \ {zero section}. Recall that for any C' E M one has a canonical isomorphism

,\~~ = ,\~~, whereC' is the normalization of C' (recall thati.IJc'/i.lJc' is a skyscraper sheaf,

supported at singular points, trivialized canonically up to sign using residues). Hence the

fibers of Mover (C, Y-y, v-y) and Sa,(J(C, Y-y, va) are nearby fibers of the s&ne C*-fibration,

hence one has a canonical identification of their fundamental groupoids. This defines the
-II -II

desired lifting Sa,fj : TeichA -+ TeichA\{a,fj}. It is easy to verify that the equivalence 4.2.3

identifies the above "topological" and "holomorphic" constructions of Sa,(J'

4.3.2 It is convenient to consider both sewing and deleting of points simultaneously. To

do this, consider a category, Sets#, whose objects are finite sets, and whose morphisms

f : A -+ B are pairs (if, <Pf), where if : B t-t A is an embedding, and <Pf = {<Pf6}

is a collection of two-element mutually non-intersecting subsets <Pf6 of A \ if (B). The

composition is obvious: if g : B -+ C is another morphism, then go f = (if 0 ig, <Pf U <pg).

For f as above we put .4.} := U<Pf6, A} = .4. \ (if(B) U A}), so A = if (B) II A} II A}.
6

Now for any morphism f : A -+ B we have a canonical functor f* : TeichA -+ TeichB,

T~hA -+ T~hB that deletes points in A} and sews pairwise points in all <Pf6'S. One has
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(g 0 f). = g. 0 f., and each f. is a composition of elementary deletings of a single point, and

glueing of a single pair. Clearly these f.'s define a cofibered categories Teich#,T~h#

over Sets# with old fibers TeichAI T~hA, respectively.

Note that all these categories are strictly commutative monoidal categories with re-

spect to "disjoint union" operation U; all the functors commute with ll.

4.4 Representations of Teich; central charge. Let A be a finite set. Denote by 'R.A

the category of finite dimensional C-representations of TeichA (i.e., the objects of'R.A are

functors L : TeichA - Vect), and by RA the same for T~hA. More generally, if Q is a

component (i.e., a full subcategory) of TeichA, we denote by 'R.A,Q the category of repre-

sentations of Q, identified with the full subcategory of'R.A that consists of representations

supported on Q. For a representation VERA and .\'" E T~hA we denote by Vx the

value of V at X.

4.4.1 Definition. A representation V E 'R.A has multiplicative central charge a E C. if-
for any X E Teich the canonical element 'Yo E .4utX acts on Vx as multiplication by a. 0

For any a E C. denote by 'R.aA C 'R.A the full subcategory of representations of central

charge a. In particular, 'R.IA = RA.

For any morphism f : A - B in 5ets# the functor f. : T~hA - T~hB defines the- -
corresponding functor f. : RB - 'R.A; one has f.('R.aB) C 'R.aA' The functors f. define

a category R. fibered over 5ets# with fibers RA, together with fibered subcategories

'R.~ C R# with fibers 'R.aA.

4.4.2 Here is an explicit description of representations. From a combinatorial point of view

a representations V E 'R.A assigns to each surface (5, A) E TeichA a local system Vs on

Lagrangian grassmanian AH(s) (see 4.1.2), and to each t.p E Hom((5, A), (5', A)) a lifting ~

of the corresponding diffeomorphism AH(S) -z AH(S') to Vs -z Vs', This V lies in 'R.aA if

the monodromy matrix of the loop 'Yo = 1 E Z = 7I"I(AH(S») coincides with multiplication

bya.

4.4.3 From a holomorphic point of view our V is a local system on the modular stack MA;

V lies in RaA if the monodromy around the fiber of the projection 71" : M A - M A equals

multiplication by a.
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Recall that C-local systems on smooth algebraic manifolds can be identified with

algebraic vector bundles with integrable connections (= lisse D-modules) having regular

singularities at infinity (see [D], [Bo]). So our V is a lisse D- module on MA with regular

singularities at 00. Assume that V E RaA. Choose c E Z ("additive central charge") such

that exp(27iic) = a. Let DAc = 'DCA(A) be the ring of differential operators on the "line

bundle" >. (8)c. This is a t\visted differential operator ring on MA (see 3.2.6-3.2.8). Recall

that DAc-modules can be identified canonically with D-modules on MA, monodromic along

the fibers of 7i with monodromy a (see, e.g., [V]). In particular, V is a lisse DAc-module

on MA having regular singularities at 00.

4.5 Axioms of a fusion category. We \vill start with preliminary data.

4.5.1 Let A be an abelian C-category ("category of modules"). We assume that A is

semisimple, for X E A the C-vector space End...Y is finite dimensional, and there are

finitely many isomorphism classes of irreducibles. Denote by IrrA the set of isomorphism

classes of irreducible objects in A.

We should also have the following data:

- a contravariant functor ("duality") * : Ao -+ A together with a natural isomorphism

* * -+ idA
, - a distinguished irreducible object ("vacuum module") ]. together with an isomor-

phism v : ]. ~ *]. such that *(v) 0 v = id1.

- an automorphism d of the identity functor idA, called the Dehn automorphism,

such that d* = *d and d1 = 1. Clearly to give d is the same as giving a collection of

numbers dj = d[j E C* for j E IrrA (here Ij is an irreducible object of class j; recall that

Autlj = C*).

4.5.2 For any finite set B we have a category A(8)B: this is an abelian C-category equipped

with a poly linear functor 18'1 : AB = I1.4.b ~ A(8)B, (Xb)bEB ~ ~Xb' which

bEB bEB
is universal in ~ obvious sense (see [D] § for an extensive discussion in a less trivial

situation). The category A(8)B is semisimple. Its irreducible objects are tensor products

of irreducibles in A, so IrrAI8>B = (IrrA)B. Any isomorphism tp : B -+ B' induces a

canonical equivalence A(8)B -+ A(8)B', I8'I..Yb'--' I8'IXop-l(b').

48



I
I
i

4.5.3 We put A~0 = Vect. One may identify A<&I{l,2} = AI&!2 with the category of C-

linear functors F = Ao -+ A. Namely, to an object X ~ Y E AI&!2 there corresponds the

functor Fx~y defined by formula Fx~y(Z) = Hom(Z,X) ~ Y. We define a canonical

object ("regular representation") R E AI&!2 as an object that corresponds to the functor

* : Ao -+ A. Here is an explicit construction of R. For each j E IrrA pick an irreducible

object Ij ~f class j. Then one has a canonical isomorphism R = E9jElrrAlj ~ *Ij. Note

that R is symmetric: for the transposition 0" = {1,2} acting on AI&!2 one has a canonical

isomorphism O"(R) = R. So for any two element set B we have a canonical object RB E

AI&!B.

4.5.4 For finite sets .4., B and a morphism I : .4. -+ B in Sets# (see 4.3.2) we define a

C-linear functor 1* : AI&!B -+ A0A by the formula

1*(0 Xb) = [ 0 .\'"i/l(a)] ~ [ 0 identa] ~ [ 0 RcP/6] .
bEB aEi/(B) aEA, cP/6EcP/

Clearly (g 0 1)* = 1* 0 g*, so the I*'s define a fibered category A# over Sets# with fibers

A1 = A~A. The tensor product functor ~ : AI&!Bl x A~B2 --+ AI&!(Blll B2) defines on A#

the structure of commutative monoidal category such that the projection A# -+ Sets# is

a monoidal functor.

4.5.4 DEFINITION. A fusion structure on A is a collection of functors ( ): AI&!A X

TeichA --+ Vect, (X, S) f--+ (.\'"}s (here .4. is any finite set), together with natural

isomomorphism (i), (ii):

(i) (X ~ Y)SUT = (X)s ~ (Y)T for X E AI&!A,Y E A~B,S E T~hA,T E T~hB.

(ii) (/* X)T = (X) f.T for any morphism I: .4. -+ B in Sets#, X E A~B, T E T~hA.

These isomorphisms should be compatible in an obvious sense. We also demand that:

a. For nxed S E T~hA the functor ( )s: AI&!A ~ Vect is additive.

b. ( ) transforms Dehn automorphism to Dehn twist, i.e., for a finite set A, an element

a E A and a collection of objects .~-y E A, I E A, the automorphisms of (~X-y)s

induced by 0idx-y ~ dx-y E .4.ut ~ J\'"-y and by da E AutS coincide.

-y#a
c. ( ) is non degenerate in the sense that for any non-zero X E A there exists YEA

such that (X ~ Y) SO # 0 where So is a 2-sphere with two punctures.
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We will say that (A, ( }) is a fusion category of multiplicative central charge a E C*

if for any X E AI8)A the representation (X) of T~h lies in 'R-aA. 0

4.5.5 Clearly (ii) just means that ..Y 1--+ (X) is a cartesian functor A# -+ -R# between

categories fibered over S ets# . Since any morphism in S ets# is a successive deleting of

points and sewing of couples of points, we may rewrite (ii) as two compatibilities. Namely

(ii)' (X}delaS = (X 0 identQ}s for any finite set A, a E A,X E AI8)A\{Q}, S E T~hA.

(ii)" (X}Sa.~ S = (X 0 RQJ3}s for any finite set A, a pair of elements a,.8 E A, a # .8, X E

AI8)A\{Q,J3}, S E T~h.4.'

4.5.6 Here is a reformulation of 4.5.5(ii)" in "holomorphic" language 4.4.3. For X E

AI8)A\{Q,J3} our (X) is a lisse D,\c-module with regular singularities at infinity. As was

explained in 4.3.1 we have a canonical surjective smooth map 71' : MA -+ N\{zero section},

where N is the normal bundle to the (smooth part of) the divisor at infinity of MA\{Q,J3}.

We have the canonical specialization function Sp that assigns to a lisse D,\c-module with

regular si~gularities at infinity on MA\{Q,J3}' the one on N \ {zero section}. Hence we have

the D,\c-module 71'* Sp(X} on MA, and 4.5.5 (ii)' is an isomorphism 7r* Sp(X} = (X0RQJ3).

4.6 Fusion functors. Let (A, ( }) be a fusion category. Let A, B be finite sets. Any

object S E T~hAuB defines a functor Fs = F.:,B : AI8)A -+ AI8)B by the formula

H om(Fs(X), Y) = (X 0 *Y)*, X E AI8)A, Y E AI8)B. We will call Fs the fusion func-

tor along S. The automorphisms of S act as automorphisms of Fs. Note that if B = 0

then AI8)B = Vect and Fs = ( }s. If A = 0, then F is a functor T~hB -+ AI8)B, i.e., an

AI8)B-valued representation of T~hB' - -
Let C be a third finite set, T E TeichBUc, We define TaS E TeichAuc as the surface

obtained from T U S by sewing the B-boundary components.

4.6.1 LEMMA. There is a canonical isomorphism of functors FToS = Fs a FT : AI8)A -+

Al8)c.
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PROOF: For X E A0A, Z E A0C one has

H om( FToS(X), Z) = (X ~ *Z)ros =.. (X ~ ROB ~ *Z)rus
4.5.4(11)

= ffi (X ~ *I.,)s ~ (I., ~ *Z)r
4.5.4(i) \J7 }}

I.elrrA@BJ

= E9 H om(Fs(~~), I;) ~ H om(FT(I;), Z) = H om(FT 0 Fs(X), Z).

The last equality comes since

Fs(X) = E£)Hom(Fs(X),I;)* i&I I;.

D

Now assume that A = {OJ, B = {oo} are one point sets. Let Teich'{~,CX)} C Teich{O,CX)}

be the full subcategory of "cylinders". So Teich '{~,CX).} is a connected groupoid; for (S, 0, 00) E

Teich{o,CX)} the group (of its automorphisms) is a free abelian group with generator do =
d~l. Denote by So = (So,O,oo) the object of Teich{o,CX)} such that for any (S,O,oo) E

Teich{O,CX)} one has Hom(So,S) = { set of homotopy classes of paths in S connecting

0 and oo}. This is a canonical object of Teich'{~,CX)}. Its "holomorphic" counterpart is

(Pl,O;00,dt(0),dt-1(00)) E Teich'ig,CX)}, where t is a standard parameter on Pl. One

identifies this point of Teich" with So canonically by drawing the path R?;o from 0 to

00. Note that since H(S) = 0 for S E Teich{~,CX)} we have an obvious embedding 'I

, -,
Teich{~,CX)} '-+ Teich{o,CX)} j the "holomorphic" counterpart of this section comes since

the line bundle A is canonically trivialized over the "moduli space" of genus zero curves.-
So we will consider So as a canonical object of Teich{o,~}. Note that if A is any finite-
set and T E TeichAu{o}, then one has an obvious canonical isomorphism So 0 T = T.
According to 4.6.1 this gives a canonical isomorphism of functors F So 0 FT = FT. In fact,

one has

4.6.2 LEMMA. There is a canonical isomorphism of functors Fso = idA : A -+ A that

generates the above isomorphisms F So 0 FT = FT, for all T E TeichAu{o}.

PROOF: Assume that we know that F So is an equi a1ence of categories. Then the desired

isomorphism Fso = idA would be Fsol(Fso 0 Fso = Fso). Since A is semi-simple, to see
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that F So is an equivalence it suffices to prove that F So induces the identity map of the

Grothendieck group K(A). The irreducible Ii form the basis in K(A). Put Fso(Ii) = i! Ij;
we have to show that if = sf. We know that if E Z?;o. Since if = (Ij I&> *Ii)so we see,

by 4.5.4c, that any row or column of the matrix if is non-zero. Since Pso = F so, these

properties imply that Fso = idK(A) (just note that Pso(Ii) = Fso(Ii) implies Fso induces

a transposition of the set of those I j'S that il # 0; hence F So is a surjective endomorphism

of K(A), and hence it is the identity). 0

4.6.3 Assume now that 5 is a connected surface of genus 0 and B is a one point set. Then

the corresponding functors Fs : A~A --+ A, together with * and d from 4.5.1, define on

A the-structure of a balanced rigid tensor category (see, e.g. [K]). Here are some details.

Denote by 5n the surface obtained from a unit disc by cutting out n holes with centers on

the real line; the marked points lie on the real line to the right:

53 : 0:1:1 0:1:2 0:1:3 x (X)

Put FSn(Xl 1&>..'I&>.~n) = .~10..'0Xn. The axiom 1.5.4 (ii)" implies immedi-

ately that the operation 0 : An -+ A is strictly associative: one has X10X20X3 =
(X10X2)0X3 = X10(X20X3). Consider the following diffeomorphism 0" of 52 that fixes

a52:1:oo and interchanges a52:1:1 and a52:1:2 (we move the holes in a way that the marked

point remain on the very right of the hole):

This diffeomorphism induces a natural isomorphism O"X1X2 : X10X2 -;:j' X20X1. It is

easy to see that 0" satisfies the braid relations, and also one has a relation 0"2 = d:l:ood;;d;21

in Aut52. These imply the hexagon axiom for 0, and the axiom 0"~1,X2 = dX1ix2 0

(dx1<z>dx2)-1 of balanced tensor categories.

-?
.J-
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4.7 The fusion algebra. The above tensor structure on A defines a commutative ring

structure on the Grothendieck group K(A). One calls K(A) the fusion algebra of A. Note

that K(A) has a distinguished basis {Ij} of irreducibles. By 4.5.5 (ii)' the base element 1

that corresponds to vacuum module is the unit in K(A).

Now 4.6.2 implies that (K(A), {Ij}) is a based ring in the sense of [1] 1.1. According

to [1] 1.2, K(A) @ Q is a semisimple algebra. Hence K(A) @ C has another canonical basis

- the one that consists of mutually orthogonal idempotents.

Let T be a torus (= oriented genus one surface). Choose a basis ')'1,')'2 in H1(T,Z)

compatible with the orientation, so that ')'1, ')'2 are cycles on T that intersect at one point

a. Consider the vector space (U}T. Note that if ,ve cut T along ')'1, then ')'2 will become a

path that connects t,vo copies of a on the components of the boundary, hence it identifies

this surface with the surface So of 4.6.2. According to 4.5.5 (ii)", 4.6.2, the corresponding

decomposition 4.5.5(ii)" gives the basis in {].}T numbered by irreducibles in A, i.e., we have

the isomorphism i-rl,-r2 : K(A)@C -. (U}T that transforms Ij's to this basis. Interchanging "

')'1 and ')'2 we get the isomorphism i-r2,--rl : K(A) @ C -;:j (U}T. The composition i~;,--rl 0

i-rl,-r2 E AutK(A)@C is called the Fourier transform. According to the Verlinde conjecture,

proved by Moore-Zeiberg, the Fourier transform maps a canonical basis {I j} of irreducibles

to the basis proportional to one of the idempotents.

I
, ,
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§6. ALGEBRAIC FIELD THEORIES

6.1 Axioms. Let c E C be any complex number. An algebraic rational field theory

(in dimension 1) of central charge c consists of data (i) - (iv) subject to axioms a-g below:

6.1.1

(i) A fusion category A of multiplicative central charge exp(271"ic) (see 4.5.4)

(ii) An additive "realization" functor r : A -+ (T, V1)c-mod (see 3.4.7).

We assume that for any X E A

a. r(X) i3 a higher weight module, i.e., the "coordinate module" r(X)C«t»,dt(o) is a

(direct) sum of generalized eigenspaces r(X)c«t»,). = {m E r(.\':")c«t» :

(La - A)Nm = 0 for .7'1 ~ O} for the operator La (see 3.4.7, 7.3.1). Each

r(X)c«t»)., A E C, i3 a finite dimen3ional vector space.

b. r(d."\") = Tr(."\") I where d.x is the Dehn automorphism (see 4.5.1) and T is the

monodromy automorphism (see 7.3.2).

Note that these axioms imply that r(D.) is actually a (T,V)c-module (since Tr(J.) =

idr(I)'

(iii) A fixed "vacuum" vector 1 E Homv(C, r(D.)).

We assume that

c. 1 i3 a non-zero vector invariant with respect to the action of soF(T_1F) C TF

(see 3.4.1).

6.1.2. Now let S be a smooth scheme, 71" : Cs -+ S a family of smooth projective curves,

A C Cs(S) a finite disjoint set of sections, and {Va}aEA 1-jets of parameters at points

in A. This collection defines S-localization data 'ltbc for (~A, Vf) (see 3.4.7, 3.4.5). The

corresponding algebra of twisted differential operators Dt/Jc coincides with D).c (see 3.5.6).

Hence, by 3.3.5, we have the S-localization functor ~t/Jc orl8>A : AI8>A ---+ DAc-mod. On the

other hand, by 4.5.4, 4.4.3, the fusion structure on A defines the functor ( }cs: AI8>A ---+

DAc-mod such that for any 0Xa E AI8>A the corresponding DAc-module (0Xa)cs is lisse

with regular singularities at infinity. Our next data is

(iv) A morphism of functors 'Y: ~t/Jc orl8>A ---+ { }cs.

For X E AI8>A denote by r("¥)A,Cs = r(-\'")A,VA,CS the Os-module that corresponds to
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the S-object "formal completion of Cs at A with I-jet of parameters VA'" of vt (see 3.4.3,

3.4.6, 3.4.7). H X = @Xa, then r(X)A,cs = @osr(Xa)a,Cs' Recall that ~,.tIc 0 rI8)A(X),

considered as an Os-module, is a quotient of r(X)A,cs' For any section cp of r(X)A,cs

put (~)cs = i(CP) E (X)cs. This is the "correlator of the field cp along Cs".

The following axioms should hold:

d. / commutes with base change, i.e., / is a morphism of DAc-modules on the mod-

ular stack M A.

e. For a E A, objects X E AI8)A\{a} and a section cp E r(S, r(X)A,cs) one has

(cp)cs = (cp@ la)cs. Here (cp)cs is a section of (X)cs (we forget about the point

a), and (cp 01a)cs is a section of (.¥0 la)Cs; the two DAc-modules are identified

via 4.5.5 (ii )'.

6.1.3 Now consider the two pointed curve Co = (PI, 0, oo,dt(O), dt-l(oo)). We have coor-

dinates t at 0 and t-1 at 00. For any object .X E A consider the pairing

( )co : r(*..Y)c«t» @ r(X)c«t-l)) = r( *-~)CO6 @ r(X)cooo --+- (*X @ X)co = End X
4.6.2

Here we write simply C((t)) for (C((t)),dt(O)) E VI. This pairing is a morphism of

End X-bimodules, hence it defines a linear map
: .

i : r(*X)C«t) --+- HomEnd x(r(_\'")C«t-l»,End X) =: r(X)C«t-l»'

Note that r(X)C«t-l) is a Tc«t-l))-module in an obvious manner. Denote by

*r(X)C«t-l» C r(X)C«t-l) the sum of generalized eigenspaces of the operatorLo E Tc«t».

The pairing ( )co is T(PI \ {a, oo} )-invariant (by definition of ~1tI, see 3.4.4), hence i com-

mutes with the the Lo-action. By axiom a above we see that i(r( *X)C«t» C *r(X)C«t-l».

Our next axiom is

f. The map i : r( *X)C«t) --+- *r(,,:¥)c«t-l» is an isomorphism of vector spa(;es.

It suffices to verify f for irreducible .I¥'S only.

6.1.4 Our final aXiom g ("factorization at infinity") describes the asymptotic expansion of

correlators near the boundary of the moduli space. So consider the following situation.

Let 7i : Cs -+ S = Spec C[[q]] be a proper flat family of curves such that the generic

fiber C'/ is smooth and the special fiber Co has exactly one singular point which is quadratic.
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Let B = {bi} be a finite non-empty set of sections of 7r such that the points bi(O) E Co

are pairwise different, and let Vi E biiJ)cs/s be a I-jet of coordinates at the bi'S. Then

C = (C", bi, Vi) is a C((q))-point of MB.

Let t1,t2 be formal coordinates at a such that t1t2 = q. According to 3.6.1 we get

a smooth S-curve C.¥ with points aI, a2 E C.¥(S) and formal coordinates ti at ai. Put

A = BU{aI,a2}. Then Cv = (C~,bi,aI,a2;vi;q-Idt1(aI),dt2(a2)) is a C((q))-point of

MA.

The S-curves Cs and C.¥ define the corresponding determinant line bundles on S.

According to 3.6.3 their ratio is canonically stratified, hence the corresponding rings of

differential operators are canonically identified; we denote this algebra D >.c.

For any object ..Y E A(8)B we get the lisse D>.c-modules (X)c and (X (2) R)cv on T}

with regular singularities at q = o. According to 4.5.6 we have a canonical isomorphism

between their specializations to q = 0 (these are D-modules on the punctured tangent line

at q = 0). Since Spa is an equivalence of categories, we have a canonical isomorphism of

DAc-modules (X)c = (..Y (2) R)cv.

: To formulate a..,=iom 9 we need to consider a special vector in r( R). Recall that

R = EeljEIrr AIj (2)*Ij. Choose a basis {ej<} in each r(Ij)c«t» compatible with grading by

generalized eigenspaces of Lo. Here, as above, we write simply C((t)) for (C((t)), dt(O)) E

VI-

Below we will use the following notation: if F E V is any local field, t F a parameter

in F, X E A and e E r(X)C«t», then e(F,tF) E r(.Y)F,dtF(O) is a vector that corresponds

to e via the isomorphism (C((t)), dt(O)) -;::j (F, dtF(O)), t.-- tF.

According to axiom f. above, we get the dual basis {*ef} of r( *Ij)c«t», namely
K .-1 K. h ](* E (I ) . th d al b . t K*ej = z ej , were ej *r j (C«t-l»,t-l) 1S e u as1S 0 ej(C«t-l»,t-l)'

Now let tp = tp(q) be any section of r(_l'")B,VB,C = r(X)B,VB,Cv over S. Consider the

correlator af = (tp (2) e~C«tl»,q-ltl) (2) *e~C«t2»,t2»)Cv: this is a section of (X (2) I j (2) *1 j )cv.

Note that (X (2) Ij (2) *Ij)Cv is a finite dimensional C((q))-vector space. One has

6.1.5 LEMMA. The series Laf converges; its limit (tp (2) Cj)Cv E (X 0 Ij 0 *Ij}Cv does
K

not depend on a particular choice of basis {ef'}. 0
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Assuming the lemma, our final a.'<iom is

g. One has {cp)c = {cp ~ LCj)Cv = L{1p ~ Cj)Cv via the above canonical isomor-
j j ~

phism

{x)c = (..\'" ~ R)cv = S{X ~ Ij ~ *Ij)Cv.

PROOF OF 6.1.5: The independence of a choice of basis is straightforward. To prove that

our series converges it is convenient to add a parameter u, and consider a base scheme

S = Spec( C [u, U -1 ]) x 5 together with an S -point of M A defined by the family C': =
(C~,bi,a1,a2;vi,udt1,dt2). We get the lisse D).c-module {X ~ Ij ~ *Ij)c~ on S, and a

. .]' 1< K -
collectIon of sectIons aj~ (u, q) = (cp(q) ~ ej(C«tl)),utl) ~ *ej(C«t2)),t2))C~ E r( 5, (X ~ Ij ~

*Ij)Cv). The old picture is just the restriction of this one to the diagonal u = q-1. Our

D-module has regular singularities along the divisor u = 00, so we may extend it to a

vector bundle V to 5- = Spec(C[u-1]) x 5 invariant with respect to operator u8u. Our

lemma would follow if we show that for any N ~ 0 one has af(u,q) E u-NV for all but

finitely many K's. The action of the operator u8u on af (u, q) v..as computed in 3.4.7.1.

Namely, we have u8u(af.(u,q)) = (cp(q) 0 Lo(ej<)(C«tl)),utl) ~*ef)c~, hence af(u,q) is a

generalizeq;eigenvector of u8u with eigenvalue equal to an eigenvalue of Lo at ef. Axiom a.

above implies that for any j1 E CjZ and c E R the space E9 r(Ij)c(t)~ C r(Ij)c«t»)

~=7i mod Z
Re ~>c

is finite dimensional. On the other hand, since (X ~ I j ~ *1 j) c~ is a lisse module, there are

only finitely many u E CjZ such that one has a section which is a generalized eigenvector

of u8u with eigenvalue mod Z equal to u. This implies that for any c E R all but finitely

many af's are generalized eigenvectors of u8u with Re (eigenvalue) < c. This implies that

all but finitely many of them lie in u-NV. 0

6.1.6 REMARK: We may consider the situation when a smooth curve degenerates to a

curve with several quadratic singular points. One trivially reformulates axiom g for this

situation; it is easy to see that this generalized version follows from axiom g. above (the

case of one singular point).

6.1.7 Here is an example of how axiom g works. Let C be a fixed curve, A C C a finite set,

{va}, a E A, I-jets of coordinates at a's, -~ E A(8)A, and cp E r(X)a,C. Let x E C \ A be a
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point, tx a paxameter at x and AI,... , An E C distinct complex numbers. Let Xi(q) be C[[q]]

points of C defined by the formula Xi(O) = x,tx(Xi(q)) = Aiq. Put ti = tx/q - Ai: these are

parameters at Xi'S for q # o. Let Yl,.. . , Y n be objects in A, 1/Ji E r(~ )cCCt». We would like

to compute (cp E 1/JlcCCCtl»,tl)~...~1/JnCCCCtn»,tn»)c E (X~Yl~...~Yn)CC,A,{Xi},VA,dtiCXi).

To do it one should blow up the point (x,O) E Cs = C x S; denote this curve Cs. Clearly

A, {Xi} axe S-points of Cs, and we have parameters tx,qjtx at the (only) singular point

of C~. The corresponding S-curve C~v is constant: one has C~v = Cs II P1; the formal

parameters at al = x E Cs, a2 = 00 E P1 are tx, i-I, respectively. We see that Cs comes

from (CIIpl;x,oo;t",t-l) via the construction 3.6.4. The points A,{xi} on C~v are also

constant, as \vell as coordinates ti: one has Xi = Ai E pl,ti = t - Ai. Hence

(X ~ Yl ~... ~ Yn)CCjA,{Xi}jVA,dtiCXi» = ffi(r~l ~... ~ Yn ~ Ij)CP1;).i,OOjdtC).;),q-ldt-1Coo»
1

~ (*Ij ~ X)CCjx,A;dtzCx),VA)

and

(cp ~ 1/JICCCCtl»,tl) ~ ... ~ 1/JnCCCCtn»,tn»)C = (1/JICCCCt-Al»,t-Al) ~... ~ 1/JnCCCCt-An»,t-An)

~ ef(C((t-l)),q-lt-l))pl ~ (*e}«CCCtx»,tx) ~ cp)c.

6.2 Global vertex operators. Assume we have an algebr&c field theory as in 6.1. Let

C be a smooth compact curve, A C C a finite set of points and Va, a E A, a I-jet of

parameters at a's.

6.2.1 For an object .Y E AI8>A we have a finite dimensional vector space (X)c and a linear

map ( )c: r(X)Ac --+ (X)c. Also for any n-tuple of points Xl,..., Xn E C \ A, Xi # Xj

for i # j, we have a linear map ( )c: r(.\")A,C ~ r(l)xl'c ~... ~ r(l)xn,C =
r(X~ 1 ~... ~ 1 )AU{Xl,...,Xn},C --+ (X~ 1 0... ~ 1 )c = (X)c, where the last equality

is 4.5.5 (ii)'. Note that we need not fix here 1-jets of paxameters at Xi'S since r(l) is a

(T,V)c-module (see axiom b). We may rewrite this as a lineax map

Vx~,.."Xn : ~r(l)xi'c --+ r(.\")A,C ~ (X)c.

This construction may be rearranged in several ways:

6.2.2 Let the points Xl, . . . , Xn vary. On cn we have a locally free (?cn -module r(], )~~ with

fibers r(],)~::CX1,...,Xn) = ~r(l)xi,c. On U = (C \ A)n \ {diagonals} we have a morphism
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VA : r(U)~n --+ Homc(r(X)A,c, (X)c .;8> Ov) of Ov-modules such that the value of VA

at (Xl,'" ,xn) coincides with V::~""'::n' For any open set W C U we get a map

vii : r(W, r(U)~vn .;8> nw) --+ r(X)A,C .;8> (X)c .;8> HDR(W)

which is a composition of V .;8> idniv and the canonical projection r(W, nw) -+ HDR(W),

6.2.3 Assume that A = Al U A2 and X = Xl .;8> X2, Xi E A0A;. Then r(X)A,c =

r(XI)Al'c.;8> r(X2)A2,C), r(X)A,C = Hom(r(XI)Al,c,r(X2)A2,C)' Let us fix a formal

parameter tll at (X such that dtll(a) = Va. These identify r(Xi)A;,C with "coordinate

modules" r(Xi )C«tA;)) and r(_-:'<2 )A;,C with a completion r( *X2 )~«tA2)) of r( *X2)C«tA2))'

So we may rewrite the above V Xl,"',::n as

V::~~"'~;n : .;8>r(U)::;,c.;8> (Xl .;8> --:'<2)C --+ Hom(r(XI)C«tAl)),r(*X2)~«tA2)))'

The linear operators in the image of this map are called vertex operators.

6.2.4 Now assume that -~l = Y, -~2 = *F~l,A2(Y), where F~l,A2 : A0Al -+ A0A2 is

the fusion functor from 4.6. Then (--:'<1 .;8> -'Y2)C = Hom(F~l,A2(XI), *X2) has a canonical

element id.x 2; hence we get

V::~~"'~~n : .;8>r(U)x;,C --+ Hom(r(Y)C«tAl)),r(F~l,A2(Y))~«tA2)))'

Here are the first properties of vertex operators in this setting, that follow directly

from the axioms.

6.2.5 Forj E {1,...,n} and <p E l:&Ji#jr(U)x;,c one has V::~~,',~?j'...'::n«P) = V~~."~~n«P.;8>

l::j ).

6.2.6 Put T(C \ A,Xl"" ,xn) = {r E T(C \ .4.) : r(xi) = O} C T(C \ A). Then the linear

map V ::~~."~~n commutes with the T( C \ .4., Xl,'" , xn)-action. Here T(C \ A, Xl,... , Xn)

acts on the left hand side via T( C \ .4., Xl,." , Xn) -+ 1(::;)0 C ~::;) (= Virasoro algebra at

Xi) and on the right hand side via the map T(C\A) -+ ~A) from 2.3.4. In particular, any

vertex operator F transforms via a finite dimensional representation of T ( C \ A, X I, . . . , X n)

and F is fixed by a Lie subalgebraof T( C\A) that consists of fields vanishing to sufficiently

high order at the Xi'S.
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6.2.7 Let C' be another curve, .4.' = A2 U .4.3 C C' a finite set of points, ta, formal

parameters at a' E A', and {x~'.."x~} C C'\A'. Let (CoC')q be the C[[q]]-curve

with zero fiber obtained from C U C' by clutching together the points of A2 in C, C', and

where the q-deformation comes from using parameters ta2' ta, according to 3.6.4. Then
2

Al u A3 U {Xl'... ,Xn} U {x~,... ,x~} is a finite set of C[[q]]-points of (C 0 C')q, and

hence we have our vertex operators map vA1,Aa I ,: (&/r(n)x. C (&/ r (n)z:I. C' --+Z:l,...,Z:n'Z:l'."'Xm t, J'

Hom(r(Y)C«tAl »,
r(F(~~~~)q(Y)~«tAa»)' On the other hand, it is easy to see that "topologically" (C 0 C')q

coincides with "topological" composition Cq 0 C' from 4.6.1, where

Cq = (C,dtal(al),q-ldta2(a2» E M.4, al E .4.I,a2 E .4.2.

H b 4 6 1 h -r:-Al,Aa -r:-A2,Aa -r:-Al,A2ence, y . . , one as J (COC')q = J C' 0 J cq .
"

Our next property, that follows dir.ectly from axiom g, is: i
.. for any top E (&/r(n)z:"c, top' E (&/r(n)z:I. ,C' one has

J

vAl,Aa I ( (&/ ') = v12,Aa ( ') 0 VA1,A2
z:1 ... z:n z: ... z:I top top x... z:I top z:l, ." ,Xn', , , l' , m l' , m

where composition of "infinite matrixes" is understood in a way similar to 6.1.5.

6.3 Local vertex operators. Assume we have a field theory as in 6.1.

6.3.1 Let C be a smooth curve. Denote by C the cotangent bundle of C with zero section

removed; so a point of C is a pair (x, vz:), x E C, Vz: is a 1-jet of coordinates at x. Any

object X E A defines a locally free Va-module r(.X)c with fibers r(X)(z:,J/z) = r(X)Z:,J/:,c.

A choice of a family of local parameters defines a trivialization of r(X)c. More precisely,- -
let t be a function on a formal neighbour hood of the diagonal ~ : C ~ C xC, ~ ( x, v z:) =

(x, Vz:, x), such that tlA = 0, dz:2t(x, Vz:, x) = Vz: (so t(z:,v:) = t(x, vz:,,) is a formal parameter

at x); such a t defines a trivialization st : r(..\'")c) -;::f r(X)c«t» (&/ Vc.

This r(X)c is a Dc-module in a canonical way; the D-module structure comes from

the Tc«t»-l-action on r(X)c«t». Explicitly, a vector field T E Tc C Dc acts on r(X)c

as follows. Choose (locally) a family t of local parameters as above. Let V 0 be the fiat

connection that corresponds to the trivialization st. Let ::;:t E Tc«t» (&/ Vc be the section
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defined by formula 'it = SC[[t]](7(XI,lIzI)(t)8t): here 7(xl,lIzl) is a vector field ~n C x C equal

to T in the a-directions and to 0 in the C directions (hence 7(xI,lIzl )(t) is a function on the

formal neighbourhood of ~), and SC[[t]] : Tc[[t]] -+ Tc«t» was defined in 3.4.1. Now for a

section <,0 of r(X)c one has T(cp) = ~O(T)(cp) - 'it(cp), where r(cp) is the Tc«t»-action on

r(X)c«t».

6.3.2 REMARKS: (i) One may explain the Dc-module structure on r(X)c as follows. We

have two natural actions of the Lie algebra Tc on r(X)c. The first one - "Lie derivative"

- comes since r(X)c is a natural sheaf, hence symmetries of C (and infinitesimal ones

also) act on it. The second is an V-linear action that comes because the fibers of r(X)c

are Virasoro modules (using the splitting So~). No...v the D-module action of vector fields

is the difference of these two actions.

(ii) For any etale map f : C' -+ C one has a canonical isomorphism f;(X)c = r(X)c' of

Dc,-modules.

(iii) If dx = id.y (see 4.5), e.g., if .~ = D., then r(X) is actually a (T, V)-module, hence

r(X)c comes from a canonical D-module r(~~)c on C.

6.3.3 For Xl,.", Xn E A consider the D-module ~ir(-~i)c = r(XI )c~.. .~r(Xn)c on cn.

If C is compact, we also have a lisse D-module (~~ 10' . '0Xn) con C\ { diagonals} with reg-

ular singularities along the diagonals; the fiber of (X I 0, . .0 X n) cover (Xl, VI, . . . , Xn, Vn)

is (Xl 0 .. . 0 -~n)(C,{xi },{lIi }). By 6.1.2 \ve have a canonical morphism of Dcn -modules

( )c: ~r(Xi)c -+ j*(0Xi)C' where j : cn \ {diagonals} '-+ C.

6.3.4 For a moment let us drop the compactness assumption on C; we will work locally.

For X E A let r(X)l\c,cn be the completion of r(_~)c ~ Vcn around the diagonal ~ :

C -+ C X an, ~(x,vx) = (x,vx;x,...,x). A choice of a family of local parameters t =
(tX,lIz) identifies sections of r(X)a,cn ...vith formal power series }:::mil,...,int~l ...t~n, where

mil,"',in are sections of r(~\')c and ti(XO, Vxo, Xl,". , Xn) = t(xo,lIzo)(Xi). Then r(X)~,cn

is a (non quasicoherent) Dc- C n -module in an obvious manner. Let V! :) o c- CnX cxcn x

denote the sheaf of functions having (meromorphic) singularities at diagonals Xi = Xj,

i,j ~ O. Put r(~\')! := O! 00- r(~\')~ : this is also a Dc- Cn-module. AC,cn cxcn cxcn C,Cn x

""3I



section of r(X)'!t is a formal series
cxcn

II(ti _tj)-aij(}:::mil...int~l ...t~n), aij?' o~

Now let us define the "local" vertex operators:

6.3.5 LEMMA. There is a canonical morphism ofDcxcn-modules

J.L : r(U)c ~. . . ~ r(U)c ~ r(X) c- - r(.~)'!t
c cn,

such that (assuming C is compact) for any (X,Vx;YI,VY1;'" ;Ym,vYm) E 8 x 8m, X # Yi,

Yi # Yj for i # j, objects Yi E A, an element tPx E r(X)x,II~' tPy, E r(Yi)y"IIII, and a section

CPI, . . . , CPn of r( U)c in a neighbourhood of x one has

(cpI <8>'" <8> cpn <8> tPx <8> ... <8> tPYm)c = (J.L("'I <8>'" <8> CPn <8> tPx) <8> tPYl <8>'" <8> tPYn)c

(as meromorphic functions on a formal neighbourhood of (x, . . . , x) E cn with values in

(X <8> YI <8>'" <8> Ym)(C,{X.Yi},{II~,lIlIi}) identified with (U <8>'" <8> U <8> X <8> YI <8>'" <8> Ym) via

4.5.5 (ii)').

PROOF - CONSTRUCTION: We will write an explicit formula for J.L. To do this consider i

first pI with the standard parameter t. So t defines a family of local parameters tx = t - x

on pI \ {co}, and hence we have a trivialization st : r(Upl\{oo} = r(U)c«t» <8> Opl\{oo}'

For cP E r(U)c«t» we denote by ",t the corresponding "constant" section of r(U)pl\{oo}'

Nowfor'PI,"','Pn E r(U)c«t» andxI,...,Xn E PI\{CO}, Xi #Xj fori #j,consider

the vertex operator V~;~.,Xn('P~ <8> ... <8> 'P~) : r(.~)c«t» - r(X)~«t»k from 6.2.4 (here

we identified the module r(X)c«t-l) at 00 \vith r(X)c«t» via t-I 1--+ i). In fact, this

operator lies in End r(..~).

[PROOF: For any a E C* one has tax = aCt - x); hence the automorphism x 1--+ ax

of pI acts on r(U)pl (according to 6.3.2) by the formula cpt 1--+ (aLocp)t. This implies

immediately that-if LO'Pi = ni',?i, then V~;~.,xn(0'P!)(Loe) = (LO+nl+" '+nn)Vxo;~.,Xn(e).

Hence V~;~.,Xn «8>cp!) maps Lo-generalized eigenspaces in r(X)c«t) to ones in r(X)~«t»;

since the sum of these equals r(.~)c«t», we see that V~;~.,Xn «8>cp!) maps r(X)c«t» to

r(X)c«t».]
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Clearly, V:;~.,Zn (cp~~" '~cp~) is a meromorphic function on (Pl\ {O, oo} )"\ {diagonals}

with values in End r(X)c((t». Put fJ-(cp~~" '~cp~~~o) = Vxo;~"Zn(CP~ ~.. '~cP~)(~o) for

~o E r(X)c(t»: we will consider fJ-( ) as a formal power series in variables tl,'" ,tn,ti =

t(Xi), with poles along diagonals ti = tj, with values in r(X)c«t».

Now consider our curve C. Choose a family of parameters t. It defines a trivialization

r(U)c~" '~r(U)c~r(X)c -:::.. r(U)~«t» ~r(.Y)c«t»~Ocxcn in a formal neighbourhood

of the diagonal. We put fJ-( cpi ~. . . ~ cP~ ~ ~z,t) = fJ-( cP~ ~ . .. ~ cP~ ~ ~C«t»t)z,t in obvious

notations (so we write down the above fJ- on our curve in the coordinates tz for each x E C).

It is easy to see that fJ-, so defined, is independent of choice of the family of parameters

and is a morphism of D-modules.

To prove the correlators formula in 6.3.5 one proceeds as in 6.1.7: we should consider

the curve C~ as in 6.1.7 over C[[q]] and apply axiom g. D

We will often write fJ-(cpl~""'~CPn~tt&) ='Pl(Xl)'" CPn(xn)~(x) E 11 (Xi-Xj)-NC[[XI-

i,j
X,'" , Xn - x]] ~r(X)x' The composition property 6.2.7 for global vertex operators implies

this associativity property of J.L:

6.3.6 One has

CPl(Xl)"'CPn(xn)~(x) =

CPl(Xl)(CP2(X2)('" (CPn(xn)~(x))"') E C((XI - x((... ((Xn - x)).. .))) ~ r(X)x.

Also if one of the CPi'S is equal to 1, we may delete it.

6.4 Chiral algebra. Consider the three step complex LC. = (L2 -+ Ll -+ LO) of sheaves

for the Zariski or etale topology of C. Here £2 = r(U)c, L1 = f.I.)~Oc r(U)c, the differential

d : L2 -+ LI is the de Rham differential, and LO = LI / dL2 = JibR( r( U)c) is the sheaf of

de Rham cohomology with coefficients in the Dc-module r(U)c, and d : Ll - LO is the

projection.

6.4.1 For sections '1'1, '1'2 of £1 we define a section '1'1 * '1'2 of Ll by the formula '1'1 * '1'2 =
ReSlfJ-('1'1 ~ '1'2), and a section {'1'1,'1'2} E L2 by the formula {'1'1,'1'2} = ~fJ-('1'1 ~ '1'2).

Here '1'1 ~ '1'2 is a section of LI ~ LI = n~xc ~ocxc (r(U)c ~ r(U)c), fJ-( '1'1 ~ '1'2) is a

section of f.l.)C ~ LI = n~xc ~ p;r(U)c with poles along the diagonal, Resl is residue
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around the diagonal along the first variable, and Res was defineu in 2.2.4. Now the .I

lemma 6.3.5 implies immediately that d( { ""(1, ""(2} ) = ""(1 * ""(2 + ""(2 * ""(1 and for cp E L2 one has

(dcp)*""( = o. Define the bracket [, ] : L.~L. ~ L. by the formula [d""(l, d""(2]0,0 = d(""(1*""(2),

[d""(1,""(2]0,1 = -[""(2, d""(l] 1,0 = ""(1 * ""(2, [""(1,""(2]1,1 = {""(1,""(2} for ""(i ELI. The associativity

property 6.3.6 implies

6.4.2 LEMMA. This bracket provides L with the structure of Lie dg algebra. 0

This Lie dg algebra (or rather its zero component LO) is called the chiral Lie algebra J.

of our field theory.

6.4.3 Consider a canonical embedding i : Oc ~ r(U)c of Dc-modules, i(f) = f. 1.
dDenote by C. the three step complex C2 = Oc --+ C1 = I.Uc ~ Co = 1i; here

1i = 1ibR and the differential C1 ~ Co is the canonical projection. We get a canonical

morphism i : C. ~ L. of complexes, i(f) = f. 1. One may see that i is actually an

embedding (for io this will follow from 6.4.6), and obviously i(C.) lies in the center of the

chiral algebra.

6.4.4 For any x E A consider the Dc-module r(X)c. The formula ""((m) = ReSlJ1.(""( ~m)

for""( E LO, m E r(."¥)c defines a canonical action of Lo on r(X)c that commutes with the

Dc-action.

6.4.5 For any local field F we may consider the "local" version LF- of the above LC-.

This is a differential graded Lie algebra constructed in a way similar to 6.4.1. If F = F%

is a local field at a Point x E C, then LF2 = F% ~o c LC2, LFl = F % ~oc LC1, LFo =
z z :

HbR(F%,r(U)c) = LF~/dLF;. For any.¥ E A we have a canonical map LFO ~ r(."¥)F ~

r(X)F, ""(~m ~ ""((m) = ResOJ1.(""(@m). Here J1.(""(@m) E HbR(F)@r(X)F and one has

(cf. 6.4.4):

6.4.6 LEMMA. This map defines a representation of the Lie algebra LFO on r(X)F.

The central subalgebra C~ LFO, i(a) = a1f, (see 6.4.3) acts on r(X)F by the formula

i(a)(m) = am. 0

In particular, i( C) :;6 0; this implies, by degeneration arguments, that i : Co ~ LO is

an embedding in the "global" situation.
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Now assume that C is compact, Xl,..., Xn E C, Xi # Xj, Vi are i-jets of param-

eters at Xi'S, and XI,...,Xn E A. Put U = C \ {XI,...,Xn}. Consider the pairing

{ )c: r(XI)ZO,1J1,c(3)...(3)r(Xn)ZOn,lJn,C --+- {Xl (3)...(3)Xn)C,ZO;,lJi. We have an ob-

vious "localization" morphism £o(U) -+ £o(Fzo;), hence a natural action of £o(U) on

(3)r(Xi)zoi,lJi'c.

6.4.7 LEMMA. Tbe morphism { )c is £o(U)-invariant.

PROOF: Stokes formula: we rewrite for t' E £o(U) = nl(3)r(1I.)u thesum}:::{CPI...t'(CPi)...CPn)

as}::: ResZO=ZOi{t'(X)',?(XI)...CP(xn)). 0

6.5 Stress-energy tensor. For any local field F consider the linear map TF-2/TF-I -+

r(1I.)F/C. 1,7" f--+ 7"(1) (see 3.4.1; recall that 1 is fixed by TF-I by axiom c). The one-

dimensional space TF-2/TF-I canonically coincides with the fiber at 0 of T18)2. Tensoring

this map with the dual line, we get for any curve C a canonical section T of iJ)~2 1:&\

Oc( r( 1I.)c / Oc). This section is called the stress-energy tensor. Multiplication by T defines

a canonical map Tc -+ iJ)C 1:&\ Oc(r(1I.)c/Oc) = LI/CI ~LO/CO (see 6.4.3).

6.5.1 LEMMA. (i) The composition T -+ £o/Co is a morphism of Lie algebras.

(ii) The corresponding "local" projective action (see 6.4.5,6.4.6) ofTF C .cOF/C on r(X)F

coincides with the canonical Virasoro action.

REMARK: One should have a canonical isomorphism between the induced extension of T

by Co = 1-{ and the Virasoro extension from §2, but we do not know how to establish it at

a moment.

PROOF: Let us sketch a proof of (ii); one proves (i) in a similar way. We may assume that

F = C((t)). Let us compute the action of the operator LK := tK+18t . T C £C«t»o/C

on r(X)c«t». Take e E r(.Y)c«t», e* E r( *-'\'")C«t-l». Consider the function v(z) =
{~8t-z(lz).e.e")pl; here z E Pl\{O,OO}, ( )pl is the correlatorforfields ~8t-z(lz) E

r(1I.)c«t-z»,t-z, e, e* at points z, 0, 00. By definition, the matrix coefficient (LK(e), e*) is
equal to Resz=ozK+lv(z)dz. We have the invariance property {~8t-z(lz) . e . e*) +

{(lz) . ~8te . e*) + ((lz) . e . ~ate*) = o. Deleting 1z by ax . e, we get {LK(e), e*) =

II
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-Resz=o(( ~8te . e*) + (e . ~8te*) . ZK+ldz. To compute ~ate one should expand

6 around t = 0, and to compute 68te* one should expand ~ at t = 00.

Hence

(LKe, e*) = -Resz=ozK+l( -(}=: z-n-ltn8te, e*)+(e, }=: znt-n-18te*) )dz = {tK+l 8te, e*),
n?:O n?:O

since (ta8te, e*) + (e, ta8te*) = O. We see that LK = tK+18t, q.e.d. 0

6.6 Theta functions. Consider the vector spaces (n.)c, where C is a smooth connected

compact curve (with empty set of distinguished points). They are fibers of a lisse Ac-

twisted D-module (u) on the moduli space of smooth curves. For a point x E C we

have (n.)c = (n.x)c,x, hence one has a canonical map "'Ix : r(U)x,c -+ (U)a. The image

"'Ic = "'I%(~) is independent of the choice of x (since 8x( "'I%(1x» = 0). As C varies, the "'Ia

form a holomorphic section of (n.).

Here is an explicit formula for "'I on the moduli space of elliptic curves. Consider the

usual uniformization of the moduli space by the upper half plane H with parameter z;

then q = exp(27riz) is the standard parameter at infinity. The family of elliptic curves

degenerates when q -+ 0 in the standard way described in 3.6.6. Hence on H we get

a canonical trivialization (n.)H = ffiClj' horizontal with respect to the trivialization of

Ac described in 3.6.6. In this trivialization \ve have "'I(q) = l:"'IY(q), where "'IY(q) =
J J

trljC«&»q-Lo by axiom g. The "global" trivialization of Ac given by TJ(q)C differs from the

above trivialization by qc/24 (see 3.6.6). In this global TJ-trivialization the components of

"'I are "'IIj(q) = qC/24trljC({&»q-Lo. We see that these are holomorphic functions on H and

for any (~ ~) E SL2(Z) the function "'Ilj (~) is a linear combination with constant

coefficients of other "'II- 's.I
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§7. LISSE REPRESENTATIONS

7.1 Singular support, lisse modules. Let 9 be a Lie algebra, U = U(g) be its universal

enveloping algebra. Then U is a filtered algebra (Uo = C, U1 = C + g, Ui = ui for i > 0),

grU = ffiiUi/Ui-l = S.(g). For cp E Ui its symbol O'i(cp) is cp mod Ui-l E Sigj if

cp E Ui \ Ui-l we will write O'(cp) = O'i(cp).

7.1.1 Let M be a finitely generated g-module. Recall that a good filtration M. on M is a

U.-filtration such that M = UMi, n1v!i = 0 and grM. is a finitely generated S.(g)-module.

For example, if Mo C M is a finite dimensional vector subspace that generates M, then

Mi = UiMo is a good filtration. Any two good filtrations M., M~ on M are comparable,

i.e., for some a one has M.-a C /vI~ C 1v!.+a.

Define the singular support SSM of M to be the support of the S.(g)-module grM.,

where M. is a good filtration on M. This is a Zariski closed canonical subset of SpecS.(g) =

g*j it does not depend on the choice of a good filtration M.. If TJ is a generic point of

SSM, then the length of the S.Cg)-module CgrM.)fJ only depends on Mj denote it t'fJ(M).

We will say that .LV is finite at TJ if I!fJ(l\l) < 00: this means that (grM.)fJ is killed by an

ideal of finite co dimension in S.(g)fJ'

7.1.2 REMARKS: (i) If M is generated by a single vector, M ~ U/I, then SS(M) is the

zero set of symbols of elements of I.

(ii) A more precise way to speak about this subject needs the microlocalization language,

see e.g. [La], Appendix.

The algebra grU = S.(g) carries a Poisson bracket defined by the formula {fi,gj} =- - --
fi9j - 9jfi mod Ui+j-2j here fi E Si(g), ji E Ui, fi = fi mod Ui-l, and the same for gj,

{fi,gj} E Si+j-l(g). One has the following integrability theorem, due to O. Gabber [Ga]:

7.1.3 THEOREM. Let /vI be a finitely generated U -module finite at any generic point of

SSM. Tben SSM is involutive, i.e., ifj,g E S.(g) vanish on SSM, then so does {f,g}.

0

7.1.4 DEFINITION. A finitely generated module Mis lisse if SSM = {a}. More generally,

we will say that M is lisse along a vector subspace t' C 9 if SSM n I!.l. = {O}. 0
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Note that any quotient of a lisse module is lisse. Any extension of a lisse module by a

lisse module is lisse. Any finite dimensional M is lisse; the converse is true if dim g < 00.

Explicitly, a module M is lisse if amd only if for a finite dimensional subspace V C M

that generates M and any g E g there exists N ~ 0 such that gNV C UN-IV.

7.2 Finiteness property. Let k C g be a Lie sub algebra. We will say that a g-module

M is a (g, k )-module if k acts on 1\11 in a locally finite way (i.e., for any x E M one has

dimU(k)x < 00). If such an M is finitely generated, then it carries a good k-invariant

filtration (e.g., take a finite dimensional k-invariant subspace Mo C M that generates M
and put Mi = UiMo). Hence SS.I.\1 C k.L = (g/k)* C g*. ~

7.2.1 LEMMA. Let M be a finitely generated (g, k )-module and n c g be a vector subspace

such that dimg/n + k < 00 and Mis lisse along n. Tben dimM/nM < 00.

PROOF: Let M. be a J(-invariant good filtration on M, so grM. is a finitely gener-

ated S. (g/ k )-module. Consider the induced filtration on M / nM. It suffices to see that

dimgr(MfnM) < 00. But gr(1\Il/n1\l1) is a quotient of grM/ngrM (since griM/nM =
Mi/Mi-l+ (Mi n NM), (grM/ngrM)i = Mi/Mi-l + nMi-l). The latter is a finitely

generated module with zero support over the finitely generated algebra S.(g/ k + n), hence

it is finitely generated. 0

We will use 7.3.1 as follows. Assume we are in a situation 3.3, so we have a Harish-

Chandra pair (g,K), an S-localization data 'I/J = (S#,N,cp,cpo) for (g,K) and the cor-

responding S-localization functor .6.,.LI : (g, J()-mod -+ V,.LI-mod. Certainly, any (g, K)-

module M is a (g, k)-module and SSM is an Ad J(-invariant closed subset of k.L. Now

7.2.1 (together with 3.3.4) implies:

7.2.2 COROLLARY. Assume tbat the following finiteness condition holds:

(*) Tbe sbeafg~ /kf + cp(N(o») is Os-coberent.

Tben for a lisse (g, K)-module M tbe V,.LI-module .6.,.LI( M) is lisse (see 3.2.7). More

generally, ita (g,K)-module Mis lisse along any subspace cpo(N(o)s) C g, s E S#, tben

.6.t{J(M) is a lisse V,.LI-module. 0

The following corollaries of 7.1.3 will be useful.
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!7.2.3 LEMMA. Let M be a (g, k )-module such that SSM has finite codimension in k.L. '

Then SSM is involutive. 0

7.2.4 COROLLARY. Assume that a Harish-Chandra pair (g, K) has the property that any

Zariski closed Ad K -invariant subset of k.L is either {O} or has finite codimension. Then

for any (g, K)-module M the SS(M) is involutive. 0

7.3 Lisse modules over Virasoro algebra. Consider the Virasoro algebra Tc: this

is the central C-extension of Lie algebra T = C((t)) that corresponds to the 2 cocycle

(f8t, g8t}c = cRes(f'" g4f). It carries the filtration Tcn : for n ? 1, Tcn = tn+lC[[t]]8t,- . -
for n ::; 0, Tcn = C + tn+lC[[t]]8t. Put Li := tl+18t E Tc. One also has the following Lie

sub algebras of Tc:

n+ = il C b+ = C[[t]]t8t C P+ = C[[t]]8t, n- = C[t-1]8t C b- = C[t-1]t8t,

so b+ = LieK, n+ = Lie }(1 (see 3.4.1). One has b+ $ n- $ C = Tc, b+ n b- - f = CLo.
- "7.3.1 A higher weight T -module of central charge c is a (Tc, b+)-module M such that '

1 E C c Tc acts as idM and any m E .i\1 is killed by some Tcn for n » o. Denote by Tc+-

mod the category of such modules. Note that any ME Tc+-mod is a (Tc, Kl)-module. We

will say that Mis Lo-diagonalizable if M coincides with the direct sum of Lo-eigenspaces.

Let M be a higher weight module. Denote by *M the space of those linear functionals
cp on M that are finite with respect to the action of t Lo. The operators Li := t L-i define

the i-action on *M. Clearly *M is a higher weight module called the (contravariant)

dual to M. One has an obvious morphism _i\-f -+ * * M which is an isomorphism if amd

only if the generalized eigenspaces of Lo on M are finite dimensional. In particular this

holds when M is a finitely generated module.

7.3.2 REMARK: For M E Tc+-mod consider the monodromy operator T = exp(27riLo).

Clearly T commutes with the Virasoro action, i.e., T E AutM. Hence one has a canoni-

cal direct sum decomposition M = E9aEC/zlvfa, where Ma is the generalized exp(27ria)-

eigenspace of M. Denote by Tc+a-mod the subcategory of those M's that M = Ma. Clearly

Tc+-mod = llaEC/Z Tc+a-mod.
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7.3.3 LEMMA. For anyiinitelygenerated M E Tc+-mod there are exactly tbreepossibilities

for SSM: it is either equal to {a}, or to ~*" = (C + b+).L, or to ~-=l = (C + p+).L.

PROOF: Clearly SSM C ~*". It is Ad K-invariant (the Ad Kl-invariance is obvious; for

any t E C the operator exp(tLo) acts on M, hence SSM is also Ad exp(tLo)-invariant).

It is easy to see that any Ad K-invariant Zariski closed subset of ~*" is either {a} or

coincides with one of the vector spaces ~-=n' n ?; o. According to 7.2.4 this i-n is the

Lie sub algebra of Tc; this implies 7.3.3. 0

For a higher weight module M consider the subspace Mn+ of singular vectors. Clearly

Mn+ # 0 and it is Lo-invariant, so we have decomposition Mn+ = ffiM(nh) by generalized
hEC

eigenspaces of Lo. We will say that a singular vector v has generalized weight h if v E M(nh)

(i.e., if (Lo - h)nv = 0 for n ~ 0), and that v has weight h if Lov = hv. As usual, the

Verma module Mch = Mh E Tc+-mod is a module generated by a single "vacuum" singular

vector Vh of weight h with no other relations. This ]Vlh is the free U( n- )-module generated

by Vh, hence any submodule of Mh generated by a singular vector is a Verma module.

Denote by Lch = Lh the (only) irreducible quotient of Mh. Any irreducible higher weight

module is isomorphic to some Lh, and the Lh'S with different h's non-isomorphic. One has

*Lh = Lh.

The following basic facts are due to Feigin-Fuchs [FF].

7.3.4 PROPOSITION. Let},lI = ]Vlh be a Verma module, N C M is a non-zero submodule.

Then

(i) N is generated by .$ 2 singular vectors, i.e., N is either a Verma submodule or a sum

of two Verma submodules.

(ii) N is an intersection of.$ 2 Verma submodules.

(iii) M / N has :finite length.

(iv) The spaces M(h"i;) have dimension .$ 1, therefore, by (i), the irreducible constituents

of M have multiplicity 1. 0

7.3.5 LEMMA. Let P E i+-mod be a :finitely generated module. Then
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(i) P admits a .filtration of finite length f. with succeSSlve quotients isomorphic to a quo-

tient of a VenDa module.

(ii) Tbe maximal semisimple quotient of P bas length .'5 f..

(iii) Any submodule of P is finitely generated.

PROOF: Note that P is a quotient of some module Q induced from a finite dimensional b+-

module. Such Q has a filtration with successive quotients isomorphic to Verma modules.

This implies (i) and reduces (ii), (iii) to the case of Verma module which follows from 7.3.4

(i). 0

7.3.6 LEMMA. Let M = }.IIh be a Verma module, N C M be a non-zero submodule,
i

L = MIN. One bas

(i) SSM = ~* = n:
(ii) SSL is either {O} or equals to ~~l

(iii) IfSSL = 0, then L is irreducible and N is generated by two singular vectors.

(iv) IfN is a proper Verma submodule, then the coinvariants L[n_,n_J are infinite dimen-

sional;

PROOF: (i) is obvious. To prove (ii) take a non-zero cp E U(n_) such that CPVh E N. The

symbol 0-(",) vanishes on SSL, hence SSL,If n:, and we are done by 7.3.3.

(iii) By 7.3.4 (iii) any reducible L has a quotient such that the corresponding N is a

Verma submodule. Since a quotient of a lisse module is lisse, (iii) is reduced to a statement

that for any proper Verma submodule N = lvlh' C Mh one has SSMhIMh' # o. By 7.2.1

this follows from (iv).

(iv) The commutant [n_,n_] is Lie sub algebra of n- with basis L-3,L_4,L-s, The quotient n-/[n_,n_] is abelian Lie algebra with basis L-l,L_2. To prove (iv) note

that Mh[n_,n_J is a free module over U(n-/[n_,n_]) = C[L_1,L_2J with generator Vh,

and (Mh/Mh')[n":,n_J is a quotient of Mh[n_,n_J modulo the C[L_1,L_2] submodule gen-

erated by the image Vh' of Vh' (since ltIJh' = U(n_)vh'). Since Vh' = Pvh, where P

is a polynomial of weight h' - h # 0, we see that our coinvariants (MhIMh')[n_,n_J =

C[L_1, L_2]/ PC[L_1, L_2] are infinite dimensional. 0
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7.3.7 We will say that an irreducible module Lh E Tc+-mod is minimal, or a Belavin-

Polyakov-Zamolodchikov module, if the conditions (i), (ii) below hold:

(i) For some integers p, q such that 1 < p < q, (p, q) = 1, one has

C = Cp,q = 1 - 6(p - q)2/pq

( clearly p, q are uniquely defined by c)

(ii) For some integers n, m, 0 < n < p, 0 < m < q one has

1h = hn,m = 4j;q[(nq - mp)2 - (p - q)2].

Clearly hn,m = hp-n,q-m. For given c = Cp,q there is exactly ~(p -l)(q -1) different

minimal irreducible modules. Note that Lcp,q,o is always minimal (since 0 = hI,I).

7.3.8 PROPOSITION. ([FFJ ) An irreducible module Lh is minimal iff both the following

conditions hold:

(i) Lh is dominant which means that Lh is not isomorphic to a subquotient of any

Mh" hi =1= h.
(ii) The kernel Nh of the projection Mh -. Lh is generated by exactly 2 singular vectors

(see 7.3.4 (i)). 0

7.3.9 REMARKS: (i) For h = hnm, c = Cpq the singular vectors from 7.3.8 (ii) have weights

h - nm, h - (p - n)(q - m). They are different by 7.3.4 (iv) (or by a direct calculation).

(ii) It is easy to see, using contravariant duality, that Lh is dominant iff Mh is projec-

tive object in the category of Lo-diagonalizable higher weight modules. Equivalently, this

means that Mt = limM1n) is projective covering of Lh in the category Tc+-mod. Here-
M1n) is the higher weight module generated by the singular vector v that satisfies the only

relation (Lo - h)nv = o.

7.3.10 PROPOSITION. For an irreducible module L = Lh = Mh/Nh the following condi-

tions are equivalent:

(i) L is lisse

(ii) L is minimal

(iii) The coinvariants L[n_,n_] are finite-dimensional
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(iv) The invariants L[n_,n-J are finite dimensional

(v) For some non-zero r.p E U([n_, n_]) one has r.pVh E Nh

PROOF: One has (i) =:;.. (iii) by 7.2.1, (iii) ~ (iv) by contravariant duality, (ii) ~

(iii) by [FF], (v) =:;.. (i) by 7.3.5 (ii) (since u(cp) vanishes on SSL, one has SSL ;l: ~-:'l'

It remains to show that (ii) =:;.. (v). So let Lh be minimal. Put T = U(n_, n_])vh C

Mh. We wish to see that the projection T -+ Lh is not injective. This follows since

the asymptotic dimension of T is larger than the one of Lh. Precisely, according to the

character formula for L (see [K] prop. 4) the function log tr L (exp(27itLo)) is asymptotically

equivalent as t -+ 0 to 7ia./12t for some constant a. < 1. On the other hand, one has

logtrr(exp( -27itLo)) = logtrMh (exp(27itLo)) + log(l - exp( -27it)) + log(1 - exp( -47it))

(since as Lo-module .L\Ilh is isomorphic to Vh 0 S(L_1, L-2'...)' where the generators L-i

of the symmetric algebra have weights i, and T is isomorphic to Vh 0 S(L_3, L-n,'.' )).

This function is asymptotically equivalent to 7i /12t. Since the spectrum of Lo is real, this

implies that T -+ Lh is not injective. D

7.3.11 REMARK: For c = Cp,q, h = hll = 0 one may prove that (ii) =:;.. (i) in a very

element~ way. Namely, by 7.3.8 (ii) one knows that Lo is minimal iff No does not

coincide with the submodule Nt of Mo generated by L-IVO' Choose minimal i such that

for certain cp E U(n_)i one has r.pVo E No \ Nt. Then the symbol of cp is prime to L_1,

hence, by 7.3.5 (ii), Lo is lisse. This remark, due basically to Drinfeld, was a starting point

for the results of this paragraph. 0

7.3.12 PROPOSITION. The following conditions on a higher weight module M are equiv-

alent

(i) M is a finitely generated lisse module

(ii) M is isomorphic to a finite direct sum of minimal irreducible modules.

(iii) One has dim. M[n- ,n_J < 00

PROOF: By 7.3.10 we know that (i) "*= (ii) =:;.. (iii). We will use the following facts:

(*) Let Lh be a minimal irreducible module. Then any quotient of length 2 of M~n) (see

7.3.9 (ii)) is actually a quotient of Mh = .."vIil) (i.e., is Lo-diagonalizable).
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(**) If Lhl' Lh2 are minimal and hI # h2, then lvlhl and Mh2 have no common irreducible

component.

Here (*) follows from the fact that Nh C Mh coincides with the 1st term of Jantzen

filtration, see [FF]; for (**) see [FF]. Note that (*) implies, by 7.3.8, 7.3.9 (ii), that

(***) Ext1(Lhl' Lh2) = 0 for any minimal Lhl' Lh2'

Now we may prove that (i) =:;.. (ii). By 7.3.10 it suffices to show that a lisse module

M is semisimple. Consider the maximal semi simple quotient P = MIN (see 7.3.5 (ii)).

We have to show that N = O. By 7.3.5 (iii) there is an irreducible quotient Q = NIT

of N, so we have a non-trivial extension 0 -+ Q -+ M IT -+ P -+ 0 with lisse M IT.

According to 7.3.9 (ii) and (**) we see that there exists at most one minimal Lh such

that ExtI(Lh' Q) # o. By (*) and 7.3.9 (i) for such Lh one has dim ExtI(Lh, Q) = 1.

This implies that M IT is isomorphic to a direct sum of minimal irreducible modules and

a length 2 module which is a non-trivial extension of a minimal module Lh by Q. By 7.3.9

(ii) and (*) this extension is a quotient of a Verma module. By 7.3.5 (ii) it is non-lisse,

hence M IT is non-lisse. Contradiction.

Let us prove that (iii) =:;.. (ii). Let l\tf be a module such that dim M[n+,n+J = r < 00.

Let M' C M be a maximal semi simple submodule of M. By 7.3.10 M' is a direct sum

of minimal irreducible modules. Clearly"the length of M' is ~ r, so it suffices to show

thatM' = M. Note that any non-zero submodule .LV C M intersects M' non-trivially (if

N n M' = 0 then, shrinking N if necessary, we may assume that N is a quotient of a Verma

module. If N has finite length, then it contains an irreducbile submodule, which lies in M'.

If N has infinite length, then, by 7.3.4, dim Nn+ = 00; since Nn+ C M[n+,n+J this is not

true). Assume that M I M' # o. Replacing M by an appropriate submodule that contains

M we may assume that M I M' is a quotient of a Verma module, in particular M I M' is

Lo-diagonalizable. Consider the dual extension 0 -+ *(MIM') -+ *M -+ *M' -+ O. One

has *M' = ffiLhi"' hence, by 7.3.8, 7.3.9 (ii) the projection ffiMhi -+ ffiLhi = *M' lifts to

the map ffiMi~) -+ *M. This map is surjective (otherwise the dual to its cokernel would

intersect M' trivially), hence *M has finite length. Replacing *(MIM') by its irreducible

quotient we may assume that M I M' is irreducible.

'--I
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As above (see the proof (i) =:;.. (ii))*M is a direct sum of irreducible minimal modules
- -, -_d-

plus a length two non-trivial extension of a minimal module Lh. By 7.39 (ii), 7.3.4 (ii) and -;;'::;
(*) above this length two extension is a quotient of Mh by a Verma submodule. By 7.3.6 (iv) " -- --- -

the coinvanant (*M)[n- ,n_] are of infinite dimension. Since (*M)[n- ,n_] = (M[n- ,n_]).,

we are done. 0

7.3.13 Now for n ?; 1 consider the product of Virasoro algebras ~n: this is a central ~
C-extension of Tn with co cycle ((fiat), (9iat))c = L (fiat, 9iat)c (see 3.4.1). The above I

i
theory extends to ~n in an easy manner. Namely, we have a standard sub algebra ~ =
n ~i C b+ = I1 b+i C P+ = I1 P+i, n-i C b- = I1 b-i, f = b+ n b- = cn etc. of ~n.

One defines the corresponding category ~+ -mod of higher weight modules in an obvious

manner. We have an obvious functor (8) : I1Tc+-mod ~ ~+-mod, (Ml,...,Mn) I--.

Ml (8)... (8) Mn. Clearly SSMl (8)... (8) Mn = SSM} X SSM2 x ... x SSMn.

For n. = (hi) E cn we have the corresponding Verma module MIi. = (8)Mhi and its

unique irreducible quotient LIi. = (8)Lhi; any irreducible higher weight module is isomorphic

to a unique LIi.. It follows from 7.3.4 (iv) that any submodule N C MIi. is tensor product

(8)Ni of submodules Ni C Mh', so the structure of N is clear from 7.3.4. The lemmac .

7.3.5 (with its proof) remains valid for ~+-mod. The version of 7.3.6 for ~n case (with

obvious modifications) follows immediately from the case n = 1. A module LIi. = (8)Lhi

is called minimal if all Lhi are minimal (see 7.3.7). The analog of 7.3.8 (with "2 singular

vectors" replaced by "2n singular vectors") remains obviously valid, as well as 7.3.9. The

proposition 7.3.10 remains valid and follows directly from the case n = 1. The proposition

7.3.12 remains valid together with its proof.
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§8. MINIMAL MODELS

These were defined by Belavin, Polyakov and Zamolodchikov [BPZ]. Let us start with

a general representation-theoretic construction.

8.1 Fusion functors for Virasoro algebra. Let C be a compact smooth curve, A, B C C

be two finite sets of points such that An B = 0, A # 0. For a central charge c E C we

have Virasoro algebra ~A which is central C-extension of TA = II Ta (where Ta = vector

aEA
fields on punctured formal disc at a) and similar algebras ~B, ~AUB. One has a canonical

surjective map ~A x TcB -+ ~AUB (which is factorization by {(a, -a)} C C X C); the

morphisms ~ A -+ ~ AuB +-- ~ B are injective. One also has the canonical embedding

iAUB : T(U) - ~AUB, where U = C \ (A U B), and the ones iA : T(C \ A) -+ ~A, iB :

T(C \ B) -+ ~B. There is also a canonical morphism jB : T(C \ A) -+ ~B which is

composition of the obvious embedding T(C \ A) -+ T~ and the section SOB : T~ -+ ~B.

The restriction iAUBIT(C\A) : T(C \ .4.) - ~AUB coincides with iA +jB. i
I

8.1.1 Assume we have a positive divisor d = 2: nbb ?:. 0 supported on B. Let T(C\ A, d) c
T( C \ A, d) be the Lie sub algebra of vector fields vanishing of order?:. nb + 1 at any b E B.

Clearly one has T(C \ A, d1) c T(C \ A, d2) for d1 ?:. d2, and T(C \ A, O)jT(C \ A, d) =

ToB j~B, where TdB = ilTnb,b. Let ed: TcB - ~Aji_4(T(C \ A, d)) be the composition

-B -B -A B -A~ --+ ~ jSOs(TB,d) - ~ U jiAUB(T(U)) + SOs(TB,d);:::;~ jiA(T(C \ A, d)).

The maps td are compatible, so we have e = limed : ~B -limTA jiA(T(C \ A, d)).
0-- 0--

d d

8.1.2 Now we are able to define the (contravariant) fusion functor :Fc : ~A - mod -+

-B~ - mod.

Let M be any TcA-module (so 1 E C C ~A acts as idM). Put :Fc(M) :=

U M* i A (T ( C \ A, d)) C .!vI*; therefore an element of :F c( M) is a linear functional on M
d

invariant with respect to some iA(T(C\A, d)). For 7" E ~B, £ E :Fc(M) put 7"(£) = te( 7")(£).

It is easy to see that this formula is correct, 7"(t') lies in :Fc(M) C M* and (7",£) f--+ 7"(£)

is TcB-action on :Fc(M). This way :Fc(M) becomes ~B-module. One has an easy
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8.1.3 LEMMA.

(i) One has :Fc(M) = U:Fc(M)TB.d, and :FC(M)TB,d = (MT(c\A,d»)*'
a

(ii) Let N be any ~B-module s.t. N = UNTB.d. Then Hom(N,:FcM) =
a

[(M ~ N)T(U)]* (here we consider M ~ N as ~AuB-module via. the surjection

~A X ~B --+ ~AUB). 0

From now on let us fix a central charge c = Cp,q from the list 7.3. 7(i). We will assume

that our virasoro modules have central charge c. Let M be a finitely generated higher

weight ~ A-module.

8.1.4 COROLLARY. (i) :Fc(M) is nnitely generated lisse higher weight ~B-module.

(ii) For any .finitely generated higher weight ~B-module N one has (M ~ N)T(U) =
(M ~ N)T(U), where N is the maximallisse quotient of N.

PROOF: (i) Use 8..1.3 (i), 7.2.1, 7.3.12 (inversion 7.3.13).

(ii) First note that the maximal lisse quotient N exists and has finite length by 7.3.5,

7.3.8, 7.3.12. By 8.1.3 {ii), 8.1.4 (i) one has (M ~ N)T(U) = Hom(N,:Fc(M)) =

Hom(N, :Fc(M)) = (M ~ N)T(U)' q.e.d. 0

For h= (hb) E CB let L~ = @Lc,hb be the irreducible ~B-module of higher weight
bEB

h.

8.1.5 COROLLARY. One has a canonical isomorphism MT(c\A) = (M ~ Lf)T(U)'

T(U) T(U).. T( )PROOF: Clearly MT(C\A) = (IndT(C\A)}.t!)T(U)' But IndT(C\A)M coIncIdes, as U -
module, with ~ AuB -module M ~ P oB, where P oB = ~p c,o,b, P c,o is a quotient of Verma

bEB
module Mc,o modulo relation L-l Vo = O. Clearly L~ is maximallisse quotient of p! (see

7.3.8), and 8.1.5 follows from 8.1.4 (ii). 0

8.1.6 COROLLARY. Let d1 be the divisor Lb. Consider the action of Lie algebra
bEB

T(C \ A,O)jT(C \ A,d1) = ToB/~~ = CB on coinvariants MT(u,dt). This action is

semisimple. For h = (hb) E CB the (hb)-component M(hb) is equal to the coinvariants

(M ~ Lf)T(U)' This space vanishes unless all hb lie in the list 7.3.7 (ii).

PROOF: Similar to 8.1.5; the semi-simplicity of CB-action follows from 7.3.12 (ii). 0
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8.1.7 COROLLARY. Assume that B consists of two points bl, b2. Let T(C \ A, B)'

C T( C \ A,O) be the Lie subaJgebra of vector .fields that project to {(a, -a)} C C2 via

the projection to T( C \ A, O)/T( C \ A, dl) = C2. Tben MT(C\A,B)' = E9(M /&> Lc,hbl /&>

Lc,hb2)T(U), where Lch runs the list 7.3.7 (ii) of irreducible lisse modules.

PROOF: Similar to 8.1.6. D

8.2 Localization of lisse modules. Let 7r : C S -+ S be a family of smooth projective

curves, A C Cs(S) be a finite non-empty disjoint set of sections, Va are 1-jets of parameters

at a E A. By 3.4.3-3.4.7 these define the S-localization data for (~A,VI). Consider the

corresponding S-localization functor ,D"tjJc : (TcA,vI)C-mod -+ D).,c-modules on S. Assume

as above that M is a lisse (TcA, vI)c-module.

8.2.1 LEMMA. The D).,c-module ,D"tjJo(M) is lisse with regular singuiarities at infinity.

PROOF: Lissing follows from 7.2.2; the statement on regular singularitiesfollows from 8.2.5 i

below. D

8.2.2 Assume now that S = SpecC[[q]],7r : Cs -+ S be a projective family of curves such

that the generic fiber CTJ is smooth and the closed fiber Co has the only singular point b

which is quadratic, A C Cs(S) be a finite non-empty disjoint set of sections, and {va} be

a 1-jet of coordinates at a E A.

This collection defines an S-localization data ",vith logarithmic singularities at q = 0"
for (TcA, VI). (The definition of "S-loc. data t/J with log. sing. at q = 0" coincides with 3.3.3

but we replace the condition that N is transitive Lie algebroid by the one that a canonical

map 0" : N -+ Ts has image equal to Ti = qTs = C[[q]]q8q. As in 3.3 such data defines an

Os-extension .A~c of T~ and the corresponding associative algebra D~c which is isomorphic

to the subalgebra of Dc([q)] generated by C[[q]] = Os and q8q. We have the corresponding

S-localization functor ,D"cs : (~A,vI)-mod -+ D~c-mod. The definition of this t/J repeats

word-by-word 3.4.3-3.4.7: we get the loco data with logarithmic singularities just because

Ti consists precisely of those vector fields that could be lifted to C s \ A( S). Note that the

"vertical" part N(o) = kerO" C N is a free Os-module and N(o)/qN(o) coincides with Lie

algebra T(C~ \ A, B)', where C~ is normalization of Co and B = {hI, b2} is preimage of b
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(see 8.1.7). According to 3.5 the algebra D~. coincides with algebra Dic of differential
'l'C Cs

operators on the determinant bundle Acs generated by "q8q" and Os.

Now let tl,t2 be formal coordinates at b s.t. q = tIt2. Let C'/; be the corresponding

smooth S-curve (see 3.6.1; sorry, I changed notations of points: our b's are a's in 3.6.1).

We have canonical points bl, b2 E C'/;(S) with parameters tl, t2. Take 1-jets of parameters

q-Idtl, dt2 (see 6.1.4) at b's. These, together with A, VA, define C((q))-localization data for

(~AUB, VI). The corresponding algebra coincides with D )..~v' so we have the localization
"

functor t:J.c~ : (~AUB,vI)-mod --+ D)..~v-mod.
"

8.2.3 Let 1i be a lisse D)..c -module, i.e. a finite dimensional C((t))-vector space with
CV"

D-action. An h-lattice 1ih C 1i, where h E C, is a C[[t]]-lattice in 1i invariant with

respect to the action of Dic and such that the operator q8q E Dic /q acts on 1ih/q1ih
CV CV

5 5

as multiplication by h. Certainly, such 1ih exists iff 1i has regular singularities at 0 with

monodromy equal to h mod Z; if 1ih exists, it is unique, so we'll call it "the" h-lattice.

From now on let !vI be a lisse ~ A-module.

8.2.4 LEMMA. For any h E C, t:J.cv (.rvI 0 Lhbl 0 Lhb2) is a lisse module that admits the"
h-latticet:J.cv(M 0 Lh 0 Lh)h."
PROOF: "Ii sse" follows from 8.1.4 (ii), 7.2.1. The existence of h-lattice follows easily from

3.4.7.1. 0

Accordin g to 3.6.3 we have a canonical isomorphism D)..c = D)..c V . Denote this
Cs c 5

algebra D)..c. So, by 8.2.4, we have for any h E C a Dic-module D)..c v (M 0 Ln 0 Lh)h,
c"

which is zero if Lh is not lisse (i.e. if h # hnm from 7.3.7 (ii)) by 8.1.4 (ii).

On the other hand, we have the Dic-module t:J.cs(M).

8.2.5 PROPOSITION. There is a canonical isomorphism oEDic-modules

t:J.cs(M) = ffi t:J.c~(M 0 Lh <8> Lh)h.

h

PROOF: First, note that t:J.cs(M) is a coherent Os-module by a version of 7.2.2 "with

logarithmic singularities". Namely, t:J.cs(M) is coherent Dic-module, and its singular

support C Spec(grDic) is 0 section since M is lisse; hence t:J.cs(M) is Os-coherent.
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Let ej be a basis of Lhc«t» that consists of Lo-eigenvectors, so Loej = (h - nj)ej

for nj E Z ~ 0; let ei be the dual basis in Lkc«t» = *Lkc«t». It is easy to see that
Ac~(M ~ Lk ~ Lk)h C Ac~(M ~ Lk ~ Lk) is Os-submodule generated by images of I

elements q;'Ri ~ ej ~ ej, where m E MA,Cs, ej E Lk(c(tl»,q-lt), ej E Lh(c«t2»,t2) (see 6.1.4

for notations).

To prove 8.2.5 it suffices to construct amorphismofD~c-modules Acs(M) ~ (JJ~c~( )k

which induces isomorphism mod q (since both are coherent Os-modules, and the one on

the right hand has no q-torsion, this morphism will be isomorphism).

The h-component of this morphism just maps the image of m E MA,Cs = MA,c-: in

Acs(M) to the image of Lm ~ ej ~ ei in Ac~(lv[ @ Lh ~ Lh). It is easy to see that
1

this formula defines a correctly defined morphism of D~c-modules (cf. 6.1.5). It induces

isomorphism modulo q by 8.1.7 (since Acs(M)/q = MN(O)/qN(o) = MT(C't\A,B)" see 8.2.2).

0

8.3 Definition of minimal theories. Now we may define the minimal theory. Pick

central charge C = Cp,q from the list 7.3. 7(i).

The fusion category A = Ap,q is category of finitely generated lisse higher weight

modules for Virasoro algebra Tc of central charge c. By 7.3.12 it satisfies the conditions

listed in the beginning of 4.5.1. The data from 4.5.1 ar the following ones:

The duality functor * : Ao ~ A is contravariant duality (see 7.3.1).

The vacuum module D. is Lc,o; the isomorphism *D. = D. is canonical one (that identifies

the vacuum vectors).

The Dehn automorphism d is equal to the monodromy automorphism T = exp27riLo

from 7.3.2.

We will define a canonical fusion structure on A simultaneously with the structures 6.1

of algebraic field theory. Namely, our realization functor r : A ~ (Tc, vl)-mod is "identity"

embedding. The vacuum vector 1 E r( D.) = Lo is vo.

Let 7r : Cs ~ S, A C Cs(S), VA, be as in 6.1.2. Assume that A i= 0. For any

X E Ac8>A the D.\c-module At/lc(X) is lisse holonomic with regular singularities at 00. We

put (X)cs = At/lc(X) and'Y from 6.1.2 (iv) is identity map.
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Assume now that A = 0. We should define a canonicallisse D>.c-module (I)cs. Let us

make the base change and consider 1["C : Cc = Cs Xs Cs -+ as: this is a family of curves

with a canonical (diagonal) section a. Consider the D>.c-module (I)cc; this is a lisse D).c-

module on Cs generated by the holomorphic section (l)cc' Note that (l)cc is horizontal

along the fibers of 1[" : Cs -+ S. Hence there exists a (unique) D>.c-module (I)cs on S

together with a holomorphic section (l)cs such that (Ia)cc = 1["* (I)cs' (l)cc = 1["* (l)cs.

Note that the a..xioms 4.5.4 (ii) and 6.1.2e hold by 8.1.5. The axiom 6.1.3f holds

automatically. It remains to define the isomorphism 4.5.5 (ii) that will satisfy the a..xiom g

from 6.1. This was done in 8.2.5 above (note that since *Lh = Lh, we have R = ffiLh!&1Lh).

By the way, the covariant fusion functor F~,B from 4.6 is *Fc for contravariant Fc

from 8.1 (by 8.1.3 (iii)).
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