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§1. TATE’S LINEAR ALGEBRA

1.1 Crossed modules and central extensions of Lie algebras. We will need Lie and

associative algebra versions of crossed modules:

1.1.1 DEFINITION. (i) Let L be a Lie algebra. An L-crossed module is an L-module L#
together with a morphism L# -2, L of L-modules. For £ € L we will denote the action of
Lon L# as [¢,- ]; so one‘has 8[2,?] = [Z,BZ], te L*

(ii) Let R be an associative algebra. An R-crossed module is an R-bimodule R# together
with a morphism R#*-2, R of R-bimodules. O

We have canonical pairings {,} : Sym?L# — L, (, ) : R¥ g R¥ — R# defined
by formulas {m;,ms} := [0m1,ma] + [8ma, m1], (s1,52) := (9s1)s2 — 51(8s2). These are
morphisms of L-modules and R-bimodules respectively; one has 8{,} =0, a8(,) =0.

Crossed modules in both versions form categories in an obvious manner. For example,
if Ry —f—>R2 is a morphism of associative algebras and R# are R;-crossed modules, then
an f-morphism of crossed modules is an f-morphism f* : Ry — R, of bimodules such

that 8f# = fO8. If R is an associative algebra, then R, considered as Lie algebra with

commutator ab — ba, will be denoted RL*. If R¥ is an R-crossed module, then it has -}
also an RE*®-crossed module structure R#L* with [r,7] = r7 — Fr. One has {s1,s2} =

(s1,82) + (s2,81) for s; € R* = R¥ = R#lLie

Below “dg algebra” means “differential graded algebra”; so “Lie dg algebra” is the

same as differential graded Lie superalgebra.

1.1.2 LEMMA. (i) Let L° (resp. R ) be a Lie (resp. associative) dg algebra such that L'=0
(R* =0) for i > 0. Then L2, L0 (resp. R-1-%.R®) is a Lie (resp. associative) algebra
crossed module. For m;,my € L™ (resp. s1,52 € R™!) one has {m;,ma} = d[m;,my]
(resp. {s1,s2) = d(s152)).

(ii) Conversely, let #2r (resp. R#—6>R) be a crossed module, and i : N C L# (resp.
i: T C R#) be an L-submodule (resp. R-sub-bimodule) such that {L#¥,L#¥} C N Ckerd
(resp. (R¥,R#) C T C kerd). Then NS# 4L (resp. T——i—rR#—a—nR) is a dg Lie
(resp. associative) dg algebra placed in degrees —2.—1,0. [
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In other words, the lemma claims that dg algebras zero off degrees —2, —1,0 and acyclic
off degrees —1,0 are in 1-1 correspondence with pairs (L# i»L; N), where L# 2iLisa
crossed module and N C L# is a submodule as in (ii) above. For example, one may take
N = image of {,} (or image of {,) in the associative algebra version); we will say that the
corresponding dg algebra is defined by our crossed module.

1.1.3 The simplest example of a Lie algebra crossed module is a central extension L — L
of a Lie algebra L (the bracket on L factors through an L-action); note that here {,} =
0. Conversely, let L% be a dg Lie algebra. Then L~1/dL™2, equipped with the bracket
[01,£) := [d€1,£5)"~" is a Lie algebra, and d : L™!/dL~? — L° is a morphism of Lie
algebras such that (H~! — L~!/dL~2 — d(L™')) is a central extension of dL~! by H™1.
Hence if L¥-2+L is an L-crossed module such that 8 is surjective, then ker 8/{L#,L#} —
L#/{L#,L#} — L is a central extension of L. If ¢r : ker 3/{L¥,L#} — C is any linear
functional, then it defines, by push-out, a central C-extension Lf_ of L.

1.1.4 The following example of a crossed module will be used below. Let L be a Lie
algebra, and let L4, L_ C L be ideals. Then we have an L-crossed module L & L_.-a—>L,
&(£4,0_) = £y +£_. We have isomorphismi : L4+ NL_ — kerd, i(f)=(¢,-8)e Ly DL_.
Or we may take an associative algebra R equipped with 2-sided ideals R4, R—, and get an
R-crossed module Ry ® R_-2R. Note that {,} vanishes on L and L_ (and (,) vanishes
on R, and R_) and one has {€4+,¢-} = i([t—,£4]), (r4+,r=) = —i(r4r-), (r—,r4) =
i(r—rs).

If Ly + L. = L, then we get a central extension L4 NL_/[L+,L-] s I LoflL,
where L = L4+ ®L_/i([L+,L-]). This central extension is equipped with obvious splittings
s+ :Ly — L such that s+(L+) are ideals in 'f,; it is easy to see that L is universal among
all central extensions of L equipped with such splittings. Note also that the embedding
sy : L_ — L factors to isomorphism L4 /[L+,L-] = L/s=(L-) and we have the cartesian

square _ _
I — L/s-(L-) « L+/[L+,L-]

|

L — L/L_ — Li/LyenL_
and the same for + interchanged.

1.1.5 Now let ¢r : Ly N L_/[L4+,L-] = C be any linear functional. According to 1.1.3 it
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defines a central C-extension L¢y of L. One has the splittings s4 : Ly — Lipys—:L_— Ler
such that s+ (L+) are ideals and (s4 — s_)|L+nL_ = tr. Clearly L;, is the unique extension
equipped with this data.

1.1.6 The above constructions are functorial with respect to (L, L+). Hence if L'y C L are
other ideals such that Ly C L, then we get a canonical morphism L — L' between the
corresponding central extensions of L. If tr : Ly N L_/[L+,L-] — C extends to tr: L. n
L' /[L,,L_] — C, then L = L!.. In particular, assume that tr : L+ NL_/[L4+,L-] = C
extends to tr : L_/[L_,L.] — C. Then we may take L, = L,L = L_ to get the same
extension L., hence we get the splitting 34 : L — L, that extends our old s4 : L4+ — L.
Explicitly, 348+ + £-) = s4(84) +5-(€-) +trl_; clearly 54 —s_=tr: L. - C. In the
same way, an extension of tr : Ly N L_ — C to L determines the splitting s~ : L — Ler
that extends the old s : L. — ft,-. If we have the trace functional on the whole L, i.e.
tr:L/[L,L] - C, then 5y —5_ =tr: L — C.

1.1.7 We will often use the following notation. If g is a Lie algebra, V is a vector space,
and 0 - V — § — g — 0 is a central V-extension of g, then for any c € C we will denote
by @ a V-extension of g which is the c-multiple of @. So we have a canonical morphism
@ i gc of central extensions of g that restricted to V’s is multiplication by ¢. For example,

in situation 1.1.3 one has (L¥). = L%

ctr*

1.2 Tate’s vector spaces. For subspaces V, V; of a vector space V we will write Vo < Vi
if V3/Vo NV is of finite dimension, and Vy ~ W (V; are commensurable) if Vp < Vi and
Vy < Vp. Clearly < is partial order on a set of commensurability classes of subspaces.

1.2.1 A Tate’s topological vector space (or, simply, Taie’s space) V is a linearly topolo-
gized complete separated vector space V that admits a basis {Va} of neighbourhoods of
0 with V, mutually commensurable. Equivalently, V is the projective limit of a family of

epimorphisms of usual vector spaces with finite dimensional kernels: V = limV/V,.

Let L C V be a vector subspace. We will say that L is bounded if for any open
U C V one has L < U, and L is discrete if for some open U one has UN L = 0. Clearly

simultaneously bounded and discrete subspaces are just finite dimensional ones.

A lattice V. C V is a bounded open subspace; equivalently, this is a maximal (with re-
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spect to <) bounded closed subspace. The lattices form a maximal basis of neighbourhoods
of 0 that consists of mutually commensurable subspaces.

A colattice V_ C V is a maximal discrete subspace. Equivalently, this means that
for (any) lattice Vi one has Vy N V_ ~ 0, V. + V_ ~ V (or for some lattice V one has
Vi@ Vo—=V).

Tate’s vector spaces form an additive category TV with kernels and cokernels. The
category TV is self-dual: Namely, for a Tate’s space V its dual V* is Hom(V, C) with open
subspaces in V* equal to orthogonal complements to bounded subspaces in V. This V* is
a Tate’s space, and V** = V. Note that V; —— V_;_L is 1-1 correspondence between lattices
in V and V*; and the same for colattices.

1.2.2 Let V be a Tate’s vector space. One has a canonical Z-torsor Dimy together with
a map dim : { Set of all lattices in V'} — Dimy such that for a pair Vi1, V42 of lattices
one has dimVy; — dimVy, := dim(V41/Vi N Vi) — dim(Vee [V NVi2) € Z. One
has a natural map codim : { Set of all colattices in V} — Dimy defined by formula
codimV_ = dimVy + dim(V/Vy + V) — dim(V4 N V_), where V. is any lattice. The
Z-torsor Dimy. coincides with the opposite torsor to Dimy: one has dimV_;L = —dimV,.
The group Aut V acts on Dimy; if V is neither bounded nor discrete, then the action is
non-trivial.

1.2.3 Let V4, Va be Tate’s vector spaces. We will say that a linear operator f € Hom(V1, V)
is bounded if Imf is bounded, is discrete if ker f is open, and is finite if Imf is finite
dimensional. Denote by Hom,, Hom_ and Homgg respectively the corresponding spaces
of operators; put Homg := Homy N Hom_. Clearly Homy + Hom_ = Hom, Hom;
(where ? = +,—,0,00) is a 2-sided ideal in Hom (i.e., if for V1L>V2-f—2>V3 either f; or f,
is in Hom~, then faf; is in Hom+), and Hom_Hom, C Homgo.

REMARK: Let TV,, TV_ C TV be full subcategories of bounded, resp. discrete, spaces.
Then TV_ coincides with the category of usual vector spaces, and * identifies 7V, with the
dual category T VY; in particular these are abelian categories. Consider the quotient cate-
gories TV/+,TV/—,TV /0, whose objects are Tate’s vector spaces, and Homn’s are the cor-
responding quotients Hom /% := Hom/Homx, Homn [0 := Hom/Homg (clearly TV/+ are
just the quotient categories TV/7TV.). These quotient categories are abelian. In fact, the
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projection TV /0 — TV /+&TV— is the equivalence of categories, and embeddings 7V —
TV composed with projections define equivalences 7V, /Vect — TV/—,TV_/Vect 5 TV/+
(here Vect = TV4+ N TV_ is the category of finite dimensional vector spaces).

1.2.4 For V € TV consider the algebra EndV equipped with 2-sided ideals End+ D
Endy O Endge. We will write gf = gV for EndV%*® = EndV considered as Lie algebra.
Since End% C Endyg, we have a canonical trace functional ¢r : gy — C which vanishes on
[9€+,8¢-] .

According to 1.1.4, we get an End-crossed module Endy @ End_ — End. By 1.1.5, tr

defines a central C-extension 56 — g¢ of g¢, together with canonical Lie algebra splittings
s+ 1 gly — EZ such that sy — s— = tr on gfs.
1.2.5 Let T C V be a Tate’s subspace (= a closed subspace with induced Tate structure),
and V/T be the quotient. Denote by Pr < glV the parabolic subalgebra of endomorphisms
that preserve T'; let 7 = (w7, 7y/7) : Pr — g¢T x g¢V/T be an obvious projection. Let
olT ;EEV/ T be a central C-extension of g¢T x gfV/T which is the Baer sum of g¢T and
glV/T; one has gfT x g¢V/T = glT x gtV/T/{(a1,a2) € C x C : a; + ap = 0}. Clearly
glT ;EEV/ T coincides with the C-extension constructed by the recipe of 1.1.4, 1.1.5 using
the ideals g€, T x g4 V/T, gf_T x g¢_V/T and the trace functional tr = trr + try,r.

Let ﬁT = 7* 5€V be the C-extension of Pr induced by EZV. Since Pr = Pr4 + Pr_,
where Pry = Pr N gé.+V, this C-extension coincides with the one constructed by means
of ideals Pr4+ and the trace functional trv| Py Note that m(Pr+) = g€+ T x g4 V/T and
trvIPT = tr o w. By 1.1.6 this defines a canonical morphism 7 : Pr — gfT >:E|—€V/T of
C-extensions that lifts 7. In other words, Pr is canonically isomorphic to the Baer sum of

C-extensions induced by projections 7, my/r from &T, EEV/T.

Let us consider an important particular case of this situation. Assume that T' = V is
a lattice. Then we have a canonical splitting sy : géV, =gl Vi — g’VZV.F, s—:glV/Vy =
gl_V/Vy — £€V/V+, hence a canonical splitting sy, = s47v, + s—myyv, : Py, — EEV.
Note that sy, actually dependson V.: if V is another lattice, then sy, —svy Pv+ﬂPV+r_ —
C is given by formula (sv, — sv; )(a) = trv,venvi(a) — trv_;_/v+nv_;_(a)-

Similarly, if T = V.. is a colattice, then we have the splittings s— : géV_ =gf_V_ —
EEV_, S+ :glVIV_ =gl V/V_ — EZV/V_, hence the splitting sv_ = s—wv_ + s4+my v ¢
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Py_ — EKV. On Py_ N Py, the difference sy, —sv_ : Pv_ N Py, — C is given by formula

(sv, —sv_)(a) = trv_nv,(a) — tryyv_4v, (a).

The following subsection 1.3 could be omitted on first reading.

1.3 Elliptic complexes. Let (V',d) be a finite complex of Tate’s vector spaces. We will
call it elliptic, if for some (or any) subcomplex (V. ,d) C (V',d) formed by lattices in V"
both V; and V" /V_ have finite dimensional cohomology spaces.

Clearly, elliptic complexes have finite dimensional cohomology.

REMARK: V' is elliptic iff its image in abelian category TV /0 (see 3.2.2) is acyclic.

1.3.1Let (U, d), (V", d) be elliptic complexes. Then Hom = Hom(U", V") := [[ Hom(U*, V)
carries a bunch of subspaces. First, one has the subspaces Homy := [[ Hom+ (U, V?),
Homg, Homgo that have nothing to do with differential. We may enlarge those spaces as
follows. Put Hom4 := {f € Hom : [f,d] € Hom4(U',V'*1)}, Homd := Hom% N Hom?,
Homg := {f € Hom : [f,d] = 0} (= usual morphisms of complexes). Clearly Hom4 C
Hom&,Homo C Hom{, and all Hom¢ are compatible with + decomposition: one has
Homé = (Hom{ N Hom4) + (Homé4 N Hom_).

The following easy technical lemma is quite useful. Assume that we picked subcom-
plexes U_'*; CU, CcU, V. CV,CV formed by lattices. Put P:= {f € Hom(U',V") :
fUY) € Vi, f(Us) C Vi), Prai= {f € P : [f,d)(U") C V{*'}, Pog = {f € P :
[f,d)(Uy) = 0}, Poa = Pya N P_g.

1.3.2 LEMMA. One has Hom‘i = Pi4 + Homgg, Homg = Pyg + Homygo.

PROOF: Consider, e.g., the case of Hom%. One has Hom4 = (P N Hom%) + Homg. An
element f € PN Hom4 induces the linear map f : U /U, — V' /V; such that a = {f,d]
is of finite rank. One may find § of finite rank such that [§,d] = a. Lift § to an element
g € PN Homy; then f — g € P44, and we are done. []

Now let us define the traces. Consider a single elliptic complex (V°,d). We have a
bunch of Lie subalgebrasin gf = gfV" = IIg¢V"*. Pick subcomplexes V' C V; C V" formed |
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by lattices; we get the corresponding parabolic subalgebra P C ¢f and its standard sub-
algebras. Define the trace functional tr: Pyq — C by formula trf := Z(—l)‘(trH;(V/V+) +
trv*.-_/vi.- +tTHi(V_;))- In particular, if V/V; and V| are acyclic, then tr = Z(—l)itrVi/Vf .
The algebra gloo also carries the trace tr = 2(—1)'try:. Clearly on PogNgloo these traces
coincide, so, by 1.3.2, they define tr: gld — C.

1.3.3 LEMMA. The trace functional tr : g¢8 — C does not depend on the choice of V, V_;_’

and vanishes on [gf3,g¢d]. [

Let gé be the central extension of g¢ by C which is the alternating Baer sum of EEV‘.
Equivalently, to get EE take the ideals g€+ C g and the trace functional tr = T(—=1)try:
on gfy, and apply constructions 1.1.4, 1.1.5. We have canonical splittings s+ : g+ — g‘lvf

1.3.4 LEMMA. These splittings extend to canonical splittings s+ : gl — Eﬁ; one has

s4 —s— =tr:gl — C.

PROOF: Consider, say, the case of s4. Let 5@1 be 5@ restricted to gfi. Note that gfﬁ_ =
gly +(gl-N g¢d), so ;_Tfi comes from constructions 1.1.4, 1.1.5 applied to g€4, its ideals
gfy and gé_ N gZ‘_i,_ and the trace functional tr. We may even replace gf_ N gl‘_i,_ by the
larger ideal g¢¢ and, since tr extends to g¢d by 1.3.3, according to 1.1.6 we get the desired
section s4 : ge‘i — gﬁ One treats s_ in a similar way; the formula sy — s_ = tr results

from 1.1.6. [T

1.4 Clifford modules. Let W be a Tate’s space, and let ( , ) be a non-degenerate
symmetric form on W (which is the same as symmetric isomorphism W — W*).

1.4.1 For a lattice W, C W let Wi be the orthogonal complement with respect to (,)
This is also a lattice, and the parity of dimW3+ — dimW, € Z does not depend on W4
(and depends on (W,( , )) only). We will say that W is even or odd dimensional if
dimW_;'_' — dimW,. is even or odd, respectively.

1.4.2 A Clifford module M is a module over Clifford algebra Clif f(W,( , )) such that
W acts on M in a continuous way (in the discrete topology of M). This means that for
any m € M there is a lattice W, such that Wim = 0. Denote by CMw the category of
Clifford modules.
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Let Wi C W be a lattice such that ( , )jw, = 0. Then the finite-dimensional
vector space W_ﬂ- /W4 carries an induced non-degenerate form. If M is a Clifford mod-
ule, then MW+ := {m € M : Wym = 0} is a Wi-invariant subspace of M, hence a
Clif f(W+/W4,(, ))-module.

1.4.3 LEMMA. The functor CMw — CMWi:/W-i-’ M — MW+, is an equivalence of

categories. The inverse functor is given by formula N — Cli f f(W) ®cziff(W¢)N' O

In particular, we see that C M is a semisimple category. There is 1 irreducible object
if W is even-dimensional, and 2 such if W is odd-dimensional.

Denote by C¢W the completion liln Clif f(W)/CLff(W). - W,, where W, runs the
set of all lattices in W. It is easy to see that the multiplication extends to this completion
by continuity, so C/W is an associative algebra. Clearly, it acts on any Clifford module.
1.4.4 Let Ly C W be a maximal (, )-isotropic lattice (so either L+ = Ly or dimL{ /L4 =
1 depending on parity of dimension of W). If L', is another such lattice, put A(L4 : L) :=
det(L4+/L4NL'). One has a canonical embedding i : A(L4 : L) < CL{W/CLW L', given
by formula vy A---vp — Dy -+ -0, mod CCW - L', . Here {v;} is a basis of L4 /Ly N L),
are any liftings of v; to elements of L. For a Clifford module M one has a canonical
isomorphism AM(L4 : L) ® ML — M+ vy @m— i(v)m.

Now let L_ C L be a maximal isotropic colattice (so codimL_ = dimL, in case dimW
is even, or codimL_ = dimL4 +1if dimW is odd). Put A(L4+,L_-) =det(L4+NL_). Fora
Clifford module M put My_ := M/L_M. One has a canonical isomorphism A(L4+,L_)®
Mi_ — MZL+, defined by formula v ® m — v, where v € A(L4,L-) C Clif f(W),
m € Mr_, and m € Mr_, and m € M is any element such that m mod L_M = m and
v € ML+, If M is irreducible, then dimML+ = dimM;_ = 1, and we may rewrite the

above isomorphisms as
ALy : L) = MY+ MY, A(L4,L-) = M5+ /M _.

1.4.5 The algebra C{W carries a natural Z/2-grading such that W lies in degree 1 compo-
nent. Denote by CM %V/z the corresponding category of Z/2-graded Clifford modules. This
is a semisimple category. If dimW is odd, then it has a single irreducible object; if dimW

is even, then there are two irreducible objects that differ by a shift of Z/2-grading.
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If dimW is even, then each M € CMw carries a natural Z/2-grading defined up

to a shift. Precisely, consider the set of all maximal isotropic lattices. This breaks into
two components: lattices Ly, L, lie in the same component iff dimL, /Ly N L', is even.
Denote the two element set of these components by Z/2,, ; we will consider it as Z/2-torsor.
Then any M € CM,, carries a canonical Z/2,, -grading determined by the property that
M+ c M®for Lo €a€l/2,.
1.4.6 Let C¢L**W denote the Clifford algebra considered as Lie (super)algebra (with the
above Z/2-grading; the (super)commutator is defined by the usual formula [a,b] = ab —
(—1)*Pba for a € Cé“‘W", b € CeLieWwh), Denote by aW the normalizer of W C
Celiew! in C¢LieW. This is a Lie subalgebra of C¢Li¢W. As a vector space aW is
the completion in CE¢W of the subspace of all degree < 2 polynomials of elements of W.
One has aW?! = W. The Lie algebra OW := aW? is called the spinor algebra of W.
The subspace C C CZW coincides with center of aW. One has a canonical isomorphism
aW/C = OW x W. Here OW is the orthogonal Lie algebra of all ( , )-skew symmetric
elements in géW; the projection 7 : OW — OW /C = OW is given by the adjoint action
on W = aW?!.

The Lie superalgebra aW acts on any M" € C ./\45‘,/2 in an obvious manner. If M~

is irreducible, this action identifies aWW with the normalizer of W in the Lie superalgebra
Endc M. Similarly, OW acts on any M € CMw, and, in case M is irreducible, 517’
coincides with the normalizer of W in EndcM.
1.4.7 Here is another construction of OW. For a € glW denote by ta € g¢W the adjoint
operator with respect to ( , ); for a € g¢_W one has 'a € gf4W. Consider now the ideal
gl_W C gfW as an OW-module with respect to Ad-action. Then gf_W together with the
surjective morphism gf_W 2, OW,a+— a-"‘a,is an OW-crossed module. The pairing
{,}:96-W x g¢_W — ker 9 (see 1.1.1) is given by formula {ay, a2} = [a1,*as] + [a2,'a1].
Clearly ker 8 C gloW. The usual trace tr(1.2.4) vanishes on {ker 9, ker 8}; put otr = 1/2tr.
By 1.1.3 we get a'central C-extension oW = (g—W), ¢r of OW. |

We define a canonical isomorphism a : ow' - OW of central C-extensions of OW as
follows. One has a canonical identification WQW =~ glyo W, w; ®w; corresponds to a linear

operator w —— (wy,w)w;. This isomorphism extends by continuity to the isomorphism of
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completions im W®(W/W, ) ~ gf_W. Hence the map glooW = WQW — ClLiff(W,(,)),
Wy

a ® a; — a1az, extends by continuity to the map o¥ : gl_W — C{W. Clearly o#
maps g_W to aW?® = OW. For ay,as € gl-W,w € W one has [a#(a),w] = 8(a)(w),
[a#(a1),a#(a2)] = o#([8a;1,a]). For b € kerd N glooW one has b = 1/2(b + ) =
Z(wi @ w; + w} ® w;), hence a¥(b) = T(w;, w!) = o tr b; by continuity this holds for any
b € ker 8. This implies that a* yields a map a : gf_W/ker tr = oW’ — OW, which is
the desired isomorphism of C-extensions of OW.

1.4.8 Let Ly C W be a maximal isotropic lattice; denote by Py, +0 C OW the “parabolic”
subalgebra of operators that preserve L. One has a canonical Lie algebra splitting sz, :
PL,O — OW defined by formula sz, (a) = a¥(b), where b € gf_W is any operator
such that d(b) = a,b(L4) = 0,(a — b)(W) C L. For any Clifford module M one has
sr,(a)(ME+) =0 (and sr,(a) is a unique lifting of a to OW with this property).

Sin’ﬁla.rly, let L. C W be a maximal isotropic colattice. The corresponding parabolic
subalgebra P,_O C OW also has a canonical Lie algebra splitting s;_ : P,_O —
OW defined by formula s;_(a) = a¥(b), where b € gf_W is an operator such that
9(b) = a, blr_ = a|_,5(W) C L-. For a Clifford module one has s;_(a)(M;_) = 0
(i.e., sp_(a)( M) C L_M).

According to 1.4.4 for a € P, O N P;_O one has (sg_ — sz, )(a) = trr_nr,(a) €

CCcOW. I L! is another maximal isotropic lattice, then for a € Py, 0N PL:+ O one has
(sry, —sr,)a) =trp /i ar, (a).
1.4.9 Let V be any Tate’s vector space. Then W := V @ V*, equipped with the form
((v,v*), (v, v*)) := v*(v") + v* (v), is an even-dimensional space. For any lattice ViCcV
and a colattice V_ C V a lattice L(V;) = V3 & Vi € W and a colattice L(V_) =
V- & V4 C W are maximal isotropic ones; clearly one has a canonical isomorphisms

AT(V) : L(VL)) = det(Vi,/V N V)] det(VL [V N VL)
ML(V4), L(V2)) = det(Vi N V_)/ det(V/Vy + Vo).

The algebra C{W gets a natural Z-grading such that the subspaces V,V* (C W C
C{W) lie in degrees 1, -1, respectively. Any Clifford module M has a canonical Dimy-
grading such that ML(V+) lies in degree dimV.,.
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The embedding : : géV — OW, £ — £ @ (—*¢), lifts canonically to a morphism of
C-extensions 1 : EEV — OW constructed as follows. For £y € g€y V choose a lattice
Vi D Iméy. Then i(fy) € Pyy,)O. Put 14(€4) = sp(v,)i(£4) € OW; by 1.4.8 this
element is independent of a choice of V,. Similarly, for 4. € gf_V choose a lattice
Vi C Ker £_; then i(¢_) € PL(V_;_)O, and 7_(£_) := sL(sz‘(e_) € OW depends on £
only. For ¢y € gfyV one has (7_ —'{.;.)(éo) = tT'L(V.,_)/L(V.,.)nL(V_;_)(MO) = trfy by 1.4.8.
According to 1.2.3 we get a canonical morphism ¢ : gf_;V — OW of C-extensions such
that 7s4 = 1+ : glaV — OW (here gf_,V = (g€V)_1, see 1.1.7).

The action of EEV on M preserves the Dimy-grading. If M is irreducible, then it

is natural to denote the gé_lV-module M®, a € DimV, as A*V (“semi-infinite wedge
power”). Note that A®V (as well as M itself) is defined up to tensorization with 1-
dimensional C-vector space.
1.4.10 We will need a version “with formal parameter” of the above constructions. Namely,
let O = C[[g]] be our base ring. Consider a flat complete O-module V (so LimV/q"V). A
Tate structure on V is given by Tate’s C-vector space structure on each V/q"™V such
that each short exact sequence 0 — V/¢q™V £, V/g™t"V — V/q"V — 0 is strongly
compatible with the Tate structures (i.e., V//¢™V is a Tate’s subspace of V/¢™+"V and
V/q™V is the quotient space). A lattice V; C V is an O-submodule such that V/V, is
O-flat, V. = 1i£1V+ /q"V+ and V4 /q™V, is a lattice in V/q™V for each n. One defines a
colattice V- C V in a similar way. For a Tate O-module V one defines its dual V* in an
obvious way; one has V*/¢"V* = (V/¢"V)*, V** = V.

Let W be Tate’s O-module and (,) : W x W — O be a non-degenerate symmetric
form (i.e., a symmetric isomorphism W — W*). Let Clif f(W) be the Clifford O-algebra
of (,). A Clifford module M is a Clif f(W)-module such that M is flat as O-module,
M = limM/q"M, and W/q"W acts on each M/q"M in a continuous way (in discrete
topology of M/q™M). Such M carries the action of completed Clifford algebra

CEeW =lim lim ClLff(W)/q"ClLff(W)+ CLff(W)Wi™
" WE-)
(where W,f_") is a lattice in W/q"W). Clearly My; = M/qM is Clifford module for (W, (, )o) :
(W/qW, (,)modq); if M' is another Clifford module, then Hom(M, M') is a flat O-module
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and Hom(M,M')/qHom(M,M') = Hom(My,M;). In particular, if (Wy,(,)) is even-
dimensional, then there exists a Clifford module M, unique up to isomorphism, such that

M, is irreducible; one has EndM = O. All the facts 1.4.3-1.4.9 have an obvious C[[¢]]-

version.




§2. TATE’S RESIDUES AND VIRASORO-TYPE EXTENSIONS

2.1 Tate’s construction of local extension. Let F be a 1-dimensional local field,
and Or C F be the corresponding local ring. A choice of uniformization parameter
t € OF identifies Op with C[[t]], and F with C((¢)). Let E be an F-vector space of
dimension n < co. Denote by DE the algebra of F-differential operators acting on E.
A choice of a basis of E identifies DE with the algebra of matrix differential operators
aNa{V + -4+ a108; + ao, ai € Mat,(F).

2.1.1 The space E, considered as C-vector space, is actually a Tate's vector space in a
canonical way. A basis of neighbourhoods of 0 is formed by Op-submodules of E that
generate E as F-module. We will denote by EndE, g+ E, etc., the corresponding algebras
of endomorphisms of E, considered as Tate’s C-vector space. |

Clearly DE C EndE. We may restrict to DELi¢ C gfE the central extension EEE to
get the central extension 0 — C — DE — DELie - 0 of Lie algebra DELie,

It is easy to compute a 2-cocycle of this extension explicitly. Namely, let us éhoose a
parameter t € O and an F-basis {v;} in E. Put E; = E(’)pv;, E_= Zt‘IC[t‘l]v;:
this is a lattice and a colattice in £ and E = EL @ E_. F(i)r L e glE deﬁné the operator
£y € gl E by formula 84|, = €|, ,¢+|e. = 0. Clearly this map glE — gl E, £+— £,
lifts the canonical projection géE — glE/gl_E = g, E/gloE. Hence by 1.1.4 it defines
the section o : glE — QTEE; a corresponding 2-cocycle is given by formula 43,4, ——
a(ly,85) = [0(61), 0(82)] — o ([, 2]) = tr([tas,las] — [f1,82]4). Take now & = Atedr,
ly = A't“'%, where A, A’ € Mat,(C), a,a’ € Z,.b,)' € Z»,. Clearly a(f,,£2) = 0 if
a—>b# b —a'. Assume that a — b = b’ — a’; since a is skew-symmetric we may assume
that n = a — b > 0. Then one has

= /i\[(i-n
a(ly,ly) = —Tr(AA'); (b>( ; )
2.1.2 Let AE C DE%* be a Lie subalgebra that consists of operators of order < 1 with
scalar symbol (i.e., the operators of type ag + a10:,a0 € EndrpE,a; € F). Denote by

Tr the Lie algebra of vector fields on F. One has a canonical short exact sequence of

Lie algebras 0 — EndpELli¢ — AE -2+ Tp — 0, o(ag + a18;) = a,8;. Let AE be the
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C-extension of AE induced from DE. The above formulas reduce to the following ones:

0—02

a(At®, Bt®) = b6 tr AB, a( At®,t%+18,) = §-%rA, a(t*t18,,t4+19,) = %(aha)&;".

This is Kac-Moody-Virasoro cocycle.

2.1.3 Consider the case E = F. One has an obvious embedding 7r C AF which defines
the C-extension Tr of Tr with cocycle av; (t218,,t*%18,) = 1(a® — a)67%. This Tr is
called (a local) Virasoro algebra. For any ¢ € C consider the C-extension 7r. (see 1.1.7).
Since T is perfect, Tr. has no automorphisms. One knows that any central C-extension

of Tr is isomorphic (canonically) to a unique Tre (one has H?(Tr,C) ~ C).

2.1.4 Now consider for j € Z a 1-dimensional F'-vector space w?j of j-differentials (the
elements of w?j are tensors fdt®/, f € F). The Lie algebra Tr acts canonically on w%j
by Lie derivatives, i.e., we have a canonical embedding 7r — .Aw?j . Denote by ’ﬁ-’ ) the
corresponding C-extensions of Tr induced from %}?’ The explicit formula for this action
is 8 (fdt®7) = (p8:(f) + 7 fO:())dt®I, i.e., with respect to the basis dt®’ a field t**+15,
acts as t2719; + j(a + 1)t®. The formulas 2.1.2 immediately show that a 2-cocycle for ’T’F“ )

coincides with (652 — 65 + 1)avir. Hence f'F(.j) colncides with fp(sjz_ej_i_l).

22 A )geometric construction of a global extension. Let us describe the above

extensions in geometric language.

2.2.1 Let C be a smooth algebraic curve (non necessary compact). Denote by w = Q} a
sheaf of 1-forms, and by H = HLp = Q% /dOc the de Rham cohomology sheaf (in Zariski
topology of C). For a vector bundle E on C let D = DE denotes a sheaf of differential
operators on E, and E° := wE*. Then E is left D-module, E° is right D-module (so
one has a canonical anti-isomorphism ¢t : DE — DE?, see, e.g., [B]), and the pairing
EQE Lo quotients to the pairing E° ® E - H.

Let A : C — C x C be the diagonal; wDeEWill identify the sheaves on C' with ones on
C x C supported on A. Consider the sheaf ER E° := p] E ® p3E® on C x C. Recall that
one has a canonical isomorphism § : ER E%(c0A)/ERE® — D. Explicitly, for a “kernel”
k(t1,t2) = e(t1)e’(t2)f(t1,t2), e € E,e® € E®, f(t1,t2) € Ocxc(o0A), the correspond-
ing differential operator 6(k) acts on sections of E according to formula (6(k)€)(t1) =
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}2est.‘,_—__-t1 <k(t1,t2)£(t2)) = e(tl)RCSt2=tlf(t1,tg)(eo(tg)e(tz)). Here ¢ € E, (e°(t2)é(t2)) €
w, (k(t1,t2)€(t2)) € ERw(o0A); we take the residue along the ¢, variable. The right action
of §(k) on sections of E° is given by formula (mé(k))(t2) = Resy, =1, f(z,t2){m(t1)e(t1)))e(¢2).

2.2.2 Put PE, := lim_E R E°((n + 1)A)/E ® E%(—iA), PE = UPE,, so we have an
isomorphism é : PE/PE_; — DE. Clearly PE is DE-bimodule (the left and right actions

are the obvious actions along the first, resp. the second variable), and § is the morphism
of bimodules, i.e., PE is a DE-crossed module (see 1.1). Let ¢t : PE — PE® be minus
the isomorphism “transposition of coordinates” (here minus comes since E, E° have “odd”

nature). Then for k¥ € PE one has '6(k) = §(*k), and ! is an “anti-isomorphism” between

crossed modules.

The pairing ( ) : PEQQ)PE — PE_; from 1.1, {k1,ks) = §(k1)k2 — k16(k2), is given
DE
by formula

(kyka)(t1,2) = (Ressme, + Resomsy )k (t1, 2)ka (2, 82)) = / (ka(t1, 2)ks (2, £2)).
VYeqy,te
Here (ki1(t1,2)kz(z,t2)) is the l-form of variable z (with values in in E,, ® Ej,), and
Yt,,t, 15 a loop round z = t; and z = t;. The corresponding Lie algebra pairing { } :
S?PE — PE_, is {k1,k2} := (k1,k2) + (k2,k;). Let tr : PE_; — w be the composition
PE_, - PE_;/PE_;=EQ®E° — w. We have

tr{kl, kg} = (Resl - R682)<k1 (tl,tz)kz(tg,tl ))

Here ka(t2,t1) = ko € PE° is ko with coodinates transposed, (ki(t1,%2)k2(t2,%1)) is a
2-form with poles along the diagonal and Res;, Resz : 4, -(c0A) — wc are residues
round diagonal along first and second coordinates, respectively. Clearly, Res; — Ress
vanishes on Q% ~(A) and takes image in exact forms. In fact, there is a canonical map
Res : Q% o(00A)/9%, o(A) — Oc such that dRes = Res; — Res; (see [B Sch] (2.11)).
An explicit formula for Res is

Res(f(tr, ta)(ts — t2) "Nty Adty) =it S o2 82, f(t1st2)y gy
at+b=i~-1
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Here f(t1,t2) € Ocxc. Hence one has tr{k;, k} = dﬁe—:s(kl, ks). Note that the symmetric

pairing PE ® PE — Oc, ki, ka — {k1,k2}~ := Res(ky,'k;) vanisheson > PE,®
atb=—1
PE,; in particular, it induces the pairing on PE,/PE_,.
According to 1.1.2, 1.1.3 we get a central extension DE of Lie algebra DEL* by H

defined by a following commutative diagram:

0 — PE., — PE 4 DE — o0

L

w

! _
0 — H — DE — ©DELe __, 0.

2.2.3 Denote by AE C DEZL¢ a Lie subalgebra of differential operators of order < 1 with
scalar symbol. In other words, AE is Lie algebra of infinitesimal symmetries of (C, E):
the elements of AE are pairs (7,7), where 7 € Pc is a vector fleld, and 7 is an action of 7

on E (so T is an order 1 differential operator with symbol equal to 7).

as follows. One has A°’E = AE, A7'E is pre-image of AE C DE by the projection
PE/kertr LR Dg (so we have short exact sequence 0 — w — A'E 2, AE > 0),
and finally A~2E = Oc; all the other components of A E are zero ones. The differential
d: A?2E = Oc —» w C A~'E is de Rham one, and A~'E — AE is §. The bracket
components [ |¥ : A'E x AJE — A E are the following. [ ]° is the usual bracket
[ ]°7* comes from DLé¢-action on PE, [ ]®~2is the action of AE on O¢ via o : AE —
Tc,and [ ]7'71is {, }~ defined above. So A E contains de Rham complex Q¢ (2] as an
ideal, A'E/Q[2] is acyclic and the central extension AE = A'E/dA2E of AEby H
(see 1.13) coincides with restriction of DE to AE C DELie,

2.2.4 Consider the case E = O¢. An obvious embedding Pc «— AO¢ defines the central
H-extension Pc called a global Virasoro algebra. Asin 2.1.3 for ¢ € C we will denote by
Pc. the H-extension of Pc which is c-multiple of Pc. Since Pc is perfect (see 2.5 below),

the extensions Pc. have no automorphisms.

2.2.5 Consider for j € Z the sheaf w®7. A natural action of Pc on w®’ by Lie derivatives

defines a canonical embedding of Lie algebras Pc — Aw®’. Denote by ’ﬁ'g ) the induced
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. ——®;
‘H-extension Aw I‘Pc' Given a local coordinate ¢, one may consider elements of ’P(J )

expressions

o _ [ fl) atlf( 1) @i gy @13

where f,g € Oc, modulo the ones of type ¢(o,5,4). The map Pec = 738’) — ’f"(c‘.') de-
fined by formula c,p?})g) — 4,98)’ (652—65+1)g) is a morphism of Lie algebras, and does not
depend on a choice of a local coordinate t. Hence it defines a canonical isomorphism

50(61-2_61-_,_1) - ﬁ(CJ ) of H-extensions of C (see (B Sch]). Unfortunately, we do not know

any “coordinate-free” explanation of this isomorphism.

2.3 Compatibility with Tate’s construction. Let r € C be a point. We may consider

the constructions of 2.2 locally at z. Namely, let O2 be a completed local ring of C
at z, O (z z) De the one of C X C at (z,z), Fz D O2 be the local field at z, so if ¢ is

a parameter at z then O(= 5 = C{[t1,t2]]. Denote by R the localization of O ) with

(z,z
respect to t7 1,157, (t1 — t2) 1. Put w(;) = F; Qo w, E(;) := F; ®0 E,D(;) = DE(;) =
F: ®o DE(;),P(zy = PE(;) = E Qo R Qo E°: these are local versions of the objects in
2.2. We can manage all the constructions of 2.2 purely locally. In particular we get the

R
central extension D(z) of D( ie by Hizy = w(,)/dF -:: C.

2.3.1 By 2.1, E(;) is a Tate’s vector space, and we have the embedding i, : D(;) — EndE(;).
For k = k(t1,t2) € P(y) let k_, k4 € EndE(;y be a linear operator defined by formulas

[k-(e)](t) = —Rest,=0(k(t,t2)e(t2)), [k+(€)](t) = (Resty=t, + Rest,=0)(k(t,t2)e(t2)).

Here e(t) € E(;), (k(t,t2)e(t2)) € E @ RQw, and the residues are taken along the second
variable. According to 2.2.1 one has i,6(k) = k_ + k4. Denote by i¥. + : Pzy = EndE(,
the maps i%, (k) = kz.

2 LEMMA. (i) For k € P(;) one has k+ € End+ E(,).

(ii) The commutative diagram

2 =(if, i) | E

Py —=% EndiE(; ® End_E, ” 1

I ‘

D e End E, | o
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is an i;-morphism of crossed modules (see 1.1).

(iii) For k € ker § C P(;) one has Restr(k) = tri¥ (k)(= trks = —trk_).

(iv) Let us identify E?,) with Ey , via the pairing (, ): Ex E® — C, (e,€°) = Res(e, °);
this gives the anti-isomorphismt : EndE(;y — EndE?z). Then the diagram

"#

'PE(,;) —-—+——> End+E(,)

(| 1l

i#*

PE?z) -_ End_E?z)

comimutes.
PROOF: Assume for simplicity of notations that £ = O¢, so E(;jy = Fr. The statement
k_ € End_F; from (i) is clear, since k_ vanishes on the lattice tNO;‘ C F; for N equal to
the order of pole of k(t1,t3) at divisor t; = 0. Now the fact that k. € Endy F; will follow
from (iv). The statements (ii), (iii) are obvious. To prove (iv) let us compute the residues
integrating the forms along cycles. Let y+(t) be the following loops in the t;-complex plane
t, =1t

Then for any function f € F; one has [k+(f)}(t) = 7= va () B 22) f(22).

Denote by U a small neighbourhood of zero in C x C with coordinate cross and
diagonal removed. One has the following 2-dimensional cycles C+ in U. Fix a small
real numbers 0 < ¢ < r € 1. Then Ct+ = {(21,22) € C x C : |z1] = ¢, |22 = 1},
C_ = {(z1,22) € C x C: |z1| =r,|22| = €}; the orientation of C, is a standard orientation
of S* x S, and the one of C.. is minus the standard orientation.

The above formula for the action of k+ implies that for a 1-form g € FY = wy,) one
has (g,k+(f)) = fC:{: g(t1)k(t1,t2)f(t2). Since the transposition of coordinates identifies

C. with C_, this implies that (g, k+(f)) = ((*k)=(9), f)- O

18




2.3.3 Now the morphism i¥ 2.3.2(ii) of crossed modules together with compatibility 2.3.2(ii1)

defines the morphism of the corresponding C-extensions T ﬁ(,) — EZE(,), Az",(k) =
84+(k4+) + s—(k-), or, equivalently, the isomorphism of C-extensions .5(,) - EE'(:) (see
2.1.1). |

2.3.4 Assume now that our curve C is compact. Let X = {z;} C C be a finite non empty
set of points, and E be a vector bundleon U = C\ X. Put E(x) = [I1E(;,),D(x) = D).
Denote by 13( x), & C-extension of ’D(Ij,"{") which is Baer sum of C-extensions D;,), so ’5( x) =
Hﬁ(,i) /{(a;) € CX : Y a; = 0}. Clearly ﬁ(x) coincides with C-extension 5E( x) induced
from EZE(X) via the embedding D(x) — [] End E(;,) — End Ex,.

Put Dy := H°(U,DEy) and consider the central extension 0 — Hpa(U) — Dy —

Dy — 0 constructed in 2.2.2. One has the localization around z; maps Dy — [] D(z:)» ’ZSU —

H’Z‘S(,‘.). The composition Dy — I1 5(3..) — 5(;{) vanishes on H} 5(U) (since ZRes,; =
' X

0). Hence it defines a canonical morphism sx : D5* — '13( x) that lifts the embedding
Dy — Dx)-

This morphism could be constructed by purely linear algebra means. Namely, consider
a colattice Ey = H°(U,E) C E(x). Clearly Df*® C Pg, C 9¢E(x), hence we have the
splitting s g, |py, : DEie — '13E(X) = ﬁ(x) (see 1.2.5).

2.3.5 LEMMA. This splitting coincides with the above sx.

PROOF: Let 8 € Dy be a differential operator. Choose a section k¥ € H'(U x U,ER
E°(00A)) such that §(k) = 8. Denote by k- = (k¥') € Hom(E(x), Ey) the morphism
given by formula k_(e;;) = Zk¥(es;), k¥ (ez;) = —Resz;{k - ez;) € Ey. Here e, €
Ez.,(k-ez;) € HY(U x SpecF;,;, E®w(o0A)) is a section obtained by convolution of k and
ez; (where e, is considered as a section of Oy ® E(;,) independent of first variable), and
Res;,; is residue along the second variable at z;. Clearly k- is morphism of Tate spaces

(here Ey is a discrete space).

Let j = (jz;) : Ev — E(x) be the embedding. The residue formula implies that for
e € Ey one has k_(j(e)) = 8(e). Hence jok_ € Pg, CgéE(x), one has jok._ € gl_Ex,,
8 —jo k- € gl E(x), and, according to 1.2.5, sg,(9) coincides with s_(j o k_) + s4+(8 —
joko).
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Now consider j o k- as a matrix (j o k-);i € Hom(E(s,), E(s;)). Let jo pdisg _
Z(j o k-)ii € End E(x) be the diagonal part of j o k—. According to 2.3.2, one has
sx(8) = s_(j 0 k%) + 5,.(8 — j 0 k%*9). Hence sx(8) — s, (d) = tr(j o k— — j 0 k¥%9),
This is a trace of a matrix in glo E(x) with zero diagonal component which is zero, q.e.d.

O

2.3.6 We will often use the morphism sx for appropriate subalgebras of D, say, for
AEy.

2.4 Spinors and theta-characteristics. Let W be a vector bundle on our curve C

equipped with a symmetric non-degenerate pairing ( , ) : W x W — w.

2.4.1 One may consider ( , ) as an isomorphism W ~ W9, hence we have the involution
t . DW — DW such that ¥(8,8;) = '8,'9,, and * acts on degree n symbols as multiplication
by (—1)". Denote by ODW the anti-invariants of ¢; this is a Lie subalgebra of DW Le.
The isomorphism W =~ W9 also defines an involution * : PW — PW (see 2.2.2) such
that 6 = 6'. Let OPW be the anti-invariants of ! in PW; put 06 = § I opw- The action
of DW on PW defines the ODW-action on OPW, and 06 : OPW — ODW is an ODW-
crossed module. The trace otr which is —% of the composition ker 06 — W@ W? &) w —
‘H defines by 1.1.3, a canonical central H-extension ODW of ODW. In ODW we have a
Lie subalgebra OAW = AW NODW of infinitesimal symmetries of (C, W, (, )): this is an
extension of P¢ by an orthogonal Lie algebra OW C End W. Denote by OAW the central
extension OE’W! oaw- Note that if rkW =1,ie, i W = w®/2 is a theta-characteristic,
then Ow®!/2 = 0, hence OAw®'/? = T¢. The formula from 2.2.5 applied to j = 1/2 gives

a canonical isomorphism OAw!/2 = T_y 5.

2.4.2 If E is any vector bundle, and W = E @ E° with obvious ( , ), then the Lie algebras
embedding j : DE — ODW, 9 — (8,-19), lifts to a morphism of crossed modules
j# : PE - OPW, k — (k,—'k). For k € ker§ one has otr(j#k) = —trk. So we get a
canonical morphism J : DE_, — ODW of H-extensions (see 1.1.7 for -1 index).

2.4.3 Let us consider a local version of the above construction. Now our curve is a punc-

tured disc SpecFy, so one has the identification Res; : H(F;) — C. The Tate C-vector
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space W(;) carries a non-degenerate symmetric form ( , ), defined by formula (w;, w;)e =
Res,(wy,w2). The action of DW,) on W(z) gives the embedding oi x : ODW(;y — OW(,).
It lifts to an 0i,-morphism oi¥ : OPW(zy — g€_W(;) of crossed modules (for the latter
crossed module see 1.4.7), 0:¥ (k) = k_, according to 2.3.2 (i),(ii),(iv). For k € ker 6 one
has otr(k) = ltrk_ = otr(k_) by 2.3.2 (iii), 1.4.7. Hence oi# defines a canonical morphism
of C-extensions 52; : Oﬁ’(,) — Oﬁf?z).

2.4.4 Assume we are in a situation 2.3.4, i.e., we have a compact curve C, a finite set of
points X C C, and our bundle (W,(, )) on U = C\ X. We get a Tate vector space W(x) =
[IW(z;) with the form (, )x) = >(, )z:), & central C-extension ODAW:(X) C OW?X)
of ODW(xy = [TODW;,y C OW(x). Just as in 2.3.4 a localization at X morphism
ODWy := H°(U,ODW) — ODW|x, lifts canonically to a morphism sx : ODWy —s

O’D’ﬁf—(x); as in 2.3.5 this s x coincides with the lifting sy, from 1.4.8. Certainly sx

IODWU
extends in an obvious manner to a morphism of Lie superalgebras ODWy x Wy — aWx)

(here Wy has odd degree, for aWx,, see 1.4.6).

2.4.5 According to Serre’s duality Wy is a maximal iso tropic colattice in Wxy.

2.5 Simplicity of Lie algebra of vector fields. The following lemma will be of use:

2.5.1 LEMMA. Let C be a smooth curve. Then the Lie algebra T = H°(C,7¢) of vector

fields on C is simple.

PROOF: The case of compact C is clear, so we will assume that C is affine. Let I C T
be a non-zero ideal; we have to show that I = T. Let 7 € I be a non-zero vector field.
Note that if ¢ € O(C) is a function such that g7 € I and f € O(C) is any function,
then 7(f)gr = 3([g7, fr] + [r, fg7]) € I. Let A C O(C) be the subalgebra of functions
generated by all functions 7(f), f € O(C). The previous remark implies (by induction)
that A,7 C I. One may describe A, explicitly, namely A, coﬁsists precisely of those
f € O(C) that take equal values at zeros of 7 and ord.(f — f(z)) > ord.(7) for any z € C;
certainly this condition is non empty only for £ = zero of . (To see this, consider the
morphism 7 : C — C' = SpecA,. Clearly A, is a curve. An easy local analysis at points
at oo of C shows that 7 is finite. If z,y € C,z # y, are not zeros of 7, then a finite jet
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at z,y of the functions 7(f), f € O(C), could be arbitrary ones, hence 7 is isomorphism
on the complement of zeros of 7. An easy local analysis at zeros of 7 finishes the proof).
In particular, any function that vanishes at zeros of 7 with large order of zero lies in A,.
Hence I contains any vector field that vanishes at zeros of 7 with sufficiently large order
of zero (namely, twice that of 7). A trivial local analysis at zeros of 7 (take brackets of

elements of I with vector fields non-vanishing at zeros of 7) shows that I =T. []J

2.5.2 COROLLARY. If C is an affine curve, then T has no non-trivial finite dimensional

representations. [

'

[
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§3. LOCALIZATION OF REPRESENTATIONS
3.1 Harish-Chandra modules. Recall some definitions.

3.1.1 Let K be a pro-algebraic group. A K-module M is a comodule over the co-algebra
O(K). Equivalently, M is a vector space with an algebraic K(C)-action. Here “algebraic”
means that M is a union of finite dimensional K(C)-invariant subspaces M, such that
K(C) acts on M, via an algebriac action of a factor group K/K, of finite type. Any

K-module is a Lie K-module in a natural way.

3.1.2 A Harish-Chandra pair (g, ') consists of a Lie algebra g and a pro-algebraic group
K together with an “adjoint” action Ad of K(C) on g and a Lie algebra embedding
1: LieK — g that satisfy the compatibilities:
(i) The embedding ¢ commutes with adjoint actions of K.
(ii) The action Ad is “pro-algebraic”: for any normal subgroup K' C K such that K/K'
has finite type the action of K(C) on g/i(LieR") is algebraic.
(iii) The ad o i-action of Lie K on g coincides with the differential of Ad-action.

3.1.3 Let (g, K') be a Harish-Chandra pair. A (g, K )-module, or a Harish-Chandra module,
1s a C-vector space equipped with g- and K -module structures such that
(i) Fork € K,h € g,m € M one has Adi(h)m = khk~1(m).
(ii) The two Lie K-actions on M (the one that comes from g-action via i, and the differntial
of K-action) coincide.

We denote by (g, K)-mod the category of (g, K)-modules.

3.1.4 Let T be any K-torsor. Denote (g,K)r = (gr,Kr) the T-twist of (g, K) with
respect to adjoint action; this is Harish-Chandra pair. If M is a (g, K)-module, then the
T-twist Mt is a (g7, KT)-module, and M — M is equivalence of categories (g, K )-mod

— (g7, KT)-mod.

3.1.5 A following version of the above definitions is quite convenient.
A pro-algebraic groupoid V is a groupoid such that for any object X the group AutX
carries a pro-algebraic structure and for any f : X — Y the map Ady : AutY — AutX

preserves the pro-algebraic structures (the objects of V form a usual set with no algebraic
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structure). A V-module is a functor M : V — Vectc such that for any X € V the
AutX -action on Mx is algebraic.

A Harish-Chandra groupoid (g, V) is a pro-algebraic groupoid V together with a func-
tor X — (gx,Kx) from V to the category of Harish-Chandra pairs equipped with a
canonical identification of “group part” Kx of the functor with AutX ; we assume that
for g € AutX = Kx the “functorial” action of g on gx coincides with the Ad-action from
3.1.3.

One defines a representation of our Harish-Chandra groupoid (or simply a (g,V)-
module) in an obvious manner. For any X € V one has a canonical “Bber” functor
(8,V)-mod — (gx,Kx)-mod, M —» Mx. If V is connected, this functor is equivalence
of categories. Note that if T is a Kx-torsor, and X1 € V is T-twist of X (ie., XT is an
object of V equipped with isomorphism of K x-torsors T — Hom(X,Xr), then one has a

canonical isomorhism (gx,, Kx,) = (ax, Kx)r, Mx, = (Mx)r (see 3.1.4).

3.1.6 We will need to consider the above objects that depend on parameters.

Let S be a scheme, and K be a pro-algebraic group. A K-torsor on S is a projective
limit of K/K'-torsors in étale topology of S; here K' C K is any normal subgroup such
that K/K' has finite type.

Let V be a pro-algebraic groupoid. An S-object Ys of V is a rule that assigns to
each object X € V on AutX-torsor Ys(X) = Hom(X,Ys) on S together with canonical
identifications of AutX-torsors Ys(X) = Ys(X')yom(x,x1) (= the twist of Ys(X') by
AutX'-torsor Hom(X,X")) for each X,X' € V; these identifications should satisfy an
obvious compatibilty condition for three objects X,X', X" € V. In other words, Yg is
a functor from V to schemes over S such that the AutX-action defines on Ys(X) the
structure of AutX-torsor, and for any connected component S' of S the objects X for
which Ys:(X) = Ys(X)s is non-empty are isomorphic. If Mis a V-module, then an
S-object Ys of V defines a locally free Os-module My, on S. If Ys(X) for X € V is
non-empty then My, coincides with Yg(X)-twist of Mx @ Os.

Let now (g,V) be a Harish-Chandra groupoid, and Ys be an S-object of V (considered
as pro-algebraic groupoid). We get a sheaf gy, of Ogs-Lie algebras; gy, is a projective limit
of locally free Os-modules. For any (g, V)-module M the Og-module My, is gy, -module.
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3.2 Lie algebroids. Let S be a scheme.

3.2.1 A Lie algebroid on S (which is an infinitesimal version of Lie groupoid) is a sheaf A
of Lie algebras on S together with an Og-module structure on A and an Og-linear map o :
A — Tg such that ¢ is morphism of Lie algebras, and the formula [a, fb] = o(a)(f)b+ fla, b]
holds for a,b € A, f € Os. Clearly Ay = kerc is a sheaf of Og-Lie algebras. In case
when S is smooth we will say that A is transitive if o is surjective.

The Lie algebroids form a categoric Lie(S) with final object Ts. This category has
products: for A,B € Lie(S) we have A x B = A x1B in obvious notations. The categories
Lie(S) form a fibered category over a category of schemes. For a morphism f : S' — S
of schemes and A € Lie(S) the inverse image f*A € Lie(S') is defined by formula f* A =
Ts x f*(A). Here f*(A), f*(Ts) are inverse images in categories of O-modules, and the
fibered product is f*(7Ts) taken with respect to projections Tg: o, f*(Ts)'f:(—a) r(A).

3.2.2 Let A be a Lie algebroid. An A-module is a sheaf F of A-modules on S together
with an Og-module structure such that for a € A, f € Os, m € F one has a(fm) =
o(a)(f)m + f(am). We will also call such a structure an action of A on Og-module F. If
A, B are Lie algebroids, F is an A-module, G is a B-module, then F Qo G is A x B-module:
for (a,b) € Ax B, m € F,n € G one has (a,b)(m @ n) = (am) ®n + m Q (bn).

3.2.3 Let A be a Lie algebroid, g be an Og-Lie algebra equipped with an A-action. An
A-morphism 1 : Ay — @ is a morphism of Og-Lie algebras that commutes with A-action
(here the A-action on Ay is adjoint one). Note that if ¢ : A — B is a morphism of
Lie algebroids, then A acts on By by ad o v, and ¢y : Ay — Byo) is A-morphism.
conversely, for an A-morphism ¥ : Ay — g let Ay be the quotient of semi-direct product
A x g by the ideal Ag) — A X g,a — (a,—(a)). Then Ay is Lie algebroid, Ay,, =g,
and we have a canonical morhism ¢ : A — Ay, with 1) = old . These constructions are
mutually inverse: if g = B(gy, ¢ : A — B is a morphism of Lie algebroids, and ¥ = ¢y,

then we have a canonical morphism 1 : Ay — B which is isomorphism if A is transitive.

3.2.4 Let A be a Lie algebroid. A central extension of A by Og is a Lie algebroid A
together with surjective morphism w : A — A and a central element 1 € kerr such that

the map Os — kerw, f — f -1, is isomorphism. Note that adjoint action of A on .'Z(o)
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quotients to an A-action. We will call a central extension £ of Ts by Og an invertible Lie
algebroid (so L9y = Os).

3.2.5 REMARKS: (i) Let B be any Lie algebroid, and tr : By — Os be a B-morphism
(we will call such tr a trace on B). If B is transitive, then By, is an invertible algebroid.
(i1) Let A I, A be a central extension of A by Os, and v : A — A be an O-linear
section of 7 such that v commutes with adjoint action of .A. Then ¥(A()) is ideal in A,
and A/ v¥(A(o)) is invertible algebroid.

3.2.6 The invertible Lie algebroids form a category P Lie(S) which is a Picard category, and,
more generally, a “C-vector space” in categories. This means that for a,8,€ C, A,B €
PLie(S) we may form the linear combination C = aA + 8B € PLie(S): by definition
C = (A X B)r, ,, where trq g(f,9) = af + Bg. For A € PLie(S) we have AutA = QFF:
for a closed'l form w the corresponding automorphism of A is a — a + (wo(a)) - 1. A
trivial invertible algebroid is Tso = Ts X Og (where O : Tspy = 0 — Os is a trivial
trace map). The locally trivial invertible Lie algebroids form a full C-linear subcategory

canonically equivalent to the one of Q¢¢-torsors.

3.2.7 For A € PLie(S) define D4 to be the sheaf of associative C-algebras on S together
with a morphism of C Lie algebras ¢ : A — D4 such that ilos is a morphism of associative
algebras (in particular, i(1) is 1 in D4) and one has i(f)i(a) = ¢(fa) for f € Og, a € A,
and universal with respect to these data. For example, if A is trivial, then D4 is the
usual algebra of differential operators on S. For arbitrary A this is a twisted differential
operators ring, see, e.g. Appendix to [BK] for details. Clearly a D 4-module F is the same
as A-module such that 1 € A acts on F as identity operator. Since D4 carries an obvious
filtration with grD4 = S'7s, for a coherent D4-module F we have its singular support
SSF which is a closed conical subset in cotangent bundle of S. A D 4-module F is called
lisse if SSF = (0): this condition is equivalent to the fact that F is a vector bundle (as
Os-module).

3.2.8 The standard example of a Lie algebroid is current (or Atiyah) algebra A(E) of a
vector bundle E. This is Lie algebra of infinitesimal symmetries of E. The sections of

A(E) are pairs (o(7), 7), where o(7) € Ts and 7 is an action of o(7) on E, or, equivalently,
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a first order differential operator on E with symbol o(7) - idg. Clearly A(E) is transitive
and A(E)e) = g4(E). If L is a line bundle, then A(L) is invertible algebroid; one has
A(L1 ® L) = A(Ly) + A(L2), ie.,, A : Pic(S) — PLie(S) is a morphism of Picard
categories. The ring D4(z) coincides with algebra Dy of differential operators on L. If E
is any vector bundle, then tr: gé(E) — Og is trace on A(FE), and A(E):; = A(det E): this
canonical isomorphism comes from a natural action of A(F) on det E given explicitly by

Leibnitz rule a(e; A ... Ae,) =ae; Aea A...Aep+---+e; A...Aae,.

3.3 Localization of (g, A)-modules. Below we will explain a general pattern how to

transform representations to D-modules. We will start with some notations.

3.3.1 Let (g, V) be a Harish-Chandra groupoid. We will say that it is centered if for any
X € V there is a fixed central element 1 € gx, 1 ¢ LiedAutX, that depends on X in a
natural way. Put gx = g¢/Cl, so gx is a central C-extension of gx.

Our (g, V) defines several Harish-Chandra groupoids with the same underlying proal-
gebraic groupoid V. Namely, we have the groupoid (g, V) that corresponds to gx; for any
¢ € C we have the centered groupoid (g, V) with g.x equal to c-multiple of the central
extension gx of gx. Denote by (g@,V).-mod the category of (g.,V)-modules on which
1 € C C g, acts as identity.

3.3.2 Let S be a smooth scheme, U be a proalgebraic group and Ys be a K-torsor over S.
Denote by AYs the Lie algebroid of infinitesimal symmetries of (S,Ys). Its sections are
pairs (7, Ty ), where 7 € Ty, and Ty is a lifting of 7 to Y5 that commutes with K-action.
Clearly AYg(o) = LieKy; (= Ys-twist of Lie K®Os with respect to adjoint action of K);
AY5 is a transitive groupoid. If (g, K) is a Harish-Chandra pair, then we have the Og-Lie
algebra gy, (= Ys-twist of g®Os with respect to adjoint action). The Lie algebroid .AYs
acts on gy, in an obvious manner, and a canonical embedding 7 : AYgg) = LieKy; — gy;
is an AYs-morphism. According to 3.2.3 we get the transitive Lie algebroid Agy, = AYsg;
with Agy,0) = gvs. If M is a (g, K)-module, then My, (= Ys-twist of M ® Os) is
Agy, -module.

Now let (g, V) be a Harish-Chandra groupoid, and Y5 be an S-object of V. The above
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construciton defines a transitive Lie algebroid Agy, on S with Agy, (o) = gv;. K M is
a (g, V)-module, then My, is an Agy,-module in a natural way. Note that if (g,V) is a

centered groupoid, then Agy; is a central Og-extension of Agy;.

3.3.3 DEFINITION. Let S be a smooth scheme and (g,V) be a centered Harish-Chandra
groupoid. An S-localizaiton data v for (g, V) is a collection (Ys, N, ¢, @0)) where
(i) Ys is an S-object of V.
(ii) N is a transitive Lie algebroid on S.
(iii) ¢ : N — Agy, is a morphism of Lie algebroids.
(iv) @) : Ny — 8vs is a lifting of ¢(o) such that for n € N,m € N one has
Z(o([n,m]) = [p(n), p(0)(m)]. O

3.3.4 A localization data ¢ defines an invertible Lie algebroid Ay on S as follows. Consider
a fiber product Agy, N = Agy, x Agyg V: this is a central Os-extension of N. This central
extension splits over N(o) by means of section s : N(g) — Agys N(g), s(m) = (@(0)(m), m).
Put Ay := Ay, N/s(Nq)). Let Dy = D4, be the corresponding algebra of twisted

differential operators.

3.3.5Let M € (g, V)1-mod be a Harish-Chandra module such that 1 acts as idps. Then My,
is an Agys N-module (via the projection Agy; N — Agy; ), and AyM = My, /s(N(o)) My,
is Ay-module on which 1 € Ay acts as identity. Hence AyM is a Dy-module. Clearly
Ay : (g,V)1-mod — Dy-mod is right exact functor; we call it S-localization functor that
corresponds to 1. Note that for a point s € S we have a Lie algebra map N(g), — 8v;
(where N(gy, = N(o)/msN(o)), hence the fiber Ay(M)/m;Ay(M) coincides with coinvari-
ants My, /Ng)s My;.

3.3.6 The above constructions are functorial with respect to morphisms of localization
data. Precisely, let (g', V') be another centered Harish-Chandra groupoid, and r : (g, V) —
(g', V') is a morphism of centered groupoids. One defines a r-morphism of S-localization
data r# : 9 — 9’ in an obvious manner. Such r# defines the isomorphisms rﬁ Ay = Ay,
rﬁ : Dy — Dys. For M € (g,V);-mod, M € (g',V')1-mod and an r-morphism £ : M — M’
we have rg—morphism rﬁ t Ay(M) = Ay (M").
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One has also functoriality with respect to base change. If f : §' — S is a morphism of
smooth schemes, and ¢ is an S-localization data for (g, V), then one gets an S'-localization
data f*3 for (g,V). One has Ay = f*Ay, and for M € (g,V);-mod one has a natural
isomorphism f*Ay(M) = Ajfey(M) of Dg-y-modules.

3.3.7 An S-localization data ¢ for (g,V) defines in an obvious way for each ¢ € C an
S-localization data 3. for (gc,V). One has 4,, = cAy, (see 3.2.6).

3.4 Localization along moduli of curves. This section collects some basic examples

of the above localization constructions.

3.4.1 Let us describe a centered Harish-Chandra groupoid ("IV', V) called Virasoro groupoid.
The underlying connected proalgebraic groupoid V is groupoid of one-dimensional local
fields (with morphisms being isomorphisms). Precisely, let F € V be a local field, O C F
be a corresponding local ring, mr C Of be the maximal ideal. A choice of uniformizing
parameter t identifies F' with C((¢t)) and O with C[[t]]. The group AutF = AutOp
is projective limit of groups AutOp/m% = AutF/Aut,F. These groups are obviously
algebraic groups, our AutF is a proalgebraic group, and V is a proalgebraic groupoid. Note
that AutF/Aut; F = C*, and Aut;F/Aut;+1 F is isomorphic to C for ¢ > 1; in particular
Auty F is prounipotent radical of AutF. Explicitly, AutC((t)) coincides with the group of
power series a3t + at? +---,a; # 0, with multiplication low equal to composition of series.

Now for F' € V let Tr be the Lie algebra of vector fields on F and ’.:Iv'p be the Virasoro
C-extension of 7r defined in 2.1.3. The Lie algebra Tr carries a canonical filtration T;p;
for F = C((t)) one has T;r = t'*}C[[t]]0;. The subalgebra 7_;r preserves the lattice
OF C F, hence we have a canonical splitting so, : T-1F — ?F. Clearly LieAutF = Ty,
and the embedding sp, : LieAutF — ’?p together with natural AutF'-action on 'fp define
the Harish-Chandra pair (77, AutF). This defines our centered Virasoro groupoid (’T' , V).

3.4.2 Let S be a scheme. It is easy to see that an S-object Ys of V is the same as a “family
of formal discs” over S or, equivalently, a formal Og-algebra Oy locally isomorphic to
Os([t]]. The corresponding Lie algebroid AYs consists of pairs (7, Ty, ) where 7 € T5 and

Tys € DerOy; is a 7-derivation of Oy;.




3.4.3 Now let m : Cs — S be a family of smooth projective curves and a : S — Cg be a
section of w. These define an S-localization data ¢ = ¥(Cs,a) for (i’, V) as follows. Our
Ys is formal completion of Cs along a(S), and N is Lie algebroid of pairs (7, 7y) where
7 € Ts and 7y is a lifting of 7 to U = Cs \ a(S). Clearly ATy, is Lie algebroid of pairs
(7, rys\m), where 7 € Ts and Ty;,,, is a lifting of r to a meromorphic vector field on Ys
with possible pole at a(S). Our ¢ : N — ATy, is just a restriction of a vector field 7v on
Ys \ {a} = punctured neighbourhood of a. Now the lifting @(g) : N0y = mTyys — Ty
is the restriction of morphism s, : m«Dys — 13(,,) (here D = Do, ;) defined in 2.3.4 to
Ty;s C Dyys (more precisely, in 2.3.4 we considered the case of a single curve, S = point;
the generalization to families is immediate). These (Ys, N, ¢, 3(0)) is our localization data
¥(Cs,a). According to 3.3.4, 3.3.5, 3.3.7 for any ¢ € C we have the localization functor
Ay (Cs,a) (T,V)e-mod — Dy, (¢ ,q)-mod.

3.4.4 Here is an explicit description of Ay(cg,a) and Ay(cs,a)- Choose (locally on S) a
formal parameter t at a, so Oy, = Og][t]]. Consider the space B of triples (7, 7y, Ty),
where 7 € Ts, Ty is a lifting of 7 to U, and 7y : § — ’f’c((,)) is a lifitng of a vertical
component of Ty, 7% = Tu(t)8: : S — Te((r))- This B is a Lie algebroid on S in an obvious
manner. We have a canonical morphism Ty;s — B(o), ¥ — (o, v,54(v)), see 2.3.4. One
has Ay(cs.a) = B/Tyss. Now let M be a (T, V).-module. One has My, = Mc(()) ® Os.
The algebroid B acts on My, by formula (7, 7y, 75)(m @ f) = m @ 7(f) + TH(m ® f). One
has Ay(cs,a)(M) = My; [Ty sMys.

3.4.5 Variant. For any non empty finite set A we may consider the centered groupoid
(%A, VA4). Here V4 is the A-th power of V and i-{IIA’.} is the Baer sum of C-extension ':fpa ,

a € A (so ’j"{“},-“} is a C-extension of H’Tpc). A family  : Cs — S of curves together with

a€EA
a disjoint set A of sections (where “disjoint” means that for ¢; # aj € A and any s € S

one has a;(s) # a;(s) € Cs) defines an S-localization data ¥(Cs, 4) for (T4,V4) in a way
similar to 3.4.2. For example, the corresponding Lie algebroid N consists of pairs (7, Tv),

where 7 € T and 7y is a lifting of 7 to U = Cs '\ ]_[a,-(S).
a€A

3.4.6 REMARK: Let B C A be anon-empty subset. The groupoids (TB,VB)and (T4,v4)
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are related by an obvious correspondence (5:3 yB) Z2 (TAB VA 24 (T4, V4), where

T{’}ﬁ = i'{%a}bea X H T..F, — T{F 3 Any family of curves 7 : Cs — S and a set A
a€A\B

of disjoint sections defines an S-localization data ¥(C's, A, B) for (TAB VA) in an obvious
manner together with corresponding morphisms ¢(Cs, B) LR ¥(Cc, A, B) =2 4(Cs, A).
These define the corresponding isomorphisms Dy, (¢, B) = Dy.(cs,4,8) = Dy.(cs,4)- For
Mg € (TB,VB).-mod, M, € (T#,VY4)-mod a morphism f: Mg — My is, by definition,
an i4-morphism between Mp, considered as ('i'A'B ,V4)-module via ng, and M4. Since
Ay.(cs,ByMB = Ay (cs,4,8)MB, such f defines a morphism A(f) : Ay, (cs,B)Mp —
Ay.(cs,a)Ma. For example, if M4 = Ind;:'B(MB) and f is a canonical embedding, then
A(f) is isomorphism.

Note that the above canonical identification Dy, (cs,4) = Dy.(cs,B) for B C A actually
provides a canonical algebra D, (c,) that depends on Cs only together with canonical
isomorphisms Dy, (cs) = Dy, (cs, ) for any set A of disjoint sections. To construct Dy.(cs)
we may assume, working locally in étale topology of S, that Cs has many sections. To
construct Dy (cs) it suffices to define for any two sets A, A’ of disjoint sections a canonical
isomorphism Dy_(cs,4) = Dy, (cs,4’)- Choose a non-empty set B of sections such that both
AUB, A' UB are sets of disjoint sections. Qur isomorphism is Dy.(cs,a) = Dy (cs,auB) =
Dy.(cs,B) = Dy.(cs,a'uB) = Dy, (Cs,ar). One verifies easily that this does not depends on
a choice of B. We will compute Dy_(c,) explicitly in 3.5.6.

3.4.7 Variant. Often the Virasoro modules are integrable only with respect to subgroup
Aut) F' (see 3.4.1). To localize them one needs to consider the groupoid (i’, Vi1). The
ij’ects of V; are pairs (F,v), where F is a local field and v € mp/m%, v # 0, is a 1-jet of
a parameter. One has Aut(F,v) = Aut, F. The Lie algebra ’fzp,,,) is '.‘fp. Ifrn:Cs—Sis
a family of curves, a : § — Cg is a section, and v € a*Qlc.s/S is a 1-jet of parameters at a,
then we get an S-localization data ¢(Cg,a, v) for (T, V;). Certainly, we may also consider

many points, as in 3.4.5.

We have a “forgetting of v” morphism r : (T, V1) — (7T, V) and a corresponding
r-morphism of localization data ¥.(Cs, a,v) — %¢(Cs,a). This defines a canonical isomor-
phism rp : Dy_(cs,a,v) = Dy.(Cs,a) and for any M € (7,V).-mod the rp-isomorphism
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™ : By (Cs,aM < Dy, (cs,a)M-

3.4.7.1 Let C be a fixed curve, a € C, v be a 1-jet of parameter at a. Consider a constant
C*-family C¢- = C x C* with constant point a, and put vV(u) = uv for u € C*. We get
the corresponding C*-localization data % = %(Cc-,a,vY). One has Dy = Dycee,anvy =
Dy(cce,a) = De+ — the usual ring of differential operators. In particular, we have \8) €
Dy,. Let us compute the action of ud, on Ay (M) for M € (T,V;).-mod. Choose a
parameter ¢, at a on C such that di(a) = v. Then t;, = ut is a C*-family of parameters
which identifies our Oy.. with Oc-[[t]]. We have My.. = Mc()) ® Oc-, and Ay, (M)
is a quotient of My,... For m € Mg((y)) denote by W its image in Ay (M). Put Ly =
sciy)(to:) € 'j"c((t)). One has u8,(M) = Lom. In particular, if M is a higher weight
module (see 7.3.1), then Ay,M is smooth along C* with monodromy equal to the action
of T = exp(2niLyg) (see 7.3.2).

3.4.8 Now consider the case “vector symmetries”. Our “Virasoro-Kac-Moody” centered
Harish-Chandra groupoid (4, VV) is the following one. The objects of VV are pairs (F, ‘E'o)
where F' is a local field, Ep is a free Op-module of finite rank; we put Er = F® Eo. The
morphisms are defined in an obvious manner. Clearly Aut(F, Ep) is extension of Aut F
by GL(Eo) = Auto,(Eo); this is a proalgebraic group. We put A(F, Eo) = AEp, see
2.1.2. A canonical embedding sg,: Lie Aut (F, Ep) — AEF defines the Harish-Chandra
pair (.TE F,Aut(F, Ep)). This defines our centered groupoid (.Z, V).

Let S be a scheme. An S-object of VV is a pair (Ys, Ey; ), where Y5 is an S—object of
V (see 3.4.2) and Ey; is a locally free Oy,-module of finite rank.

Assume that S is smooth. Let # : Cs — S be a famly of smooth projective curves,
a:S — Cg be a section, and E be a vector bundle on Cg. These define an S-localization
data ¥(Cs, E,a). Namely, the corresponding S-object of VV is a completion of Cs, E
along a. The Lie algebroid N consists of triples (7, 7y, 7g, ), where 7 € Ts, Ty is a lifting
of 7 to U = Cs\ a(S), and 7g, is an action of 7g,, on Ey. The morphisms ©,P(0), appear
precisely as in 3.4.3 from 2.3.4.

As above, this localization data gives rise to localization functor. The versions 3.4.5-

3.4.7 are immediate.




3.4.9 Let us consider now the spinor or “fermionic” version. The corresponding cen-
tered Harish-Chandra groupoid (674, OV) is the following one. Its objects are triples
Q = (F,Wo,(, )), where F is a local field, W is a free Op-module of finite rank, and
(,): Wox Wo — wo, is a symmetric bilinear form with values in 1-forms of Op. We
assume that ( , ) is maximally non-degenerate, i.e., the cokernel of the corresponding map
Wo — W§ = Homo,(Wo,wo; ) is either trivial (such Q is called even) or a 1-dimensional
C-vector space (such @ is called odd). The morphisms in OV are obvious ones. For Q as
above, put Wr = FQ Wp; our ( , ) extends to non-degenerate form ( , ) : Wrp x Wr — wp.
Note that our condition means that Wp is a maximal isotropic lattice in Wr. We may
consider Wr as Tate’s C-vector space with form (, ). = Res(, ) (see 2.4.3); then W is
also a maximal isotropic ( , ).-lattice so @ is even iff Wr is even-dimensional, see 1.4.1.
We put 574((2) = OAWF (see 2.4.1). The Lie algebra Lie Aut Q C O.AWF preserves
Wo, hence we have a canonical embedding sw,, : Lie Aut Q — 674(62) This defines the
Harish-Chandra pair (&(Q),Aut @), and we get the groupoid (674, oV).

REMARK: Clearly Q is even (resp. odd) iff (Wp,(, ).) is even (resp. odd) dimensional,
see 1.4.1. The two objects of @ are isomorphic iff the W’s have the same rank and parity.

- Now let S be a smooth scheme. Let 7 : Cs — S be a family of smooth projective
curves, a : S — Cgs be a section, W be a vector bundleon Cs,and (, ): W xW — weg/s
be a symmetric bilinear pairing. Assume that cokernel of the corresponding map W —
W?° = Hom(W,wc,,s) is either trivial or supported on a(S) and is an Os-module of rank
1. These collections (Cgs,a, W,( , )) defines an s-localization data 3 for ((ﬁ, OV) in a way
similar to 3.4.3, 3.4.8. Namely, the formal completion of W along a defines an S-object
of OV. The Lie algebroid N consists of triples (7, 7y, 7wy ), where 7 € Ts, 7 € Ty is a
lifting of T to U = Cs \ a(S), and Tw,, is an action of 7y on Wy that preserves (, ). The

corresponding map ¢ is obvious, and () comes from 2.4.4.

One has immediate variants of this construction for the case of several points and

points with 1-jet of a parameter (see 3.4.6, 3.4.7).

3.4.10 Note that we have a canonical morphism r : (.Z’__I,VV) - (5:4, OV) of centered
Harish-Chandra groupoids. It assigns to (F, Eo) € VV the triple (F, Eo ® Eg,( , )) where
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(', ) is an obvious pairing. The morphism AEr — OA(Er & E%) was defined in 2.4.2.
Now for a scheme S and a collection (Cs,a, E) from 3.4.8 we have the one (Cs,a,E @
E° (,)) from 3.4.9. We have an obvious r-morphism of corresponding localization data
r# : ¢¥.(Cs,a,E) = ¢_(Cs,a,E @ E°,(, )) (see 2.4), hence the isomorphism rp :

Dy.(cs.a,E) = Dy.(Cs.a,E0E( , ))-

3.5 Fermions and determinant bundles. In this section the rings of twisted differ-
ential operators Dy, that appeared in 3.4 will be canonically identified with the rings Dr,
for some natural line bundles L (see 3.2.8). Equivalently, we will construct a Dy-module

L which is a line bundle (as ©-module). This will be done by means of Clifford modules.

3.5.1 Let us start with situation 3.4.9. For Q = (F,Wp,(, )) € OV denote by Mg
the Clifford module (for Clifford algebra C¢(Q) = C¢ (Wr.(, ).), see 1.4) generated
by a single fixed vector v with the only relation Weov =0. If Q is even, then Mg is
irreducible; if Q is odd, then Mg is the sum of two non-isomorphic irreducible modules.
Note that Mg carries a canonical Aut Q-action (the only one) that leaves v invariant. By
2.4.3 Mg is OAWEr = &Q-module. Clearly these actions are compatible, hence Mg is
(5.71(2, Aut Q)-module. This way we get the (5:4, OV)-modue M.

Let S be a smooth scheme, and (Cs,a, W,(, )) be the geometric data from 3.4.9 that
defines the corresponding S-localization data 3 for (OV, 574) Let Qs = (Fs,Wog,(, ))
be the corresponding S-object of OV (= the completion of our data along a), and Mg, be
the corresponding Og-module with (ﬂq s-action. Certainly, Mg, is a Clifford module for
the Og-Clifford algebra C¢(Wpg,,( , ).) generated by the section v with the only relation
Wop v = 0. Note that m.Wy =7 U,(W|U) is an S-family of maximal isotropic colattices
in Wy (see 2.4.5). Put Ly = Mg, /mWyMg,. This is a line bundle on S if Qg is even
(which means that (, ): W x W — Wc, /s is non-degenerate). If Qs is odd, then Ly is

a two-dimensional vector bundle which splits canonically in a sum of two line bundles on

2-sheeted coveriné of S that corresponds to a choice of v € Wé-Fs / Wo Fs with (v,7)e = 1.
3.5.2 LEMMA. Ly is naturally a Dy-module: it is a Dy-module quotients of Ay M .

PRrROOF: Consider the action of Lie algebroid A&QSN (see 3.3.4) on Mg. Since for
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(a,n) € A@T‘leN = AEAQS .AOt’lemOAWU and w € 7. Wy one has [(a,n), w] = n(w)
(as operators on Mg ), we see that this action quotients down to Ly. It remains to
show that L, is actually an Ay-module. We need to prove that the Og-Lie subalgebra
8(N¢y) C A’B’AQSN acts trivially on Ly. Note that s(N(q)) = T« OAWYy,s acts on Ly Os-
linearly, hence it suffices to consider the case S = point. Then N(g) = OAWYy is extension
of 7y by the orthogonal Lie algebra OWy. Since both OWy and 7y are pefect C-Lie
algebras, we see that N(g) is perfect, hence every 1-dimensional representation of N(g) is
trivial. Since Ly is either 1-dimensional or a sum of two 1-dimensional N(g)-invariant

subspaces, we are done. O

Actually we have proven that Ly is a quotient of Dy-module Ay(M). Certainly, 3.5.2

implies

3.5.3 PROPOSITION. One has a canonical isomorphism of twisted differential operators

algebras Dy = Dy, if Qs is even, and Dy, = Dgei L, if Qs is odd. d

3.5.4 REMARKS: (i) According to 1.4.4 the fibers Ly, , s € S, are canonically identified
with det H%(C,, W,) if Qs is even, i.e., if ( , ) is non degenerate (if Qs is odd, one has
det Ly, = det®? H°(C,,W,)). Hence the automorphism - idw of our data acts on Ly as
+1 depending on whether dim H%(C,,W,) is even or odd. This proves the theorem of
Mumford that the parity of dim does not jump.

(i1) Of course we may consider the situation with several points a;,...,a, € C. By areason
similar to 3.4.6 one may see that the corresponding line bundle L, actually does not depend

on points; certainly, we may delete only “even” points where ( , ) is non-degenerate. []

Now let us consider the situation 3.4.8 of vector symmetries. By 3.4.10 we have a
canonical isomorphism Dy, (¢cs,a.8) = Dy_.(Cs,e,E0E,( ,))- BY 3.5.4(i) the fibers of the
line bundle Ly = Ly(Cs,a, E®E®,( , )) coincide with det H°(C,, E) ® det H*(C,, E?) =
det H°(C,, E)/ det H*(C,, E) = det RT'(C,, E). It is easy to see that Ly = det Rm, E =
the determinant line bundle of E (about determinant line bundles, see e.g. [KM]). By 3.5.4

(i1) and a version of 3.4.6 for vector symmetries we may delete a point a above. Hence

3.5.5 COROLLARY. One has a canonical isomorphism Dy, (cs,E) = Dget®-¢ Rr. E- O
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Consider finally the pure Virasoro situation. We have an obvious embedding of Harish-
Chandra groupoids 7 : (V,T) — (W, A), F — (F, Or), T — AF (see 2.1.3). If Cs is an
S-family of curves, a is an S-point of Cg, we have an obvious r-morphism of localization
data ¥(c5,0) — 1/)((;5,,,,005) which identifies Dy_(cs,q) With ch(Cs,a,Ocs)- Now 3.5.5
implies

3.5.6 COROLLARY. One has a canonical isomorphism Dy, (cg) = Dget8-< g, oc, - O

3.6 Quadratic degeneration. In this section we will describe the determinant bundle
of a family of curves that degenerates quadratically. Below S = Spec C{[q]] is a formal
disc, 0 € S is special point ¢ = 0, n = Spec C((g)) is generic point.

3.6.1 LEMMA. There is a canonical 1-1 correspondence between the following data (i)
and (ii):
(i) A proper S-family of curves, Cs such that C, is smooth and Cy has exactly one
singular point a which is quadratic, together with formal coordinates t,,t; at a such
that q = t,1,.

(ii) A proper smooth S-family of curves C¢ together with two disjoint points a;,a; €

Cs(S) and formal coordinates t; at a;.

PROOF: Here is a construction of mutually inverse maps. Note that, according to Grothendieck,
we may replace any proper S-curve Bgs by the corresponding formal scheme Bs = the com-
pletion of Bg along By.

(i) = (ii). Let Cs,t1,t; be a (i)-data. The corresponding C¥, a;, t; are the following ones.
One has C§ = normalization of Cy, so t; define formal coordinates at points a;(0),a(0) €
C¢. To define C¢ as a formal scheme, we have to construct the corresponding sheaf 5@51 of
functions on Cy. We demand that on U = C¥\ {a1,a2} = Co\ {a} our 50; coincides with
50; . Note that any function ¢ € Ocg(V), where V C U, has Laurent series expansions
wi(ti,g) € C((ti))[lq]] at ai(0). We say that ¢ is regular at a;(0) if ¢;(t;,q) € C[[t:, q]].
This defines 50; . The points a; are defined by equations ¢; = 0.

(ii) — (i). Let C¥,ai,t; be (ii)-data. The zero fiber Cy of our curve Cg is Cy with
points a;,a; glued together. The sheaf Oc, coincides with 505 on U = Cp \ {0} =
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Cy \ {a1,a2}. For a Zariski open V C U a function ¢ € 5(;-5 (V) is regular at a if the
t;-Laurent series expansions ¢; € C((¢;))[[g]] of ¢ at a; lie in C[[¢;,22]] C C((¢;))([¢]] and
1 = 2 € C[[t1,12]]. Here the embedding C[[t,,¢:]] — C((t1)){[g]] is t1 — t1,t2 — ¢/,
and the one C[t1,2]] — C((t2))[(q]] is t1 — g/t2, t2 — t;. This defines Ocg. 0

Below we will say that a vector bundle E on a scheme X is stratified at z € X if we
are given an isomorphism E ~ A ®c Ox on a formal neighbourhood of = (here A is a

vector space; certainly A = E;).

3.6.2 LEMMA. Let Cs and C¢ be the S-curves from 3.6.1. There is natural 1-1 correspon-
dence between the data

(i) A vector bundle E on Cgs together with a stratification of E at a.

(ii) A vector bundle EV on C¥ together with a stratifications of EV at ay,a; and an
~ isomorphism of fibers E; ~ EJ,. O

ay

3.6.3 PROPOSITION. Let (Cs,E),(C¥, EVY) be the related objects from 3.6.1, 3.6.2. Then
there is a canonical stratification of a line bundle £ = det Rn.E/det RrYEY on S.

REMARK: Here “stratification” = “Stratification at 0” = (isomorphism £ ~ £y ® Og).
Note that Lo = det RT(Cy, Eo)/ det R[(Cy, EY) is naturally isomorphic to det™! E,, so
3.6.3 is canonical isomorphism det RxY(CV, EV) = det E, det Rx.(C, E).

PROOF. CONSTRUCTION: Let us compute our determinant bundles. Below we will use
notations from the proof of 3.6.1. Put A = E, = E}, = E},. Our data identifies the formal
completion E~ of E at a with A ® C[[t1,12]], and the formal completion of E%’ of EV at q;
with A®C[[t;, g]]. The restrictions of E and EV to the formal scheme I = (U, 5(;) coincide;
put P = H(U, Ely) = GmAH(U, E/q"E). Also put V = A ® {C((t2))llgl] & C((t))[lal},
Vio = A®{C[[t1, q]]®C|[t2,4]]}, V41 = AQ{C|[t1, t2]]. We may compute Rr.E, Rz} EV by
means of “adelic” complexes for our formal schemes. Namely, RrY E V = Cone(P & V4o —
V)[-1], Rr.E = Cone(P & V41 — V)[—1]; here the map P — V is minus Laurent series
expansion map, the map V4; — V is given by formula a®:7*t7 — a® {¢™t]" " +q™t3 "™}
(see the proof of 3.6.1), and V4o — V is an obvious embedding.

Note that V is a flat complete C|[[g]]-module with an obvious Tate structure (see

1.4.10), V4o, V4, arelattices in V and P is a colattice in V. So to compute our determinants
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we may use Clifford modules. Namely, take W = V & V* with the standard form (
, ); let M be a corresponding Clifford module such that My = M/qM is irreducible
Clifford module for (Wy,(, )o). Then L(P) =P & P, L(Viy) = Viy ©® V;+ are maximal
isotropic colattice and lattices respectively. A C[[g]]-version of 1.4.9 shows that coinvariants
My, py and invariants M L(Vi+) are free C[[g]]-modules of rank one, and there are canonical

isomorphisms
det RxYEV = MLVo) [My py,det Rr. E = MYV [Mpp).

Hence det Rm.E/det RrYEY = ML) /M L(Vo+), In this description of the ratio of
determinants all the “global” data that may vary (encoded in P) disappeared; we've got
the standard “local” expression for it.

It remains to fix an isomorphism v : M L(Ves) 5 ML(1+) @ det A; the desired
stratification of the ratio of determinants then will be ¥(v)/v for a non-zero generator

v (clearly it does not depend on M). Let ay,...,a¢ be a basis of A. Consider the vec-

tors ef, = ao @ t¥,ef, = aa ® t* kel a=1,..,0 Thisis a basis (in an obvious

sense) of V; denote by ek} € V* the dual basis. The vectors {ek.},k > 0, form a ba-

k

. 3 . —k . -
sis of Vpy, and the vectors f&, = ek + ¢¥ey, FE = gRerF ek, el +eloy k2 1,

form a basis of Vi4. In a bit of a non-formal way our v could be defined as follows. A

generator of ML(Ve+) is an infinite wedge product /\ ek ., a generator of M LVi+) @ det A

k>0
a,t

is /\ fE A /\(egrl +e2)® /\aa, and v just identifies these generators. To be precise,

kZI [+ 4 o
a,t

consider the elements v, = H (fk, fEeknekt) € CLff(W). These vn do not depend
1<k<n

on a choice of basis {as} in A, and it is easy to see that Yoo = limvy, € CEfW is cor-
rectly defined. Let Voy4 C Vos,Vi++ C Va4 be sublattices with bases {ef.},k > 1,
and {f¥.},k = 1, respectively. It is easy to see that Yeo(ML(Ve++)) = MLMVi+4) (pre-
cisely, 7o (ML(Vo+)) = ML(Vi+)modg™t! M). Since ML(Vos) = /\egi-ML(V°++),ML(Vx+) =

a,i

/\(eg,l +e%,;) - MLMVi+4)  we have /\(e?" —ed*)- Yoo ML(Vo+) = MLMi4) Put /\(e‘l" -
a x [+ 4

e3*) - Yoo ® /\aa € CIW ® det A. This v does not depend on a choice of basis {aqs} of 4,
o
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and the desired MZ(Vo+) | ML(Vi+) @ det A is just multiplication by ~. O

3.6.4 Let CV be a curve, aj,a; € CY, a1 # ag, be a pair of points, ¢; be a formal
parameter at a;. Consider the constant S-family C¥ := CV x S; let a; € C¥(S),t
be the “constant” points and parameters. According to 3.6.1 these define an S-curve
Cs with quadratic singularities along zero fiber and smooth generic fiber. Consider the
trivial vector bundles O, Ocy; they correspond to each other by 3.6.2 correspondence.
Note that det Rw) Ocy = det RI'(CY,0¢v) ® Os is obviously stratified, hence 3.6.3 de-
fines the stratification of det Rm.Oc, which is a natural generator ¥ of C[[g]]-module
det™? RT(CV,0¢v) ®cliq) det R7.O¢;. Let us compute v in a couple of most simple

situations.

3.6.5 Assume that C'V is a disjoint union of two copies of P!’s, CV = P[P}, q; €
Pl,as € P} are “zero” points, t; are standard parameters at a;. Then the S-curve Cs
is compactification of the family of affine curves A2 — S, ¢ = t2t5. This is a genus 0
curve, hence Rr.O¢c, = Og, so we have a canonical trivialization o of det R7,.O¢g of
“global” origin. In fact, it coincides with our vy. To see this, note that (in the notations
of proof of 3.6.3) in our case P is colattice with basis {¢¥,ef},k < 0, so one has P &
Vi4+ =V = P ® Vo44. The operator (eJ + €3)- identifies ML(Vi++) with ML(Vi+) hence
det Rm.Oc, = MIMi++) /M L(p)- The “global” trivialization & comes from isomorphism
MLVits) = Mr(py, m — m mod L(P)M. The trivialization 4 comes from composition
MEMVies) - M L(Vo++) — M (py where the first arrow is inverse to multiplication by 7Yoo
and the second one is projection m — m mod L(P)M. Since ff = ef mod Pfor k > 1, the
formula for v., shows that this composition coincides with projection ML(Vi++) — M L(P)»

hence a = v.

3.6.6 Assume now that CV = P!, a; = 0,a; = oo and t;¢, are standard parameters ¢ and
t~1 respectively. Then the curve Cs coincides with standard Tate’s elliptic curve (see,
e.g., [DR]), ¢ is a standard parameter on moduli space of elliptic curves at co. The Tate
curve carries a canonical relative 1-form v (that corresponds to standard invariant form
on G, via Tate’s uniformization). One has R°7,O¢; = Os, R'7.O¢; = (R'Towcs)*

by Serre’s duality (here wc; is relative dualizing sheaf), hence det Rm.O¢, = R°m.we;
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and v is a canonical trivialization of det Rm.Ocs. Let us calculate . The colattice
P has basis {e¥ + e5},k € Z. One has Os = R°7.0¢c; = Os(el + €3) = PN Wiy,
R'n,Ocy, =V/P + Vi4 = V/P + Vi44. The relative differential v in local coordinates ¢;
is dttl = —%, and Serre duality is the sum of local residues at a;. Hence the functional
v € (R'm.Ocs)* = (V/P 4+ V14)* C V* is €2* — eJ*. As above, the multiplication by
€9 + € identifies ML(Vi++) with ML) hence det Rr.Oc, = MEVi++) /My (p). The
trivialization v comes from isomorphism ML(Vi++) — M} p), m — (eIm) mod L(P)M.
The trivialization v comes from composition M LVit+) - M L(Vo++) — Mp(py where
the first arrow is inverse to multipliéation by Yoo isomorphism ML(Vo++) - M LVigs)

and the second arrow is m — (eIm) mod L(P)M. Since ff = (1 — ¢*)ef mod P,

¥ = (1 — ¢¥)et mod P we see that v = [H(l —~ ¢*¥)?]v, or, in terms of Dedekind’s
k>1
n-function n(q) = q1/24H(1 — ¢*), one has
k>1

v = ¢ Y1n(g)v.

One may reformulate this as follows. Recall that the line bundle A =det R7,.Oc = m.wc on
moduli space of elliptic curves carries a canonical global integrable connection V such that
the discriminant A is a global horizontal section of A®1? (with respect to the corresponding
connection on A%®12). Since A = (n(g)v)?, we see that our v is a horizontal section of a

connection V + -113%11.
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§4. FusioN CATEGORIES

4.1 Recollections from symplectic linear algebra. Let V be a symplectic R-vector
space of dimension 2g with symplectic form ( , ). To (V,{, )) there corresponds a

canonical transitive groupoid 7y. In 1.1-1.3 below we give three different constructions of

Tv. Assume first that V # 0.

4.1.1 Let H = Hy be the Siegel upper half plane of V. A point of H is a complex
Lagrangian subspace L C V¢ :=V ® C such that i(z,Z) > 0 for z # 0 € L. Equivalently,
one may consider a point of H as a complex structure £ on V such that the form (-,i,-) is
symmetric and positive definite; here i, € End V is multiplication by i € C with respect
to £ (the 1-1 correspondence £ «— L is { — L, := the i-eigenspace of 14, L — £ :=
the complex structure that comes from the isomorphism V— Vg /L). The space H is a
complex variety, and the L’s form a rank g holomorphic bundle £ on H. Put A:=detL:
this is a holomorphic line bundle on H. Denote by H the space of A®2 \ { zero section };
the projection H — H is a C*-fibration. Let H be the space of C®-sections H — H. One

has obvious maps
@ He—HxH—H, ¢—i(p, h) — ©(h). (4.1.1.1)

Since H is contractible, these are homotopy equivalences. Note that for any a € H
the map 14 : S — H, ia(e*?) := e'%q, is a homotopy equivalence which defines a canonical
identification

m(H,a) = 1. (4.1.1.2)

For a topological space X let T7(X) be the fundamental groupoid of X: its objects

are points of X, and its morphisms are homotopy classes of paths. Put 7, := T(I} )-

4.1.2 Denote by A = Ay the grassmannian of real non-oriented Lagrangian planes of V;
the planes form a canonical Lagrangian sub-bundle Lg of V) :=V X A. Put Ag := det Lg:
this is a real line sub-bundle of A9V} . Let A’ be the space Ag\ {zero section}/£1: the map
z — z2? identifies A’ with the “positive ray” of /\32. The obvious projection A’ — A is

an R -torsor, hence a homotopy equivalence. One has a canonical map
v:A'— H (4.1.2.1)
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defined by the formula v(z2)(k) = A%, where A € det Ly C A9V is the unique vector such
that vol(z A A) =1 (here vol= (—y’!-l € A%9V* is the canonical volume). The map v induces
an isomorphism of fundamental groups. Put 7\/ := T(A). According to (1.1.1), 1.2.1) we

have a canonical equivalence of groupoids
a:Ty— T). (4.1.2.2)

4.1.3 Here is the third construction of Ty. For 3 Lagrangian planes one defines, according
to Kashiwara, their Maslov index 7(Lj, L2, L3) as the signature of the quadratic form B
on Ly ® Ly ® L3 given by the formula B(z,z2,23) = (z1,z2) + (z2,73) + (z3,71) (see
[LV] ( )). Let 7y be the following groupoid. Its set of objects is A. For L;,L; € A we
put HOInT","(Ll,Lg) = Z, and the composition of morphisms L, 23 L,-= L3 is given by
the formula mon := m +n + (L1, Ly, L3). Since 7 satisfies a cocycle formula [LV] (),
the composition is associative. |

Let us define a canonical isomorphism
B:Ty = Ty (4.1.3.1)

which is the identity on objects. To construct 8 we need to choose for each pair L, Lz € A

a canonical path v, 1, € HOIDT",'(LQ, L;) such that

YLgL, © YLoLy = YLaL, + T(L19 L2, L3)- (4132)

Then one defines 3 by the formula B(n) = n +vi,,L, for n € Homg, (L2, L) = Z (récall
that Homgy (L2, L1) is a Z-torsor by 1.1.2).

To define vz, 1, consider the subset U, 1, C A that consists of L’s such that Li+L,D
LOLiNLy=LNL =LNL;. Aplane L € U, 1, defines a quadratic form ¢ on
Ly/L; N Ly by the formula ¢ (a) = (b,a) where b € L, is a vector such that b+a € L. In
this way one gets a 1-1 correspondence between Ur, 1, and the set of all non-degenerate
forms on Ly/Ly N La. Let U}J*'1 L, CULL, be the subspace that corresponds to positive-
definite forms, so U{l L, 18 contractible. Now v, 1, is the unique homotopy path from L,

to L, which, apart from its ends, lies in UZ'l 1,- One verifies (4.1.3.2) immediately.
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4.1.4 Below we will denote by Ty either of the groupoids 73, 7y/, T\/' identified via (4.1.2.2),
(4.1.3.1). In case V = 0, the groupoid Tv, by definition, has a single object 0 with End 0
= Z. For any V and y € Ty we will denote by 4o the generator 1 € Z = Aut y.

4.1.5 The groupoid Ty has the following functorial properties. Let V be a symplectic
space, N C V a vector subspace such that { )|y =0, and let N+ be the { )-orthogonal
complement to N. Then N+/N has an obvious symplectic structure. Since the pre-
image of a Lagrangian plane in N1 /N is a Lagrangian plane in V', we have an embedding

ANi/N — Ay, which defines a canonical equivalence of groupoids Ty, IN = Tyv.

4.1.6 Now let V7, V, be symplectic spaces. One has an obvious map Ay, X Ay, — Ay, gw,,
(L1,L2) — Ly & Lo, and a similar map ﬁvl X ﬁv, —_— I?V@Vz’ which comes fmm
multiplication det®? L; x det®? L, — det®? L, @ det®? L, = det®?(L; ® L2). These define
morphisms between corresponding fundamental groupoids, compatible with the canonical

equivalences (4.1.2.2). Hence we have a canonical morphism 7Ty, X Ty, — Tv,gv;.

4.2 The Teichmiiller groupoid. Here are two definitions: a “combinatorial” or “topo-
logical” one and a “holomorphic” one.
4.2.1 An object of the “topological” Teichmiiller groupoid Teich' is an oriented surface S
(possibly non-connected and with boundary) together with a set of points Ps = {zq} of
the boundary 95 such that each connected component of 85 contains exactly one z, (we
will denote this component 85;_). The morphisms are isotopy classes of diffeomorphisms.

Let us define an “enhanced” groupoid Teich . For a surface S denote by H(S) the
image of the canonical map H!(S,R) — H!(S,R) (which is the same as cohomology
of a smooth compactification of S). An orientation of S defines a symplectic structure
on H(S) (intersection pairing). Now an object of Teich is a triple (S, Ps,y), where
(S, Ps) € Teich' and y € Tu(s)- A morphism (S, Ps,y) — (S', Psr,y') is a pair (p,7),
where ¢ : (S, Ps) — (S, Ps) is a morphism in Teich’, and 7 : @.(y) — ¥’ is a morphism
in Ty (s); the composition of morphisms is obvious.

The projection Teich — Teich', (S, Ps,y) — (S, Ps), is surjective. For any (S, Ps,y)
T;Eh, the group Autq—,:;:h:(s, Ps,y) is a central extension of Autreicn(S,Ps) by (=
Autry 5, (y)). So we may say that Tzzh’ is a central extension of Teich' by Z. We will
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denote the generator of this Z by 7o.

Consider the functor Teich! — Sets, (S, Ps) — Ps = set of boundary components
of S. Clearly Teich' is a fibered category over the groupoid of finite sets. For a finite set A
denote by Teich’, the fiber over A (the objects of this groupoid are pairs ((S, Ps), v), where
(S, Ps) € Teich', and v : Ps — A is a bijection). For a bijection f: A o B, X € Teich),
Y € Teich'y we will denote by Hom(X,Y) the set of f-morphisms (i.e., the ones that
induce f on the sets of boundary components). We put Aut’(S, Ps) = Autia,_(S, Ps)-
We will use the same notations for Teich .

For (S, Ps) € Teich' and zo € Ps we denote by d;, € Aut®(S, Ps) the Dehn twist
around 8S;,. Since d;, acts as the identity on H(S) it lifts to the element (d.,,idy) €
Autg:;c,h,(s, Ps,y), which we will also denote by d;,. These d;, lie in the center. In
particular, we have a canonical morphism 275 — Aut®(S, Ps), (nz,) — [Mdzz=; Z x

Ta
ZFs — Aut®(S, Ps,'y), (ny,nz, ) r— 7:” X Hd2:°.

4.2.2 Here is a “holomorphic” definition of the Teichmiiller groupoid. An object of Teich”
is a complex curve C (smooth, projective, possibly reducible) together with a finite set
of points Pc = {ya} C C equipped with non-zero co-tangent vectors vy € Qlc,y,,' The
morphisms are 1-parameter C*-class families of such objects connecting two given ones,
these families being considered up to homotopy. In other words, Teich” is the Poincaré
groupoid of the modular stack M of the above structures. In the same way, ngh" is the
Poincaré groupoid of the modular stack M of the data (C,Ya»Va,y), where (C,ya,va) €
M, and y € det®?(H(C, QL)) \ {0}. Clearly, the second modular stack is a C*-fibration

—~—
over the first one, hence Teich is a Z(= m;(C*))-extension of Teich”.

4.2.3 The groupoids Teich' and Teich”, are canonically equivalent, as are Teich and
To define this equivalence, take (S, Ps) € Teich'. Consider the data (u; {ra}),

—

Teich
where p is a complex structure on S, and 7o : S? = {z € C : |z| = 1} 85, is
a parametrization such that ro(1) = zo and r, extends p-holomorphically to the ring
{z€ C:1< |z| £1+ ¢€}. We may glue a collection of unit discs Do = {z € C: |z]| <1}
(with their standard complex structure) to S using ro. Denote the corresponding complex

curve C = C(S, Ps;(p,74)). It is equipped with the set of points yo =0 € D,, and the
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cotangent vectors v, = dzg € Qt . Hence C(S, Ps;(#,7a)) € Teich”. It is easy to see that
for given (S, Ps) the data (y; {rq}) form a contractible space. So (S, Ps) € Teich' defines
a canonical “homotopy point” in Teich”. In this way we get a morphism of groupoids
Teich! — Teich" which is an equivalence of categories.

To lift this equivalence to Teich — Teich , note that H(S) = H'(C,R). The
complex structure on C defines the Hodge subspace H%(C,QL) C H(S)c, which is a
point hc on the corresponding Siegel half plane (see 4.1.1). Now let us interpret Ty (g
as a fundamental groupoid of the space denoted by H in (4.1.1.1). For y € Ty(s) put
yo = y(hc) € det®?(H(C, QL)) \ {0}. Our equivalence Teich — Teich is given by
the formula (S, Ps,y) — (C, ¥a, Va, ¥C)-

4.2.4 The above equivalence transforms 7, to the loop § — (C, ya, Va, €'%y), and trans-

forms the Dehn twist d;, to the loop 6 — (C, ya, ei96gua, Y).

4.3 Operations in Teich. We will need the following ones:

(i) One has a functor “disjoint union” ] : Teich x Teich — Teich. According to 1.1.6 it
lifts in a canonical way to a functor [] : Teich x Teich — Teich. Clearly Teich, Teich are
strictly commutative monoidal categories, and the projection Teich — Sets, (S, Ps) —
Pg, commutes with [].

(ii) Deleting of a point. For a finite set A and @« € A one has a canonical functor
del, : Teichy — TeichA\{a},T’;z?c’hA — T’;;'-c’hA\{a}. In “holomorphic” language (4.2.2)
this functor just deletes yq4,vo. In “topological” language (4.2.1) one should delete the
component 35, by glueing a “cup” to 45y, .

(iii) Sewing. Let A be a finite set, and a, 8 € 4, a # B, two elements. One has a canonical
Sewing Functor Sa g : Teicha — Teichi\{a,s5), T:i?hA — T’eNi-c’hA\{a,ﬂ}. Let us define
Sa,p in combinatorial language first. For a surface (S, A) € Teich’ choose a diffeomorphism
@ : 8S:, = 98S:,, v(za) = xp, reversing orientations. Our S,,5(S,4) € Teichk\{a’ﬂ}
is S with two boundary components identified by means of ¢. Since the ¢’s form a
contractible space, this surface does not depend on the choice of ¢. Note that either
H(S) = H(Sa,5(S,A)) (if « and S lie in different connected components of S), or H(S)

coincides with a subquotient of H(S,,4(S, A)) in a manner described in 4.1.5. In any case
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one has a canonical equivalence Ty(s)y = 7TH(s, 5(5,4))- Lhis defines Sq 5 : Tgéh'A —

Teich g\ (a.0}-

4.3.1 To define S, s in holomorphic language, take (C,y,vy) € Teich!,. Consider a
curve Cq g with a single quadratic singularity obtained from C by “clutching” y, and
yp together. One knows that curves with a single quadratic singularity form a smooth
part of the divisor of singular curves in the modular stack M A\{a,s) of curves with at
most quadratic singularities. The fiber of the normal bundle N to this divisor at Cq g is
canonically identified with T¢,;, ®Tc,y,. Hence v3? -V;l is a non-zero vector of this normal
bundle. It defines a “point at infinity” of the modular stack M 4\ (4,4} of smooth curves (for
a detailed account on “points at infinity” see [D]), which is a correctly defined (up to unique
canonical isomorphism) object Sa,5(C,y+,vy) € Teichly, (4 5y- To Lift glap to a functor
between T’esi-éh"’s, notice that the line bundle A over M with fibers A¢ := det H*(C, QL)
extends canonically to a line bundle A over M: if C' has quadratic singularities, one has
Ac' := det H%(C,wcr), where wer is the dualizing sheaf. Define the C*-bundle ./‘\zfi - M
to be A®2 \ {zero section}. Recall that for any C' € M one has a canonical isomorphism
A& = /\%2, where C' is the normalization of C' (recall that wer /wg, is a skyscraper sheaf,
supported at singular points, trivialized canonically up to sign using residues). Hence the
fibers of M over (C,y~,vy) and Sq,8(C, y~, Vo) are nearby fibers of the same C*-fibration,
hence one has a canonical identification of their fundamental groupoids. This defines the
desired lifting Sq,g : T?i?h: — T;'—c’h’:‘\{a, 3} 1t is easy to verify that the equivalence 4.2.3

identifies the above “topological” and “holomorphic” constructions of Sa,g.

4.3.2 It is convenient to consider both sewing and deleting of points simultaneously. To
do this, consider a category, Sets¥, whose objects are finite sets, and whose morphisms
f : A — B are pairs (if,$s), where iy : B — A is an embedding, and ¢5 = {¢ss}
is a collection of two-element mutually non-intersecting subsets ¢s5 of A \ iy(B). The
composition is obvious: if g : B — C is another morphism, then g o f = (if 0,4, 5 U ¢g).
For f as above we put 4} := I_I¢f5, A%} = A\ (is(B)U A}), so A =ig(B)[I A1 4}
Now for any morphism f :6A — B we have a canonical functor f, : Teichy — Teichp,

Teich A— Teichp that deletes points in A% and sews pairwise points in all ¢ss’s. One has
f f
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(g0 f)e = geo f., and each f, is a composition of elementary deletings of a single point, and
glueing of a single pair. Clearly these f.’s define a cofibered categories Teich#, T:z'_c—h#
over Sets# with old fibers Teich 4, Teich A, respectively.

Note that all these categories are strictly commutative monoidal categories with re-

spect to “disjoint union” operation [[; all the functors commute with [].

4.4 Representations of Teich; central charge. Let A be a finite set. Denote by R4
the category of finite dimensional C-representations of Teich4 (i.e., the objects of R 4 are
functors L : Teichg — Vect), and by 73,4 the same for TgEhA. More generally, if Q is a
component (i.e., a full subcategory) of Teich 4, we denote by R4 o the category of repre-
sentations of @, identified with the full subcategory of R 4 that consists of representations
supported on Q. For a representation V € R 4 and X € Teich 4 we denote by Vx the
value of V at X.

4.4.1 Definition. A representation V € R A has multiplicative central charge a € C* if
for any X € Teich the canonical element Y0 € AutX acts on Vx as multiplication by a. [J

For any a € C* denote by Ro4 C R 4 the full subcategory of representations of central
charge a. In particular, Ri4 = R 4.

For any morphism f : A — B in Sets# the functor f, : Teich A— Teich B defines the
corresponding functor f* : R — 714; one has f*(R,p) C Roa. The functors f* define
a category R* fibered over Sets* with fibers Ra, together with fibered subcategories
R# C R#* with fibers Ro4.

4.4.2 Here is an explicit description of representations. From a combinatorial point of view
a representations V € Ra assigns to each surface (S, A) € Teichy a local system Vs on
Lagrangian grassmanian Ay (g (see 4.1.2), and to each ¢ € Hom((S, A),(S’, A)) a lifting
of the corresponding diffeomorphism Ag(s) — Ap(s) to Vs — V. This V lies in Rq4 if
the monodromy matrix of the loop 70 =1 € Z = m1(Ay(s)) coincides with multiplication

by a.

4.4.3 From a holomorphic point of view our V is a local system on the modular stack M A}
V lies in R, 4 if the monodromy around the fiber of the projection = : M A — M4 equals
multiplication by a.
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Recall that C-local systems on smooth algebraic manifolds can be identified with
algebraic vector bundles with integrable connections (= lisse D-modules) having regular
singularities at infinity (see [D], [Bo]). So our V is a lisse D- module on M 4 with regular
singularities at co. Assume that V € Rq4. Choose c € Z (“additive central charge”) such
that exp(2rwic) = a. Let Dxc = D 4a) be the ring of differential operators on the “line
bundle” A®¢. This is a twisted differential operator ring on M4 (see 3.2.6-3.2.8). Recall
that Dyc-modules can be identified canonically with D-modules on M A, monodromic along
the fibers of # with monodromy a (see, e.g., [V]). In particular, V is a lisse Dy.-module

on M 4 having regular singularities at oo.

4.5 Axioms of a fusion category. We will start with preliminary data.

4.5.1 Let A be an abelian C-category (“category of modules”). We assume that A is
semisimple, for X € A the C-vector space EndX is finite dimensional, and there are
finitely many isomorphism classes of irreducibles. Denote by IrrA the set of isomorphism
classes of irreducible objects in A.

We should also have the following data:

- a contravariant functor (“duality”) * : A° — A together with a natural isomorphism
*x — idy

- a distinguished irreducible object (“vacuum module”) 1 together with an isomor-
phism v : 1 —» =* 1 such that x(v) ov = idy.

— an automorphism d of the identity functor id4, called the Dehn automorphism,
such that d* = *d and dy = 1. Clearly to give d is the same as giving a collection of
numbers d; = dj; € C* for j € IrrA (here I; is an irreducible object of class j; recall that
Autl; = C*).

4.5.2 For any finite set B we have a category A®B: this is an abelian C-category equipped

with a polylinear functor ® : AZ = HAb — A®B (Xy)bep — ®Xb, which
_ bEB beB
is universal in an obvious sense (see [D] § for an extensive discussion in a less trivial

situation). The category A®2 is semisimple. Its irreducible objects are tensor products
of irreducibles in A, so IrrA®B = (IrrA)B. Any isomorphism ¢ : B — B’ induces a

canonical equivalence A®2 — A®B' @X) — @Xp-1(p)-
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4.5.3 We put A®? = Vect. One may identify A®{1:2} = A®? with the category of C-
linear functors F' = A° — A. Namely, to an object X ® Y € A®2? there corresponds the
functor Fxgy defined by formula Fxgy(Z) = Hom(Z,X) ® Y. We define a canonical
object (“regular representation”) R € A®? as an object that corresponds to the functor
*: A° — A. Here is an explicit construction of R. For each j € IrrA pick an irreducible
object I; of class j. Then one has a canonical isomorphism R = &b jerrrali @ *I;. Note
that R is s'ymmetric: for the transposition ¢ = {1,2} acting on A®? one has a canonical

isomorphism o(R) = R. So for any two element set B we have a canonical object Rp €
A®B,

4.5.4 For finite sets 4, B and a morphism f : A — B in Sets* (see 4.3.2) we define a
C-linear functor f* : A®2 — A®4 by the formula

FRx)=| & Xz | ® Q) identa| ® | @ Fors

bEB a€is(B) a€A} br5€0s

Clearly (g o f)* = f* 0 g*, so the f*'s define a fibered category A# over Sets# with fibers
Aﬁ = A®4_ The tensor product functor ® : A®B1 x A®B: —, A®(B IIB2) defines on A#
the structure of commutative monoidal category such that the projection A% — § ets# is

a monoidal functor.

4.5.4 DEFINITION. A fusion structure on A is a collection of functors { ) : A®4 x
Teichy — Vect, (X,S) — (X)s (here A is any finite set), together with natural
isomomorphism (i), (ii):
() (X ®Y)sur = (X)s® (V)T for X € A®4.Y € A®B S € Teicha,T € Teichp.
(i) (f*X)r = (X)y.1 for any morphism f : A — B in Sets*, X € A®B T € Teicha.
These isomorphisms should be compatible in an obvious sense. We also demand that:
a. For fixed S € Teich the functor { )s: A®4 — Vect is additive.
b. ( ) transforms Dehn automorphism to Dehn twist, i.e., for a finite set A, an element
o € A and a collection of objects X, € A, v € A, the automorphisms of (®X4)s

induced by ®idx,, ® dx, € Aut ® X, and by d, € AutS coincide.

TFa
c. { ) is non degenerate in the sense that for any non-zero X € A there exists Y € A

such that (X ® Y)s, # 0 where Sg is a 2-sphere with two punctures.
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We will say that (A,( )) is a fusion category of multiplicative central charge a € C*
if for any X € A®4 the representation (X) of Teich lies in Rqa. O

4.5.5 Clearly (i) just means that X ~—— (X) is a cartesian functor A#¥ — R# between
categories fibered over Sets*. Since any morphism in Sets# is a successive deleting of

points and sewing of couples of points, we may rewrite (ii) as two compatibilities. Namely
(i) (X)det, s = (X ® identq)s for any finite set A, a € 4, X € A®4\Ma} g ¢ T;;::hA.

(i1)" (X)sa..55 = (X ® Ragp)s for any finite set A, a pair of elements o, € A,a # 5,X €
A®AN@BY 5 € Teich,.

4.5.6 Here is a reformulation of 4.5.5(ii)” in “holomorphic” language 4.4.3. For X €
A®AM@A} Gur (X) is a lisse Dyc-module with regular singularities at infinity. As was
explained in 4.3.1 we have a canonical surjective smooth maﬁ ™ : M4 — N\{zero section},
where N is the normal bundle to the (smooth part of) the divisor at infinity of M 4\{a,4)-
We have the canonical specialization function Sp that assigns to a lisse Dxc.-module with
regular singularities at infinity on M 4\ (4,4}, the one on N\ {zero section}. Hence we have

the Djyc-module 7*Sp(X) on M 4, and 4.5.5 (ii)’ is an isomorphism 7*Sp(X) = (X @ Rag).-

4.6 Fusion functors. Let (A,{ )) be a fusion category. Let A, B be finite sets. Any
object S € Teichaup defines a functor Fg = f?’B : A®4 . A®B by the formula
Hom(Fs(X),Y) = (X @ +Y)*, X € A®A)Y € A®B. We will call Fs the fusion func-
tor along S. The automorphisms of S act as automorphisms of 5. Note that if B = §
then A®B = Vect and Fs = ( )s. If A =0, then F is a functor Teichg — A®B ie. an

A®B_valued representation of Teich B-

Let C be a third finite set, T € T;?éhguc. We define To S € T:i:hAuc as the surface
obtained from T U S by sewing the B-boundary components.

4.6.1 LEMMA. There is a canonical isomorphism of functors Fro.s = Fs o Fr : A4 o
A®C
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PRroOF: For X € A®4, Z € A®C one has

Hom(Fres(X),Z) = (X ®*Z)1es | = (X ®@R®F @*Z)7, 5

4.5.4(ii)

4.5.433) I'EIGT?AM(X Q@ *I5)s ®@({I; @ xZ) T
J

= P Hom(Fs(X),I;) ® Hom(Fr(I3), Z) = Hom(Fr o Fs(X), Z).

The last equality comes since
Fs(X) = @Hom(Fs(X), I;)* ® I;.

d

Now assume that A = {0}, B = {c0} are one point sets. Let Teich'{%’oo} C Teichly o)
be the full subcategory of “cylinders”. So Teich'{%’ o0} is a connected groupoid; for (5,0, 00) €
Teich({’o,w} the group (of its automorphisms) is a free abelian group with generator dy =
d7!. Denote by So = (So,0,00) the object of Teich%ovw} such that for any (S5,0,00) €
Teich?o,m} one has Hom(S,,S) = { set of homotopy classes of paths in S connecting
0 and oo}. This is a canonical object of Teich'{%m}. Its “holomorphic” counterpart is
(P, 0, 00,dt(0),dt"1(c0)) € Teich’{’g'w}, where t is a standard parameter on P!. One
identifies this point of Teich” with Sy canonically by drawing the path Ryo from 0 to
oo. Note that since H(S) = 0 for S € Teichl{%,oo} we have an obvious embedding
Teich'{%,oo} > T’;‘i—c—h'{o‘w}; the “holomorphic” counterpart of this section comes since
the line bundle A is canonically trivialized over the “moduli space” of genus zero curves.
So we will consider Sy as a canonical object of T;Eh{o,oo}. Note that if A is any finite
set and T € Teich Auf{o}, then one has an obvious canonical isomorphism Sp o T = T.

According to 4.6.1 this gives a canonical isomorphism of functors Fg, o Fr = Fr. In fact,

one has

4.6.2 LEMMA. There is a canonical isomorphism of functors s, = id4 : A — A that

generates the above isomorphisms Fs, o Fr = Fr,for all T € Teich Au{o}-

PROOF: Assume that we know that Fg, is an equivalence of categories. Then the desired

isomorphism Fs, = td4 would be Fg Y(Fs, o Fs, = Fs,). Since A is semi-simple, to see
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that Fs, is an equivalence it suffices to prove that Fs, induces the identity map of the
Grothendieck group K'(.A). The irreducible I; form the basis in K (A). Put Fs, (L) = f/I;;
we have to show that f/ = 6. We know that fle Z5o. Since f! = (I; ® x1;)%, we see,
by 4.5.4c, that any row or column of the matrix f;’ is non-zero. Since F‘éo = Fg,, these
properties imply that Fs, = idg(4) (just note that f_éo(I,-) = Fs,(1;) implies Fs, induces
a transposition of the set of those I;’s that ff # 0; hence Fg, is a surjective endomorphism

of K(A), and hence it is the identity). O

4.6.3 Assume now that S is a connected surface of genus 0 and B is a one point set. Then
the corresponding functors Fs : A®4 — A, together with * and d from 4.5.1, define on
A the-structure of a balanced rigid tensor category (see, e.g. [K]). Here are some details.
Denote by S, the surface obtained from a unit disc by cutting out n holes with centers on

the real line; the marked points lie on the real line to the right:
S3: o* o*? o*s Too

Putwfsn (X1 ® - ®Xn) = X1®---8X,. The axiom 1.5.4 (ii)" implies immedi-
ately that the operation ® : A" — A is strictly associative: one has X;®X.®X; =
(X18X2)®Xs = X, &(X28X3). Consider the following diffeomorphism o of S, that fixes
0S2:,, and interchanges 8S,;, and 8S,,, (we move the holes in a way that the marked

point remain on the very right of the hole):

This diffeomorphism induces a natural isomorphism ox, X, ' X1 RX, —= X3 ®X;. It is
easy to see that o satisfies the braid relations, and also one has a relation ¢? = d, d;}d;}
in AutSs. These imply the hexagon axiom for ®, and the axiom crg(1 X, = d X, 8%, ©
(dx,®dx,)~! of balanced tensor categories.
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4.7 The fusion algebra. The above tensor structure on A defines a commutative ring
structure on the Grothendieck group K(A). One calls K(.A) the fusion algebra of A. Note
that K(A) has a distinguished basis {I;} of irreducibles. By 4.5.5 (ii)’ the base element 1
that corresponds to vacuum module is the unit in K(A).

Now 4.6.2 implies that (K (.A),{I;}) is a based ring in the sense of [L] 1.1. According
to [L] 1.2, K(A)® Q is a semisimple algebra. Hence K(A)® C has another canonical basis
— the one that consists of mutually orthogonal idempotents.

Let T be a torus (= oriented genus one surface). Choose a basis 1,72 in Hy(T,Z)
compatible with the orientation, so that ~1,72 are cycles on T that intersect at one point
a. Consider the vector space (1)7. Note that if we cut T along 4;, then 2 will become a
path that connects two copies of a on the components of the boundary, hence it identifies
this surface with the surface Sy of 4.6.2. According to 4.5.5 (ii)", 4.6.2, the corresponding
decomposition 4.5.5(i1)" gives the basis in (1)7 numbered by irreducibles in A, i.e., we have
the isomorphism i, 4, : K(A)®C — (1)7 that transforms I;’s to this basis. Interchanging
v and ¥2 we get the isomorphism ¢4,,—4, : K(AA)® C — (1)7. The composition i:,'zl’_,n o
tyy,ve € Aut K (A)RC is called the Fourier transform. According to the Verlinde conjecture,

proved by Moore-Zeiberg, the Fourier transform maps a canonical basis {I;} of irreducibles

to the basis proportional to one of the idempotents.
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§6. ALGEBRAIC FIELD THEORIES

6.1 Axioms. Let c € C be any complex number. An algebraic rational field theory
(in dimension 1) of central charge ¢ consists of data (i) - (iv) subject to axioms a-g below:
6.1.1 |
(i) A fusion category A of multiplicative central charge exp(2nic) (see 4.5.4)
(ii) An additive “realization” functor r : A — (T, V;).-mod (see 3.4.7).
We assume that for any X € A
a. r(X) is a higher weight module, i.e., the “coordinate module” (X)), dt(o) 1s a
(direct) sum of generalized eigenspaces r(X)¢((1),a = {m € r(X) ()
(Lo = M)¥m = 0 for N > 0} for the operator Lo (see 3.4.7, 7.3.1). Each
r(X)e(epr A €C, is a finite dimensional vector space.
b. r(dx) = Trx), where dx is the Dehn automorphism (see 4.5.1) and T is the
monodromy automorphism (see 7.3.2).
Note that these axioms imply that 7(1) is actually a (’I~',V)c-module (since Tp(p) =
idp(1).
(111) A fixed “vacuum” vector 1 € Homy(C,r(1)).
We assume that
c. 1 18 a nmom-zero vector invariant with respect to the action of sop(T-1r) C i’p

(see 3.4.1).

6.1.2. Now let S be a smooth scheme, 7 : Cs — S a family of smooth projective curves,
A C Cs(S) a finite disjoint set of sections, and {v,}.c4 l-jets of parameters at points
in A. This collection defines S-localization data . for (7.4, V) (see 3.4.7, 3.4.5). The
corresponding algebra of twisted differential operators Dy, coincides with Dy (see 3.5.6).
Hence, by 3.3.5, we have the S-localization functor Ay_or®4 : A®4 — D).-mod. On the
other hand, by 4.5.4, 4.4.3, the fusion structure on A defines the functor { )¢, : A®4 —
Djc-mod such that for any ®X, € A®4 the corresponding Dxc-module (®X,.)cs is lisse
with regular singularities at infinity. Our next data is

(iv) A morphism of functors v: Ay, 0r®4 — ( )¢,.

For X € A®4 denote by r(X)a,cs = "(X)A.w.,cs the Os-module that corresponds to
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the S-object “formal completion of Cs at A with 1-jet of parameters v4” of VA (see 3.4.3,
3.4.6, 3.4.7). If X = ®X,, then r(X)a,cs = ®0s7(Xa)a,cs- Recall that Ay, o r®4(X),
considered as an Os-module, is a quotient of 7(X)4,c;. For any section ¢ of r(X)a,cs
put (p)cs = 7(®) € (X)cs. This is the “correlator of the field ¢ along Cs”.

The following axioms should hold:

d. v commutes with base change, i.e., v is a morphism of Dy.-modules on the mod-

ular stack M 4.
e. For a € A, objects X € A®AMe} gnd o section ¢ € r(S,r(X)a,cs) one has
(P)es = (p®la)cs. Here (p)c; is a section of (X)cs (we forget about the point
a), and (¥ ® 14)c; is a section of (X® 1,)¢,; the two Dy -modules are identified
via 4.5.5 (ii)".
6.1.3 Now consider the two pointed curve Cy = (P?,0, 00,d%(0),dt~!(c0)). We have coor-
dinates ¢ at 0 and ¢~! at oo. For any object X € A consider the pairing

()co 1 r(xX)e((ry) ® (X )e(e-1)) = r(*X)c,; ® 1(X)coso — (*X ® X)¢, s, End X

Here we write simply C((t)) for (C((t)),dt(0)) € V. This pairing is a morphism of

End X-bimodules, hence it defines a linear map
1: T(*X)C((t)) - HomEnd X(T(.X)C((t—l)),End X) = T(X)::((t-l))‘

Note that r(X )E((t-l)) is a f’c((,-l))-module in an obvious manner. Denote by
*(X)e(e~1y) C r(X)E((t‘l)) the sum of generalized eigenspaces of the operator Ly € Z¢((yy).
The pairing ( )¢, is T(P!\ {0, 00})-invariant (by definition of Ay, see 3.4.4), hence i com-
mutes with the the Lo-action. By axiom a above we see that i(r(*X )¢ () C *r(X)e(e-1))-
Our next axiom is

f. The map v : r(*X)¢(ryy — *r(X)e((t-1)) 18 an isomorphism of vector spaces.

It suffices to verify f for irreducible X’s only.

6.1.4 Our final axiom g (“factorization at infinity”) describes the asymptotic expansion of

correlators near the boundary of the moduli space. So consider the following situation.
Let 7 : Cs — S = Spec C[[g]] be a proper flat family of curves such that the generic

fiber C,, is smooth and the special fiber Cy has exactly one singular point which is quadratic.
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Let B = {b;} be a finite non-empty set of sections of 7 such that the points bi(0) € Cy
are pairwise different, and let v; € bjwc, /s be a 1-jet of coordinates at the b;’s. Then
C = (Cy, bi,v;) is a C((g))-point of Mp.

Let t;,12 be formal coordinates at a such that t;¢; = ¢. According to 3.6.1 we get
a smooth S-curve Cg with points a;,a; € C¢(S) and formal coordinates ¢; at a;. Put
A = B| {a1,a2}. Then CY = (C),b;,a1,az;v5; 97 dt1(a1), dtz(az2)) is a C((q))-point of
My

The S-curves Cs and C¥ define the corresponding determinant line bundles on S.
According to 3.6.3 their ratio is canonically stratified, hence the corresponding rings of
differential operators are canonically identified; we denote this algebra D..

For any object X € A®5 we get the lisse Dyc-modules (X)¢ and (X ® R)ev on
with regular singularities at ¢ = 0. According to 4.5.6 we have a canonical isomorphism
between their specializations to ¢ = 0 (these are D-modules on the punctured tangent line
at ¢ = 0). Since Spy is an equivalence of categories, we have a canonical isomorphism of
Dje-modules (X)¢ = (X ® R)ev.

To formulate axiom g we need to consider a special vector in r(R). Recall that
R= @I,- etr adi ®*I;. Choose a basis {eJ’-"} in each r(Ij)¢((s)) compatible with grading by
generalized eigenspaces of Ly. Here, as above, we write simply C((t)) for (C((¢)), dt(0)) €
V.

Below we will use the following notation: if F' € V is any local field, ¢tz a parameter
in F, X € A and e € r(X)¢(()), then e(r,) € r(X)Fpatp(0) is a vector that corresponds
to e via the isomorphism (C((t)), dt(0)) = (F, dtr(0)), t — tp.

According to axiom f. above, we get the dual basis {*ef{} of r(*Ij)c(()), namely
el = i71el* where eX* € xr(I;)(c((t-1))t-1) is the dual basis to eﬁC((t-l)),t-’-)'

Now let © = ¢(q) be any section of r(X)p,5,c = 7(X)B,u5,cv over S. Consider the
correlator af{ = (?®C§C((tl)),q-ltl) ®*eﬁC((tg)),tz))CV: this is a section of (X @ I; @ *I;)cv.
Note that (X ® I; ® *I;)cv is a finite dimensional C((g))-vector space. One has

6.1.5 LEMMA. The series ZGJK converges; its limit (¢ ® cj)cv € (X @ I; @ *xIj)¢v does
K
not depend on a particular choice of basis {eJI-‘ }. O
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Assuming the lemma, our final axiom is

g. One has (p)c = (¢ ® ZCj)cv = Z(cp ® Cj)cv via the above canonical isomor-
J J
phism

(z)e = (X @ R)ev = ®(X ® I; ® +I,)cv.

PRrROOF OF 6.1.5: The independence of a choice of basis is straightforward. To prove that
our series converges it is convenient to add a parameter u, and consider a base scheme
S = Spec(Clu,u~1]) X S together with an S-point of M, defined by the family C) =
(C:‘é,b;,al,ag;u;,udtl,dtg). We get the lisse Dyc-module (X ® I; @ *Ij)cy on S, and a
collection of sections af (u,q) = (»(q) ® ef.fc((tl))’utl) ® *53{‘(’4:((:2)),&))0.‘.’ eT(S,(XQL®
*I;)cv). The old picture is just the restriction of this one to the diagonal u = ¢~!. Our
D-module has regular singularities along the divisor u = oo, so we may extend it to a
vector bundle V to S~ = Spec(C[u!]) x S invariant with respect ‘to operator u8,. Our
lemma would follow if we show that for any NV > 0 one has aJK (u,q) € u=NV for all but
finitely many K'’s. The action of the operator ud, on af{ (u,q) was computed in 3.4.7.1.
Namely, we have uau(af"(u, 7)) =(e(g)® Lo(ef)(c((tl)),utl) ® *eJK)cx, hence af(u, g)isa
generalized eigenvector of ud, with eigenvalue equal to an eigenvalue of L at ef( . Axiom a.

above implies that for any Z € C/Z and ¢ € R the space @ r(Ii)ewu C r(Li)cuw)

p=pu mod Z
Re u>c

is finite dimensional. On the other hand, since (X ® I; ® *I;)cy is a lisse module, there are
only finitely many % € C/Z such that one has a section which is a generalized eigenvector

of u8, with eigenvalue mod Z equal to @. This implies that for any ¢ € R all but finitely

many af( ’s are generalized eigenvectors of ud, with Re (eigenvalue) < ¢. This implies that
all but finitely many of them lie in u=NV. O

6.1.6 REMARK: We may consider the situation when a smooth curve degenerates to a
curve with several quadratic singular points. One trivially reformulates axiom g for this
situation; it is easy to see that this generalized version follows from axiom g. above (the

case of one singular point).

6.1.7 Here is an example of how axiom g works. Let C be a fixed curve, A C C a finite set,
{v.}, a € A, 1-jets of coordinates at a’s, X € A®4 and ¢ € r(X)a,c. Let € C\ Abea
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point, t; a parameter at  and Ay, ..., A, € C distinct complex numbers. Let z;(¢) be C[[q]]
points of C defined by the formula z;(0) = z,t:(zi(q)) = Aig. Put t; =t,;,, — A;: these are
parameters at z;’s for ¢ # 0. Let ¥1,...,Y, be objectsin A, ¥; € r(Y;)¢((r)). We would like
to compute (¢ € ¥1(c((11)),t1) O O¥n(C((tn)),ta))C E (X OY1® - ®Y0)(C,A,{z:} w4, dt:(z:)-
To do it one should blow up the point (z,0) € Cs = C x §; denote this curve C§. Clearly
A, {z;} are S-points of Cg, and we have parameters ¢,,q/t, at the (only) singular point
of C§. The corresponding S-curve C'_Igv is constant: one has Cfgv = Cs [ P%; the formal
parameters at a; = z € Cs, az = o0 € Pk are t;, t~1, respectively. We see that Cs comes
from (C [[PY;z,00;t,,t™!) via the construction 3.6.4. The points A, {z;} on Cg are also

constant, as well as coordinates ¢;: one has z; = X\; € P1,¢; =t — );. Hence

(XOY1® - @Ya)(Giafzi}wardti(zi) = ED(Y1 ® -+ ® Yo ® Lik(p; s c0dt(he),a- Ldt=1 (o))

J

® (xI; ® X)(C;z,41dt.(2),4)
and
(@ ®Y1(e((t) ) @ " @ Pne((ta) ) = (P1(((t-200),t-20) @ " @ Pn(C((t-An)) t=2An)
® ef (C((t7)), a7 ™)) et ® (*ef (c((tay)ie) © P)-
6.2 Global vertex operators. Assume we have an algebraic field theory as in 6.1. Let

C be a smooth compact curve, A C C a finite set of points and v,, a € A, a l-je‘t of
parameters at a’s.

6.2.1 For an object X € A®“ we have a finite dimensional vector space (X)c and a linear
map ( )¢ :7m(X)ac — (X)c. Also for any n-tuple of points z1,--+,z, € C\ A, z; # z;
for i # j, we have a linear map ( )¢ :m"(X)a,c ®r(1)z;,c®... (L), c =

M(X®L® -®1)avfzy, 2.}, — (X®L®---® 1 )¢ = (X)c, where the last equality
is 4.5.5 (ii)’. Note that we need not fix here 1-jets of parameters at z;’s since r(1) is a

('T', V)c-module (see axiom b). We may rewrite this as a linear map
Ve 10Tz 0 — r(X) % e ® (X)e.

This construction may be rearranged in several ways:
6.2.2 Let the points 1, - -,z vary. On C™ we have a locally free Ocn-module r(1)&n with
fibers r(l)g:(zh_",z") = Q@r(1)z;,c. OnU = (C\ A)™\ {diagonals} we have a morphism
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VA r(1)$" — Home(r(X)a,c,(X)c ® Ou) of Oy-modules such that the value of V4

at (Z1,'++,Zn) coincides with V . For any open set W C U we get a map
Vi :T(W,r(1)F @ Q%) — r(X)a,c ® (X)c ® Hpp(W)

which is a composition of V ® idgn and the canonical projection I'(W, Q3,) — Hpp(W).

6.2.3 Assume that A = A; U A; and X = X; @ Xo, X; € A®4, Then r(X)ac =
r(X1)a,,c ® r(X2)a,,c), m™(X)4c = Hom(r(X1)a,,c,m(X2)%, c)- Let us fix a formal
parameter t, at a such that di,(a) = v,. These identify r(X;)4; c with “coordinate
modules” 7(X;)¢((1,,)) and r(X2)%4, ¢ with a completion r(x X, ):3((“2)) of r(xX2)c((t4,))-

So we may rewrite the above V;, ... ;. as
‘d * A
VAA: o @r(1)z,c ® (X1 @ Xo)o — Hom(r(X1)e((ta ) T(*X2)e((14,0))-

The linear operators in the image of this map are called vertex operators.
6.2.4 Now assume that X; =Y, X, = *fé"A’(Y), where fg"A’ : A®Ar , A®A: g
the fusion functor from 4.6. Then (X; @ X2)¢ = Hom(.?z'g"“l2 (X1),*X2) has a canonical

element id. x,; hence we get
Ay, A A
VAL @r(L)z,c — Hom(r(Y)e(ea, ) T(Fe (Y De((ea, )

Here are the first properties of vertex operators in this setting, that follow directly
from the axioms.
6.2.5 For j € {1,...,n} and ¢ € @,,;7(1)z;,c one has V::f}’_wxn(ga) = VA (o ®
1z;)-
6.2.6 Put T(C \ A,21,...,2n) = {r € T(C\ A) : 7(z;) =0} C T(C \ A). Then the linear
map VAt4z  commutes with the T7(C \ 4,z,...,2n)-action. Here T7(C \ 4,z1,..., Tn)
acts on the left hand side via T(C \ A, z1,...,Zn) = T(z:)0 C ’72,'.) (= Virasoro algebra at
z;) and on the right hand side via the map T(C\ 4) — 'iZA) from 2.3.4. In particular, any
vertex operator F' transforms via a finite dimensional representation of T(C\ 4, z1,...,Zxs)
and F is fixed by a Lie subalgebra of 7(C\ A) that consists of fields vanishing to sufficiently
high order at the z;’s. '
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6.2.7 Let C' be another curve, A' = A; U A3 C C' a finite set of points, t,, formal
parameters at @' € A', and {z},---,2l,} C C'\ A’. Let (C o C'); be the C[g]]-curve
with zero fiber obtained from C U C' by clutching together the points of A; in C,C’, and
where the g-deformation comes from using parameters i,,,%q, according to 3.6.4. Then
A U Az U {zy,...,z.} U {z},...,2},} is a finite set of C[[g]]-points of (C o C’),, and
hence we have our vertex operators map Vz‘?:.’f;mz’l,-.-,z’m : Qr(Ll)z;c ® r(l)z;_,cf —_—
Hom(r(Y)e((t4,))s

r(f("é;g?)q(Y)g((ua))). On the other hand, it is easy to see that “topologically” (C o C'),

coincides with “topological” composition Cyq o C' from 4.6.1, where
Cq = (C, dtal(al),q_ldtaz(ag)) € MA, a; € Aj,az € A,

Hence, by 4.6.1, one has f(@éé?)q = glz,Aa o }-g:,A:_
Our next property, that follows directly from axiom g, is:

for any ¢ € ®r(1)z;,0, ¢' € (1) cv one has

v (p®¢)=Vin2, (#)oVauls
1" T m

’ “es
;1’...yz"’zl,...,zln‘ ZT1,*5Zn?

where composition of “infinite matrixes” is understood in a way similar to 6.1.5.

6.3 Local vertex operators. Assume we have a field theory as in 6.1.
6.3.1 Let C be a smooth curve. Denote by C the cotangent bundle of C' with zero section
removed; so a point of Cisa pair (z,vz), z € C, v; is a 1-jet of coordinates at z. Any
object X € A defines a locally free Oz-module r(X )z with fibers (X)) (zwe) = M X)zw.,C-
A choice of a family of local parameters defines a trivialization of r(X)z. More precisely,
let ¢ be a function on a formal neighbourhood of the diagonal A : C — CxC,Alz,v:) =
(z,vz, T), such that t|ja =0, dz,t(z,vz,T) = vz (0 ¥(z,0,) = t(z, vz, ) is a formal parameter
at z); such a t defines a trivialization s* : r(X)z) = r(X)e(w) ® Of-

This r(X)z is a Dz-module in a canonical way; the D-module structure comes from
the T¢((z))-1-action on r(X)¢((r))- Explicitly, a vector field 7 € Tz C Dy acts on r(X)g
as follows. Choose (locally) a family ¢ of local parameters as above. Let Vg be the flat

connection that corresponds to the trivialization S*. Let 7* € 'f'c((t)) ® O be the section
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defined by formula 7¢ = Sc((t](T(z1,v2,)(t)8:): here T(z,,v.,) is a vector field on CxC equal
to 7 in the C-directions and to 0 in the C directions (hence 7(,,, ve,)(t) is a function on the
formal neighbourhood of A), and S¢yy) : Teg — ?c((,)) was defined in 3.4.1. Now for a
section ¢ of r(X)z one has 7(p) = Vo(7)(¢) — T*(¢), where T¥(¢) is the ?c((t))-action on
r(X)eqw)-

6.3.2 REMARKS: (i) One may explain the Dz-module structure on r(X)5 as follows. We
have two natural actions of the Lie algebra 7c on r(X)5. The first one - “Lie derivative”
— comes since 7(X)z is a natural sheaf, hence symmetries of C' (and infinitesimal ones
also) act on it. The second is an O-linear action that comes because the fibers of r(X)z
are Virasoro modules (using the splitting So» ). Now the D-module action of vector fields

is the difference of these two actions.

(ii) For any étale map f : C' — C one has a canonical isomorphism f}(X )5 =r(X )5, of
Dg,-modules.

(iii) If dx = idx (see 4.5), e.g., if X = 1, then r(X) is actually a (’.:l",V)-module, hence

r(X)g comes from a canonical D-module r(X)¢c on C.

6.3.3 For X3,---,Xn € Aconsider the D-module ®X;r(X;)z = r(X1)zX. . .Br(X,)5on cr.
If C is compact, we also have a lisse D-module (X; ®---®Xn)5 on C\ {diagonals} with reg-
ular singularities along the diagonals; the fiber of (X; ®---® X»)5 over (z1,%1, -+, Tn,Vn)
is (X1 ® --- ® Xn)(C,{z:},{r:})- By 6.1.2 we have a canonical morphism of Dz, -modules
( )g:®r(Xi)g — J«(®Xi)5, where j: cm\ {diagonals} — C.

6.3.4 For a moment let us drop the compactness assumption on C; we will work locally.
For X € Alet r(X)"c,cn be the completion of r(X)5z ® Oc¢n around the diagonal A :
C — C x Cc", A(z,v;) = (z,vz;2,---,2). A choice of a family of local parameters t =

(tz,v.) identifies sections of r(X )g- on with formal power series Emih...,,-nti‘ .+ tin where

My, i, are sections of r(X)z and ti(zo, V20,21, *, Tn) = t(z0,0.,)(Ti). Then r(X)% on
. . - _ . . # - ’
is a (non quasicoherent) D, _.,-module in an obvious manner. Let O5xc" D Oz, cn

denote the sheaf of functions having (meromorphic) singularities at diagonals z; = z;j,

i,7 > 0. Put r(X);g. on T ngcn ®o~ . r(X)g—’C": this is also a Dy, _,,-module. A
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section of r(X )ié c is a formal series
x n

[T — )72 (Smiyintit - ti0), @iy 2 0.
Now let us define the “local” vertex operators:

6.3.5 LEMMA. There is a canonical morphism of Dg_ .., -modules

pir(l)c B Br(l)c Br(X)s — r(X)g. o

yi # y; fori # j, objects Y; € A, an element %; € r(X)z,u., ¥y € 1(Yi)y:,v,, and a section

@1, -*,¢n of r(1)c in a neighbourhood of z one has

(P1® ®Pn®%Y:® Oy )5 = (1@ BYn @Yz) @Yy, ® - @y, )z

(as meromorphic functions on a formal neighbourhood of (z,...,z) € C™ with values in
(X®Y1® - @ Ym)(Coiz.i},{ve vy, )) identified with (1 ®---@LQX QY1 ® - @ Ym) via
4.5.5 (i1} ).

PROOF - CONSTRUCTION: We will write an explicit formula for . To do this consider
first P! with the standard parameter ¢t. So t defines a family of local parameterst; =t —=z
on P!\ {co}, and hence we have a trivialization s* : r(Lp1\{co} = T(L)c((1)) ® OP1\{c0}-
For ¢ € r(1)¢((r)) We denote by ¢»* the corresponding “constant” section of 7(1)p1\{co}-

Now for ¢y, ,9n € 7(1)c(()) and z1,...,2n € P1\{oo}, z; # z; for ¢ # j, consider
the vertex operator Ve, 2. (¢} ® -+ ® 04) : "(X)e(ey) — vr(X)e((t))k from 6.2.4 (here
we identified the module r(X)¢((¢-1)) at oo with 7(X)¢((y)) via ¢! — t). In fact, this
operator lies in End r(X).

[PrROOF: For any a € C* one has t,; = a(t — z); hence the automorphism z +— az
of P! acts on r(1)p: (according to 6.3.2) by the formula ¢* — (al°@). This implies
immediately that if Low; = nip;, then V2. . (®@9!)(Loe) = (LoF+ni+- - -+nn)Vay oz, (€)-
Hence V7. -, (®¢!) maps Lo-generalized eigenspaces in r(X)¢((y)) to ones in (X)) &)
since the sum of these equals r(X)¢((y)), We see that Va2 2. (®p?) maps m(X)e(n) to
r(X)eqy-]




Clearly, V%2 .. (¢t ®- - -@¢t) is a meromorphic function on (P\ {0, oo})*\ {diagonals}
with values in End r(X)¢((r))- Put p(pt ® - @, ®vo) = V™ 2. (01 ® - - - @ % )(ho ) for
o € r(X)c((r)): we will consider p( ) as a formal power series in variables ¢, -+, tn,t; =
t(z;), with poles along diagonals ¢; = t;, with values in (X )c((s))-

Now consider our curve C. Choose a family of parameters ¢t. It defines a trivialization
r(1)c®---Br(1)c&®r(X)5 - r(]l)%’?(t)) Or(X)c((1)®O5, o in a formal neighbourhood
of the diagonal. We put u(¢! @ - Q@ ¢k ®¥z,1) = (] @+ ® ¢k ® ¥e((1))t)z,¢ in obvious
notations (so we write down the above p on our curve in the coordinates ¢, for each z € C).
It is easy to see that u, so defined, is independent of choice of the family of parameters
and is a morphism of D-modules.

To prove the correlators formula in 6.3.5 one proceeds as in 6.1.7: we should consider

the curve C! as in 6.1.7 over C{[g]] and apply axiom g. O

We will often write u(p1®- --Q@pn®¥) = 01(z1) ' - @a(zn)¥(z) € H(l’i—.’l:j)—NC[[xl -
T, +,2n—2|]®r(X):. The composition property 6.2.7 for global vertgc operators implies
this associativity property of u:
6.3.6 One has

@1(21) - pn(za)(z) =

©1(z1)(92(z2)(: - - (Pn(2n)¥(2)) - - 1) € C((z1 = 2((- - - (72 — 7)) -..))) ® (X))

Also if one of the ¢;’s is equal to 1, we may delete it.

6.4 Chiral algebra. Consider the three step complex Los = (L3 — L1 — Lg) of sheaves
for the Zariski or étale topology of C. Here £, = r(1)¢c, £1 = w®o,r(1)c, the differential
d: Ly — L, is the de Rham differential, and Lo = £1/dL2 = HLz(r(1)c) is the sheaf of
de Rham cohomology with coefficients in the D¢-module r(1)¢, and d : £ — Lo is the

projection.

6.4.1 For sections =1, 2 of £; we define a section v; * y2 of £; by the formula v; * y2 =
Resyp(11 ® 72), and a section {7;,72} € L2 by the formula {y1,y2} = ﬁZsy(n ® v2).
Here 71 ® ¥2 is a section of £; ® L7 = Q%, - Qocye (rM(L)e Br(lL)e), p(mn ® 12) is a
section of we M £, = Q% - ® pir(1L)c with poles along the diagonal, Res; is residue
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around the diagonal along the first variable, and Res was defined in 2.2.4. Now the
lemma 6.3.5 implies immediately that d({y1,72}) = 71 *v2+ Y2 *¥1 and for ¢ € L, one has
(dp)*v = 0. Define the bracket [, ] : Lo®Ls — L, by the formula [dv1, dy2]o,0 = d(71*72),

[dy1,72)01 = —[7y2,dml1,0 = 11 * 72, [71,72)1,1 = {m,72} for vi € £;. The associativity
property 6.3.6 implies

6.4.2 LEMMA. This bracket provides £ with the structure of Lie dg algebra. O

This Lie dg algebra (or rather its zero component Lg) is called the chiral Lie algebra
of our field theory.

6.4.3 Consider a canonical embedding i : O¢c — r(1)¢ of Dc-modules, i(f) = f- 1.

Denote by C. the three step complex C; = O¢ 4, C'1 = we — Cy = H; here
H = 'HID g and the differential C; — Cj is the canonical projection. We get a canonical
morphism ¢ : C, — L. of complexes, i(f) = f-1. One may see that ¢ is actually an
embedding (for ¢g this will follow from 6.4.6), and obviously #(C,) lies in the center of the
chiral algebra.

6.4.4 For any z € A consider the Dx-module r(X)5. The formula y(m) = Res, p(y ® m)
for v € £y, m € r(X)5 defines a canonical action of Lo on r(X)g that commutes with the

D E-achon.

6.4.5 For any local field F we may consider the “local” version Lp. of the above Lc..
This is a differential graded Lie algebra constructed in a way similar to 6.4.1. If F' = F}
is a local field at a point z € C, then Lrz = F; Qo L2, LFr = Fz Qoc Lot Lpo =
Hpp(Fz,r(L)c) = L1 /dLpz. For any X € A we have a canonical map Lzo @ r(X)r —
r(X)F, v ®‘m +—— y(m) = Resou(y®m). Here u(y®m) € Hpp(F)® r(X)r and one has
(cf. 6.4.4):

6.4.6 LEMMA. This map defines a representation of the Lie algebra Lpo on r(X)F.
The central subalgebra C— Lo, i(a) = adl, (see 6.4.3) acts on r(X)Fr by the formula
i(a)(m) = am. O

In particular, i(C) # 0; this implies, by degeneration arguments, that i : Co — Lo is

an embedding in the “global” situation.




Now assume that C is compact, z1,:--,z, € C, z; # zj,v; are i-jets of param-
eters at z;’s, and X;,---,X, € A. Pt U = C \ {z1,-+,zn}. Consider the pairing
( o :r(X1)zmec® - Or(Xn)zawn,c — (X1 ® - ® Xn)c,ziwi- We have an ob-
vious “localization” morphism Lo(U) — Lo(F%,), hence a natural action of L£o(U) on

®7'(Xi)z.'.vnc"

6.4.7 LEMMA. The morphism ( )¢ is Lo(U)-invariant.

PROOF: Stokes formula: we rewrite for £ € Lo(U) = Q'@r(1)y the sum T{py - - £(9:) - -+ on)
as T Res;=z, (€(z)o(z1) - p(zn)). 0O

6.5 Stress-energy tensor. For any local field F consider the linear map Tp—2/Tr-1 —
r(L)r/C -1, 7 — 7(1) (see 3.4.1; recall that 1 is fixed by Tr_, by axiom c¢). The one-
dimensional space Tr—3/7F—1 canonically coincides with the fiber at 0 of 7®2. Tensoring
this map with the dual line, we get for any curve C a canonical section T of w&® ®
Oc(r(1)c/Oc). This section is called the stress-energy tensor. Multiplication by T' defines
a canonical map 7o — we ® Oc(r(1)c/Oc) = £,/Ch ——E-+£0/Co (see 6.4.3).

6.5.1 LEMMA. (i) The composition T — Ly/Cy is a morphism of Lie algebras.
(ii) The corresponding “local” projective action (see 6.4.5, 6.4.6) of Tr C Lor/C onr(X)F

coincides with the canonical Virasoro action.

REMARK: One should have a canonical isomorphism between the induced extension of 7
by Co = H and the Virasoro extension from §2, but we do not know how to establish it at

a moment.

PROOF: Let us sketch a proof of (ii); one proves (i) in a similar way. We may assume that
F = C((t)). Let us compute the action of the operator Li := t5+13t +T C Leey-/C
on 7(X)e())- Take e € r(X)g(w),e* € r(*X)c(@-1)). Consider the function v(z) =
(258t-:(1:)-e-€*)p1; here z € P\ {0,00}, { )p1 is the correlator for fields =8-:(1:) €

z

r(1)e((t—z)),t—z» € €* at points z,0,c0. By definition, the matrix coefficient {Lx(e),e") is
equal to Res,—oz%t1y(z)dz. We have the invariance property (;250:—:(1:)-€-e*) +

((1;) - 250ie - e*) + {(1:) - e - 72 8ie”) = 0. Deleting 1. by az - e, we get (Li(e),e*) =

t—z t—z

Lodond

[




—Res.=o((72;0te - €*) + (e 25 ie”)) - ZX*1dz. To compute ;25 one should expand

1
t—2z

around t = 0, and to compute ;2;J;e* one should expand ;1 at ¢ = oo.

Hence

(Lxe,e*) = ——Res,=ozK+1(—(Z 27" 1" 9e, e )+ (e, Z 2" 19e*))dz = (Kt e, e*),

n>0 n>0

since (t*8se,e*) + (e,t%8se*) = 0. We see that Ly = tK+19,, q.e.d. : O

6.6 Theta functions. Consider the vector spaces (1)¢, where C is a smooth connected
compact curve (with empty set of distinguished points). They are fibers of a lisse A°-
twisted D-module (1) on the moduli space of smooth curves. For a point z € C we
have (1)¢ = (1:)c,z, hence one has a canonical maf) vz : "(1)z,c — (1)c. The image
Yo = 7z(%) is independent of the choice of z (since 8;(7z(1z)) = 0). As C varies, the y¢
form a holomorphic section of (1).

Here is an explicit formula for v on the moduli space of elliptic curves. Consider the
usual uniformization of the moduli space by the upper half plane H with parameter z;
then ¢ = exrp(27iz) is the standard parameter at infinity. The family of elliptic curves
degenerates when ¢ — 0 in the standard way described in 3.6.6. Hence on H we get
a canonical trivialization (1)y = ©Cy;, horizontal with respect to the trivialization of
A¢ described in 3.6.6. In this trivialization we have v(¢q) = Zﬁ’) (¢), where 7/(q) =
try c(m)q“[‘O by axiom g. The “global” trivialization of A° given by n(g)° differs from the
above trivialization by ¢¢/?* (see 3.6.6). In this global n-trivialization the components of

v are v1;(q) = q°/24tr1jc(m)q'L°. We see that these are holomorphic functions on H and

for any Z) € SLy(Z) the function 27 (‘—:ﬁ%) is a linear combination with constant

coefficients of other Y., ’s-




§7. LISSE REPRESENTATIONS

7.1 Singular support, lisse modules. Let g be a Lie algebra, U = U(g) be its universal
enveloping algebra. Then U is a filtered algebra (Uy = C,U; = C +g,U; = Uj for i > 0),
grU = @;U;/U;~1 = S*(g). For ¢ € U; its symbol o;(¢) is ¢ mod U;—; € S'g; if
@ € U; \ Ui—1 we will write o(@) = 0:i(p).

7.1.1 Let M be a finitely generated g-module. Recall that a good filtration M, on M is a
U,-filtration such that M = UM;, NM; = 0 and grM, is a finitely generated S°*(g)-module.
For example, if My C M is a finite dimensional vector subspace that generates M, then
M; = U; M, is a good filtration. Any two good filtrations M,, M, on M are comparable,
i.e., for some a one has Mo_s C M. C Mota.

Define the singular support SSM of M to be the support of the 5$*(g)-module grM,,
where M, is a good filtration on M. Thisis a Zariski closed canonical subset of S pecS®(g) =
g*; it does not depend on the choice of a good filtration M,. If n is a generic point of
SSM, then the length of the S*(g)-module (grM,), only depends on M; denote it £,(M).
We will say that M is finite at n if £,(M) < co: this means that (grM,), is killed by an
ideal of finite codimension in 5°(g),.

7.1.2 REMARKS: (i) If M is generated by a single vector, M ~ U/I, then SS(M) is the
zero set of symbols of elements of I.
(i1) A more precise way to speak about this subject needs the microlocalization language,
see e.g. [La], Appendix.

The algebra grU = S$*(g) carries a Poisson bracket defined by the formula {fi, g;} =
}?g,- - Z]'Jf: mod Uiy j—2; here f; € Si(g),f; el fi= f; mod U;_;, and the same for g;,
{fi»9;} € Sii~1(g). One has the following integrability theorem, due to O. Gabber [Gal:
7.1.3 THEOREM. Let M be a finitely generated U-module finite at any generic point of
SSM. Then SSM is involutive, i.e., if f,g € S*(g) vanish on SSM, then so does {f,g}.
O

7.1.4 DEFINITION. A finitely generated module M is lisse if SSM = {0}. More generally,
we will say that M is lisse along a vector subspace £ C g if SSM n ¢+ = {0}. O
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Note that any quotient of a lisse module is lisse. Any extension of a lisse module by a
lisse module is lisse. Any finite dimensional M is lisse; the converse is true if dim g < 0.

Explicitly, a module M is lisse if amd only if for a finite dimensional subspace V C M
that generates M and any g € g there exists NV >> 0 such that gV c Uy_1V.

7.2 Finiteness property. Let £ C g be a Lie subalgebra. We will say that a g-module
M is a (g, k)-module if k acts on M in a locally finite way (i.e., for any z € M one has
dimU(k)z < o0). If such an M is finitely generated, then it carries a good k-invariant
filtration (e.g., take a finite dimensional k-invariant subspace My C M that generates M
and put M; = U;My). Hence SSM C kL = (g/k)* C g*.

7.2.1 LEMMA. Let M be a finitely generated (g, k)-module and n C g be a vector subspace
such that dimg/n + k < co and M is lisse along n. Then dimM/nM < oc.

PROOF: Let M, be a K-invariant good filtration on M, so grM, is a finitely gener-
ated S*(g/k)-module. Consider the induced filtration on M/nM. It suffices to see that
dimgr(M/nM) < co. But gr(M/nM) is a quotient of grM/ngrM (since gr;M/nM =
M;/Mi—y + (M; N NM), (9rM/ngrM); = M;/M;-1 + nM;_;). The latter is a finitely
generated module with zero support over the finitely generated algebra $*(g/k +n), hence
it is finitely generated. O

We will use 7.3.1 as follows. Assume we are in a situation 3.3, so we have a Harish-
Chandra pair (g, K), an S-localization data ¢ = (S#,N,¢,pq) for (g, K) and the cor-
responding S-localization functor Ay : (§,K)-mod — Dy-mod. Certainly, any (g, K)-
module M is a (§, k)-module and SSM is an Ad K-invariant closed subset of k1. Now
7.2.1 (together with 3.3.4) implies:

7.2.2 COROLLARY. Assume that the following finiteness condition holds:
(*) The sheafg?/k? + @(N(qy) is Og-coherent. ‘

Then for a lisse (g, K)-module M the Dy-module Ay(M) is lisse (see 3.2.7). More
generally, if a (g, K)-module M is lisse along any subspace wo(N@ys) €8, 8 € S#, then
Ay(M) is a lisse Dy-module. O

The following corollaries of 7.1.3 will be useful.
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7.2.3 LEMMA. Let M be a (g, k)-module such that SSM has finite codimension in kt.
Then SSM is involutive. O

7.2.4 COROLLARY. Assume that a Harish-Chandra pair (g, K) has the property that any
Zariski closed Ad K -invariant subset of k* is either {0} or has finite codimension. Then
for any (g, K)-module M the SS(M) is involutive. O

7.3 Lisse modules over Virasoro algebra. Consider the Virasoro algebra 7.: this
is the central C-extension of Lie algebra 7 = C((¢)) that corresponds to the 2 cocycle
(f8:,98t)c = cRes(f"g4l). It carries the filtration Ten : for n > 1, T, = t"F1C[[t]]6,
for n € 0, Ton = C + t"*1C[[t]]8:. Put L; := t+18, € 7. One also has the following Lie
subalgebras of 'f'c:

ny = i] C b+ = C[[t]]tat C P.|. = C[[t]]@t, n- = C[t-]']at C b_ = C[t_l]tat,

so by = LieK, ny = Lie K, (see 3.4.1). One has by @n-®C =7T,, by Nb_ — f = CLo.
7.3.1 A higher weight 7-module of central charge c is a (’i,b.;_)-module M such that
1eCC ’i acts as idps and any m € M is killed by some 'fcn for n > 0. Denote by 7.+-
mod the category of such modules. Note that any M € 7.+-mod is a (’f'c, K;)-module. We
will say that M is Lo-diagonalizable if M coincides with the direct sum of L¢-eigenspaces.
Let M be a higher weight module. Denote by *M the space of those linear functionals
¢ on M that are finite with respect to the action of *Lg. The operators L; := 'L_; define
the T.-action on *M. Clearly *M is a higher weight module called the (contravariant)
dual to M. One has an obvious morphism M — * * M which is an isomorphism if amd
only if the generalized eigenspaces of Ly on M are finite dimensional. In particular this

holds when M is a finitely generated module.

7.3.2 REMARK: For M € T.4-mod consider the monodromy operator T' = exp(27iLg).
Clearly T commutes with the Virasoro action, i.e., T € AutM. Hence one has a canoni-
cal direct sum decomposition M = @gcc 2 Mz, where Mz is the generalized ezp(27ia)-
eigenspace of M. Denote by T.+3z-mod the subcategory of those M’s that M = Mz. Clearly

Ter-mod = Haec/zTc+E'm0d-
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7.3.3 LEMMA. For any finitely generated M € T, -mod there are exactly three possibilities
for SSM: it is either equal to {0}, or to 7.4 = (C + b4.)t, or to 75, = (C + Py)t.

ProorF: Clearly SSM C i'(',' It is Ad K-invariant (the Ad K;-invariance is obvious; for
any t € C the operator ezp(tLo) acts on M, hence SSM is also Ad exp(tLg)-invariant).
It is easy to see that any Ad K-invariant Zariski closed subset of 7.+ is either {0} or
coincides with one of the vector spaces i‘f_n, n > 0. According to 7.2.4 this T._. is the

Lie subalgebra of 7.; this implies 7.3.3. O

For a higher weight module M consider the subspace M"+ of singular vectors. Clearly

M™+ # 0 and it is Ly-invariant, so we have decomposition M"+ = @M(" h“; by generalized
heC
eigenspaces of Lg. We will say that a singular vector v has generalized weight h if v € M, o+

(h)
(i.e., if (Lo — h)"v = 0 for n > 0), and that v has weight h if Lov = hv. As usual, the
Verma module Mc, = M, € i.,.-mod is a module generated by a single “vacuum” singular
vector vy, of weight A with no other relations. This M}, is the free U(n_)-module generated
by v, hence any submodule of M), generated by a singular vector is a Verma module.
Denote by L.s = Ly the (only) irreducible quotient of M. Any irreducible higher weight
module is isomorphic to some L, and the L;’s with different h’s non-isomorphic. One has

*Lh = Lh.
The following basic facts are due to Feigin-Fuchs [FF].

7.3.4 PROPOSITION. Let M = M}, be a Verma module, N C M is a non-zero submodule.
Then

(i) N is generated by < 2 singular vectors, i.e., N is either a Verma submodule or a sum

of two Verma submodules.
(ii) N is an intersection of < 2 Verma submodules.
(iii) M/N has finite length.
(iv) The spaces M(" ny have dimension < 1, therefore, by (i), the irreducible constituents

of M have multiplicity 1. O

7.3.5 LEMMA. Let P € T..-mod be a finitely generated module. Then
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(i) P admits a filtration of finite length £ with successive quotients isomorphic to a quo-
tient of a Verma module.
(ii) The maximal semisimple quotient of P has length < £.
(iii) Any submodule of P is finitely generated.

PRrROOF: Note that P is a quotient of some module Q induced from a finite dimensional b, -
module. Such Q has a filtration with successive quotients isomorphic to Verma modules.

This implies (i) and reduces (ii), (iii) to the case of Verma module which follows from 7.3.4
(i) O

7.3.6 LEMMA. Let M = M, be a Verma module, N C M be a non-zero submodule,
L =M/N. One has
(i) SSM =Tg =nx
(ii) SSL is either {0} or equals to 7.X,
(iii) ¥ SSL = 0, then L is irreducible and N is generated by two singular vectors.
(iv) If N is a proper Verma submodule, then the coinvariants Li,_ n_] are infinite dimen-

sional.

PROOF: (i) is obvious. To prove (ii) take a non-zero ¢ € U(n-) such that v, € N. The
symbol (@) vanishes on SSL, hence SSL # n*, and we are done by 7.3.3.

(iii) By 7.3.4 (iii) any reducible L has a quotient such that the corresponding N ,is a
Verma submodule. Since a quotient of a lisse module is lisse, (iii) is reduced to a statement
that for any proper Verma submodule N = My C M}, one has SSM,/Mu # 0. By 7.2.1
this follows from (iv).

(iv) The commutant [n—,n_] is Lie subalgebra of n_ with basis L_3,L_4,L_s,....
The quotient n_/[n_,n_] is abelian Lie algebra with basis L_;,L_2. To prove (iv) note
that My(n_,n_] is a free module over U(n-/[n_,n_]) = C[L_l,L;z] with generator o,
and (Mp/Mpy )n_ n_] is a quotient of Mp[n_,a_) modulo the C[L-;, L 2] submodule gen-
erated by the image Tp of vp (since Mp = U(n-)vss). Since Tp = PTp, where P
is a polynomial of weight A’ — h # 0, we see that our coinvariants (Mn/Mh )n_,n_] =
C[L-1,L—2]/PC[L_;, L_,] are infinite dimensional. O
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7.3.7 We will say that an irreducible module L, € i+-mod is minimal, or a Belavin-
Polyakov-Zamolodchikov module, if the conditions (i), (ii) below hold:
(1) For some integers p,q such that 1 < p < ¢, (p,¢) = 1, one has

c=cpq=1-6(p—q)*/pq

(clearly p, g are uniquely defined by c)

(ii) For some integers n,m, 0 <n < p,0 < m < ¢ one has

= —in —mp)® —(p — ¢)*
h—hn,m—-4pq[(q p) — (-9l

Clearly hpn,m = hp—n,g—m. For given ¢ = ¢, , there is exactly (p —1)(¢ — 1) different

minimal irreducible modules. Note that L., , ¢ is always minimal (since 0 = hy 1)

7.3.8 PROPOSITION. ([FF] ) An irreducible module Ly, is minimal iff both the following
conditions hold:
(i) Ly is dominant which means that Ly is not isomorphic to a subquotient of any
My k' £h.
(ii) The kernel Ny, of the projection My — Ly, is generated by exactly 2 singular vectors

(see 7.3.4 (1)). O

7.3.9 REMARKS: (i) For h = Anm, ¢ = cpq the singular vectors from 7.3.8 (ii) have weights
h —nm,h — (p — n)(¢ — m). They are different by 7.3.4 (iv) (or by a direct calculation).

(i) It is easy to see, using contravariant duality, that L is dominant iff M} is projec-
tive object in the category of Lo-diagonalizable higher weight modules. Equivalently, this
means that M = liinM,(;n) is projective covering of L; in the category ﬁ+-mod. Here
M,E") is the higher weight module generated by the singular vector v that satisfies the only
relation (Lo — h)*v = 0.

7.3.10 PROPOSITION. For an irreducible module L = L = My /N the following condi-
tions are equivalent:

(1) L is lisse

(ii) L is minimal

(iii) The coinvariants L,_ n_) are finite-dimensional
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(iv) The invariants LI"--"-] are finite dimensional

(v) For some non-zero ¢ € U([n-,n_]) one has puv; € Ny

PROOF: One has (i) = (iii) by 7.2.1, (ili) <= (iv) by contravariant duality, (ii) <=
(i11) by [FF], (v) = (i) by 7.3.5 (ii) (since o(p) vanishes on SSL, one has SSL # iJ_'l
It remains to show that (ii) == (v). So let L, be minimal. Put T = U(n_,n_]})vs C
M;. We wish to see that the projection T' — L is not injective. This follows since
the asymptotic dimension of T is larger than the one of L. Precisely, according to the
character formula for L (see [K] prop. 4) the function logtry(exp(27tLg)) is asymptotically
equivalent as t — 0 to wa/12t for some constant ¢ < 1. On the other hand, one has
log trp(ezp(—2ntLg)) = logtrag, (ezp(27tLg)) + log(l — ezp(—27t)) + log(1l — exp(—4rt))
(since as Lo-module M}, is isomorphic to vy ® S(L-1,L_2,---), where the generators L_;
of the symmetric algebra have weights ¢, and T is isomorphic to vy ® S(L—_3,L_n,"-*)).
This function is asymptotically equivalent to w/12¢. Since the spectrum of Ly is real, this

implies that T' — Lj is not injective. O

7.3.11 REMARK: For ¢ = ¢p,q,h = hy; = 0 one may prove that (ii) = (i) in a very
elementary way. Namely, by 7.3.8 (ii) one knows that Lo is minimal iff Ny does not
coincide with the submodule N’ of M, generated by L_;ve. Choose minimal i such that
for certain ¢ € U(n-); one has pvg € Ng \ N'. Then the symbol of ¢ is prime to L_;,
hence, by 7.3.5 (ii), Lo is lisse. This remark, due basically to Drinfeld, was a starting point
for the results of this paragraph. O

7.3.12 PROPOSITION. The following conditions on a higher weight module M are equiv-
alent

(i) M is a finitely generated lisse module

(ii) M is isomorphic to a finite direct sum of minimal irreducible modules.

(iii) One has dim M("-"-] < oo

PROOF: By 7.3.10 we know that (i) <= (ii) = (iii). We will use the following facts:
(*) Let Li be a minimal irreducible module. Then any quotient of length 2 of M, ,(ln) (see
7.3.9 (i1)) is actually a quotient of M = .M,(ll) (i.e., is Lg-diagonalizable).

85




(**) If Ly, , La, are minimal and hy # hz, then M), and Ms, have no common irreducible

component.

Here (*) follows from the fact that Ny C My coincides with the 1st term of Jantzen

filtration, see [FF]; for (**) see [FF]. Note that (*) implies, by 7.3.8, 7.3.9 (ii), that
(***) Ezt'(Lh,,Ly,) = 0 for any minimal Lp,, L,.

Now we may prove that (i) = (ii). By 7.3.10 it suffices to show that a lisse module
M is semisimple. Consider the maximal semisimple quotient P = M/N (see 7.3.5 (ii)).
We have to show that N = 0. By 7.3.5 (iii) there is an irreducible quotient @ = N/T
of N, so we have a non-trivial extension 0 — Q@ — M/T — P — 0 with lisse M/T.
According to 7.3.9 (ii) and (**) we see that there exists at most one minimal Ly such
that Ezt'(Ls,Q) # 0. By (*) and 7.3.9 (i) for such Ly one has dim Ezt'(Ls,Q) = 1.
This implies that M /T is isomorphic to a direct sum of minimal irreducible modules and
a length 2 modulé which is a non-trivial extension of a minimal module L, by Q. By 7.3.9
(ii) and (*) this extension is a quotient of a Verma module. By 7.3.5 (ii) it is non-lisse,

hence M/T is non-lisse. Contradiction.

Let us prove that (iii) = (ii). Let M be a module such that dim M (4] = r < 0.
Let M' C¢ M be a maximal semisimple submodule of M. By 7.3.10 M’ is a direct sum

of minimal irreducible modules. Clearly\fhe length of M’ is < r, so it suffices to show
thatM' = M. Note that any non-zero submodule N C M intersects M’ non-trivially (if
NNM' = 0 then, shrinking N if necessary, we may assume that IV is a quotient of a Verma
module. If N has finite length, then it contains an irreducbile submodule, which lies in M.
If N has infinite length, then, by 7.3.4, dim N = oo; since N+ C Mm+:m4] this is not
true). Assume that M/M' # 0. Replacing M by an appropriate submodule that contains
M we may assume that M/M' is a quotient of a Verma module, in particular M/M' is
Lo-diagonalizable. Consider the dual extension 0 — *(M/M "y = *M — *M' — 0. One
has *M' = @L,,, hence, by 7.3.8, 7.3.9 (ii) the projection ®Mu;, — &Lx; = *M' lifts to
the map @M,Ef) — %M. This map is surjective (otherwise the dual to its cokernel would
intersect M’ trivially), hence *M has finite length. Replacing *(M/M') by its irreducible

quotient we may assume that M /M’ is irreducible.

86




As above (see the proof (i) = (ii))*M is a direct sum of irreducible minimal modules

plus a length two non-trivial extension of a minimal module L. By 7.39 (ii), 7.3.4 (ii) a.nci
(*) above this length two extension is a quotient of M}, by a Verma submodule. By 7.3.6 (iv)

the coinvariant (*M)[,_ n_] are of infinite dimension. Since (*M)n_ n_) = (M- ;“-])',

we are done. 0O

7.3.13 Now for n > 1 consider the product of Virasoro algebras ’i": this is a central
C-extension of 7™ with cocycle ((fid:),(9i8:))e = Z(f,-at,g;a,)c (see 3.4.1). The above

)
theory extends to 7" in an easy manner. Namely, we have a standard subalgebra n;, =

[Inti C bt =I1b4i Cps =Ip+i, i C b = [[bi,f = by Nb_ = C™ etc. of 7.7
One defines the corresponding category 77 -mod of higher weight modules in an obvious
manner. We have an obvious functor @ : [] Tc4-mod — T -mod, (Mi,...,M,) —
M ®...0 M,. Clearly SSM1 ® ... @ M,, = SSM; x SSMy x --- x SSM,.

For & = (h;) € C™ we have the corresponding Verma module My = @M}, and its
unique irreducible quotient Ly = ®Ly,; any irreducible higher weight module is isomorphic
to a unique Lj. It follows from 7.3.4 (iv) that any submodule N C M} is tensor product
®N; of submodules N; C Mj,, so the structure of N is clear from 7.3.4. The lemma
7.3.5 (with its proof) remains valid for 7% -mod. The version of 7.3.6 for 7. case (with
obvious modiﬁcatioﬁs) follows immediately from the case n = 1. A module Ly = ®L,,
is called minimal if all Ly; are minimal (see 7.3.7). The analog of 7.3.8 (with “2 singular
vectors” replaced by “2n singular vectors”) remains obviously valid, as well as 7.3.9. The
proposition 7.3.10 remains valid and follows directly from the case n = 1. The proposition

7.3.12 remains valid together with its proof.
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§8. MINIMAL MODELS

These were defined by Belavin, Polyakov and Zamolodchikov [BPZ]. Let us start with

a general representation-theoretic construction.

8.1 Fusion functors for Virasoro algebra. Let C be a compact smooth curve, A,B C C
be two finite sets of points such that AN B = @, A # 0. For a central charge c € C we

have Virasoro algebra iA which is central C-extension of 74 = H 7o (where 7, = vector
a€A
fields on punctured formal disc at a) and similar algebras 7.2, TAYB, One has a canonical

surjective map 74 x T.B — T.AUB (which is factorization by {(a,—a)} C € x C); the
morphisms iA — ’1~'CAUB — iB are injective. One also has the canonical embedding
iau : T(U) — TAYB where U = C \ (AU B), and the ones i4 : T(C \ 4) — TA ip:
T7(C\ B) — ’iB . There is also a canonical morphism jp : T(C \ 4) — 7B which is
composition of the obvious embedding 7(C \ A) — 7.8 and the section s : T8 — iB.

The restriction iAUBIT(C\A) :T(C\A) — ‘iAUB coincides with ¢4 + 7B.

8.1.1 Assume we have a positive divisor d = Y  nyb >0 suppoxl'ted on B. Let T(C\ 4,d) C
T(C \ 4, d) be the Lie subalgebra of vector fields vanishing of order > ny +1 at any b € B.
Clearly one has T(C \ 4,d;) C T(C \ A,d:) for dy > d3, and T(C \ 4,0)/T(C\ A4,d) =
TB /T2, where TZ =[] Tn, . Let €4 : TB — TA/i4(T(C\ A,d)) be the composition

TB — T2 /505(Tp,a) — T2 [iaup(T(U)) + 505 (T,0)<TL /ia(T(C \ 4, d)).

The maps t4 are compatible, so we have € = limey : 7B — BmT4/ia(T(C \ 4,d)).
rl ]

8.1.2 Now we are able to define the (contravariant) fusion functor F¢ : 7A — mod —
’iB — mod.

Let M be any ’iA-module (so1eCcC ‘iA acts as idy ). Put Fo(M) :=
U M*iz(T(C\ A,d)) C M*; therefore an element of Fc(M) is a linear functional on M
d

invariant with respect to some i 4(T(C\ A4, d)). Fort € T.B ¢ € Fo(M) put 7(£) = e()(2).
It is easy to see that this formula is correct, 7(¢) lies in Fo(M) C M* and (1,£) — 7(£)
is 7.B-action on Fo(M). This way Fc(M) becomes 7.B_module. One has an easy
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8.1.3 LEMMA.
(i) One has Foc(M) = UFC(M)TB»J, and Fo(M)78.¢ = (MT(C\A,.;))‘-

(ii) Let N be any 7.°-module s.t. N =| JN75.4. Then Hom(N,FcM) =

(M @ N)r@»]* (here we consider M @ N as T,A4YB_module via the surjection
FAx TB — TAUB), O
From now on let us fix a central charge ¢ = ¢, 4 from the list 7.3.7(1). We will assume

that our virasoro modules have central charge ¢. Let M be a finitely generated higher

weight iA-module.

8.1.4 COROLLARY. (i) Fc(M) is finitely generated lisse higher weight iB-moduIe.
(ii) For any finitely generated higher weight iB -module N one has (M ® N)rw) =
(M ® N)r (v, where N is the maximal lisse quotient of N.

PROOF: (i) Use 8.1.3 (i), 7.2.1, 7.3.12 (inversion 7.3.13).
(ii) First note that the maximal lisse quotient NV exists and has finite length by 7.3.5,
7.3.8, 7.3.12. By 8.1.3 (ii), 8.1.4 (i) one has (M ® N)% ) = Hom(N,Fc(M)) =

Hom(N, Foc(M)) = (M ®—J\-/:)3‘T(U), g.e.d. O
For h'= (hy) € CB let LP = (X)Lc,n, be the irreducible 7.Z-module of higher weight
beB

h.
8.1.5 COROLLARY. One has a canonical isomorphism Mrc\a) = (M ® LOB)T(U).

PRrROOF: Clearly Mz(c\4) = (Indggg)\A)J\/I)q-(U). But IndXY) . M coincides, as T(U)-

T(C\A)

module, with iAUB -module M ® Pf , where P,p = ®Pc,o,b, P, , is a quotient of Verma
beB

module M, o modulo relation L_jvy = 0. Clearly LZ is maximal lisse quotient of PZ (see

7.3.8), and 8.1.5 follows from 8.1.4 (ii). |

8.1.6 COROLLARY. Let d; be the divisor Zb. Consider the action of Lie algebra

beB
T(C\ A0)/T(C\ Ady) = ’I},B/’]:f = C? on coinvariants Mr(y,4,). This action is

semisimple. For h = (hy) € CZ the (h;)-component Mk s equal to the coinvariants
(M ® LB)r (). This space vanishes unless all hy lie in the list 7.3.7 (ii).

PROOF: Similar to 8.1.5; the semi-simplicity of CZ-action follows from 7.3.12 (ii). O

39




8.1.7 COROLLARY. Assume that B consists of two points by,b. Let T(C \ A, B)’
C T(C \ A,0) be the Lie subalgebra of vector fields that project to {(a,—a)} C C? via
the projection to T(C \ A,0)/T(C \ A,d;) = C%. Then Mr(c\a,By = ®(M @ L ns, @

Lc ns,)1(U), Where Lcp runs the list 7.3.7 (ii) of irreducible lisse modules.

PROOF: Similar to 8.1.6. O

8.2 Localization of lisse modules. Let 7 : Cs — S be a family of smooth projective
curves, A C Cg(S) be a finite non-empty disjoint set of sections, v, are 1-jets of parameters
at a € A. By 3.4.3-3.4.7 these define the S-localization data for (i“‘,vl). Consider the
corresponding S-localization functor Ay, : ('i'cA,vl )e-mod — Djye-modules on S. Assume

as above that M 1is a lisse (i’cA,vl)c-module.
8.2.1 LEMMA. The Dxc-module Ay, (M) is lisse with regular singularities at infinity.

PROOF: Lissing follows from 7.2.2; the statement on regular singularities follows from 8.2.5

below. O

8.2.2 Assume now that S=S pecC[tq]], 7 : Cs — S be a projective family of curves such
that the generic fiber C, is smooth and the closed fiber Co has the only singular poinf b
which is quadratic, A C Cs(S) be a finite non-empty disjoint set of sections, and {v,.} be
a 1-jet of coordinates at a € A.

This collection defines an S-localization data “with logarithmic singularities at ¢ = 0”
for (7A,v1). (The definition of “S-loc. data ¥ withlog. sing. at ¢ = 0” coincides with 3.3.3
but we replace the condition that N is transitive Lie algebroid by the one that a canonical
map o : N — Ts has image equal to 72 = ¢7s = Cl[¢]]¢9,. As in 3.3 such data defines an
Ogs-extension .Agbc of T and the corresponding associative algebra D?pc which is isomorphic
to the subalgebra of D¢y generated by C[[g]] = Os and ¢9,. We have the corresponding
S-localization functor Acg : (7,4, v;)-mod — D}, -mod. The definition of this ¥ repeats
word-by-word 3.4.3-3.4.7: we get the loc. data with logarithmic singularities just because
T2 consists precisely of those vector fields that could be lifted to Cs\ A(S). Note that the
“vertical” part Ny = kerag C N is a free Ogs-module and N(g)/qN(g) coincides with Lie
algebra T(CY \ A, B)', where Cy is normalization of Cy and B = {b;,b.} is preimage of b
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(see 8.1.7). According to 3.5 the algebra D3, o coincides with algebra Doz_ of differential
)

operators on the determinant bundle A% generated by “¢9,” and Os.

Now let ¢;,1, be formal coordinates at b s.t. ¢ = t;?3. Let C¢ be the corresponding
smooth S-curve (see 3.6.1; sorry, I changed notations of points: our b4’s are a’s in 3.6.1).
We have canonical points b, b, € C¥(S) with parameters t;,t;. Take 1-jets of parameters
g~ ldty, dts (see 6.1.4) at b’s. These, together with A,v 4, define C((g))-localization data for
(’ZA”B, v1). The corresponding algebra coincides with D Ay so we have the localization

functor Acy : (’fCAUB,vl )-mod — D,\Z_v—mod.
n

8.2.3 Let H be a lisse D y -module, i.e. a finite dimensional C((t))-vector space with
D-action. An h-lattice Hy C H, where h € C, is a C[[t]]-lattice in H invariant with
respect to the action of Dgé;’ and such that the operator ¢d, € Dgé; /q acts on Hp/qHp
as multiplication by A. Certainly, such H; exists iff H has regular singularities at 0 with
monodromy equal to h mod Z; if Hy exists; it is unique, so we’ll call it “the” h-lattice.

From now on let M be a lisse iA-module.

8.2.4 LEMMA. For any h € C, Acy(M @ Lpy, ® Lis,) is a lisse module that admits the
h-lattice Acy(M ® Ly ® L)

PROOF: “lisse” follows from 8.1.4 (ii), 7.2.1. The existence of h-lattice follows easily from

3.4.7.1. O

According to 3.6.3 we have a canonical isomorphism D,\ccs = DA?:‘S" Denote this
algebra Dye. So, by 8.2.4, we have for any h € C a D}.-module D,\Z_:{ (M @ Lp, ® L),
which is zero if Ly, is not lisse (i.e. if h # hnm from 7.3.7 (ii)) by 8.1.4 (ii).

On the other hand, we have the DY.-module Ac(M).

8.2.5 PROPOSITION. There is a canonical isomorphism of D.-modules
Acs(M) = @ AC,\{(M QRL,® Lh)h.
3
PROOF: First, note that Ac,(M) is a coherent Os-module by a version of 7.2.2 “with

logarithmic singularities”. Namely, Acs(M) is coherent D§.-module, and its singular

support C Spec(grD3.) is O section since M is lisse; hence Acg(M) is Os-coherent.
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Let e; be a basis of Lyc((r)) that consists of Lo-eigenvectors, so Lee; = (h — n;)e;
for n; € Z > 0; let e} be the dual basis in Lyc(r)) = *Lac((r))- It is easy to see that
Acy(M @ Lr ® Li)n C Acy(M @ Ly ® Ly) is Os-submodule generated by images of E
elements ¢, ®@e¢; @ e}, where m € My cs,ei € La(c((t,)),q-11)1 €5 € Lic((ta)).t2) (s€€ 6.1.4
for notations).

To prove 8.2.5 it suffices to construct a morphism of D}.-modules Acs (M) — &Acy( )a
which induces isomorphism mod ¢ (since both are coherent Os-modules, and the one on
the right hand has no g-torsion, this morphism will be isomorphism).

The h-component of this morphism just maps the image of m € M4,cs = M40y in

Acs(M) to the image of Zm ®ei®ein Acy(M @ Lr ® L;). 1t is easy to see that

this formula defines a correctly defined morphism of D}.-modules (cf. 6.1.5). It induces
isomorphism modulo g by 8.1.7 (since Acg(M)/q = M, 14N, = MT(CYy\A,B)'» S€€ 8.2.2).
O

8.3 Definition of minimal theories. Now we may define the minimal theory. Pick
central charge ¢ = ¢, ¢ from the list 7.3.7(i). (

The fusion category A = A, , is category of finitely generated lisse higher weight
modules for Virasoro algebra T. of central charge c. By 7.3.12 it satisfies the conditions
listed in the beginning of 4.5.1. The data from 4.5.1 ar the following ones:

The duality functor * : A® — A is contravariant duality (see 7.3.1).

The vacuum module 1 is L. o; the isomorphism *1 = 1 is canonical one (that identifies
the vacuum vectors).

The Dehn automorphism d is equal to the monodromy automorphism T’ = ezp2miL,
from 7.3.2.

We will define a canonical fusion structure on A simultaneously with the structures 6.1
of algebraic field theory. Namely, our realization functor r : A — (’i, v1)-mod is “identity”
embedding. The vacuum vector 1 € r(1) = Ly is vo.

Let # : Cs — S,A C Cs(S),va, be as in 6.1.2. Assume that A # @. For any
X € A®4 the Dy.-module Ay, (X) is lisse holonomic with regular singularities at co. We
put (X)ecs = Ay (X) and v from 6.1.2 (iv) is identity map.
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Assume now that A = §. We should define a canonical lisse Dxc-module (1)c,- Let us
make the base change and consider m¢ : C¢c = Cs x5 Cs — Cg: this is a family of curves
with a canonical (diagonal) section a. Consider the Dy.-module (1)cc; this is 2 lisse Dje-
module on Cs genérated by the holomorphic section (1)c.. Note that (1)cc is horizontal
along the fibers of 7 : Cs — S. Hence there exists a (unique) Djc-module (L)cs on S
together with a holomorphic section (1)c; such that (La)ce = 7™ (1)cs, ()ce = 7*(1)cs-

Note that the axioms 4.5.4 (ii) and 6.1.2¢ hold by 8.1.5. The axiom 6.1.3f holds
automatically. It remains to define the isomorphism 4.5.5 (ii) that will satisfy the axiom g
from 6.1. This was done in 8.2.5 above (note that since *Ly = L, we have R = SLLRLy).

By the way, the covariant fusion functor fg

from 8.1 (by 8.1.3 (iii)).

'B from 4.6 is *F¢ for contravariant F¢
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