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Do not worry about your problems with mathematics. I assure
you mine are far greater.

Albert Einstein
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Abstract

We are constantly discovering new ways of understanding algebraic
curves and their arithmetic properties.

Questions about ‘rational points’—the interplay of arithmetic and
algebra—have fascinated mathematicians from Diophantus to the
present.

I will give a survey of current approaches, results, and conjectures
in this vibrant subject.
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A cubic curve
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A query

Suppose that you have three different and possibly even incomparable
ways of proving that a certain set S is finite. And you find yourself
wondering: why is S finite?

You then have three different—incomparable—answers to that
question. A natural query: is there some way to unify these three
different answers to that question?

This thought might arise later in this lecture—in a situation where—at
present— I can’t imagine any road to such a unification.
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Mathematics aims to explain and often asks

What-questions and How-questions

But lurking behind them is some (perhaps ridiculously naive)
‘wondering’:—a sort-of-question that may not have any serious
answer:

Why is X true?

So it is amusing (and baffling) if one has three different
incommensurate explanations of the same phenomenon. . .
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Square roots for the ancients

There was something of a fascination for ‘square roots’ (aka: sides) as
in this well-publicized Problem VI.17 of (the third Arabic book of)
Diophantus, this dating from the 3-rd century AD:

Find three squares which when added give a
square, and such that the first one is the side
(i.e., the square-root) of the second, and the
second is the side of the third.
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Diophantus and us

X2 side of →
+ X4 side of →

+ X8 = A Square.

or, as we might simplify (divide by X2):

y2 = x6 + x2 + 1
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Diophantus himself offers a solution:

X = 1
2

(
1
2
)2 + (

1
2
)4 + (

1
2
)8 =

64 + 16 + 1
256

= (
9

16
)2

along with a hint about how he arrived at it:
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The hint:

He noticed that the square of a + 1
2 is

a2 + a + (
1
2
)2,

so if you take a to be (1
2)

4, you win:

(
(1

2)
4
)2

+ ( 1
2)

4 + ( 1
2)

2 =

(
(1

2)
4 + 1

2

)2

.
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All solutions?

Of course, what Diophantus won was this single solution. A more
modern turn on such problems is often to quantify goals more
precisely. Eg., find all solutions (of the above problem) in positive
rational numbers.
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This was achieved a mere 17 centuries later.

Diophantus’s solution is the only solution in positive rational numbers

That is:

The only positive x-coordinate of a rational point in the curve

C : y2 = x6 + x2 + 1

is:

x = 1
2

(Joseph L. Wetherell’s 1998 Berkeley thesis: “Bounding the number of
rational points on certain curves of high rank.")
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That such cross-century conversations can be fruitful,
and coherent,

attests to some stability regarding our subject —our
common language—and shared

modes of expression, and modes of operation.
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Why study rational points (on curves)?

“agriculture" −−− → the practical, i.e., food—

“horticulture" −−− → the beautiful i.e., gardens, flowers—

. . . the study of rational points contributes to both agriculture and
horticulture for mathematics.
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As for it being ‘practical’:

Sometimes an algebraic curve (or more generally a variety) presents
itself as a sort of ‘museum" for some specific genre of mathematical
object—

so that every point on the curve (or variety) represents a particular
mathematical object of that genre, and as one moves from point to
point on the curve one samples all the different members of that genre.
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Moduli!
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Moduli!

And if the point on the curve is rational over some field,—say Q— the
corresponding mathematical object is ‘defined over that field.’

Such a curve (or variety) is then said to represent the modular curve
(or variety of moduli) for that genre.

To find, then, all the mathematical objects of that genre that can be
defined over a given field K—you are led to the problem of finding all
K-rational points on the corresponding modular curve (or variety of
moduli).

This is a basic tool for determining and classifying objects of interest.
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Pythagoras

The (projective) plane curve

x2 + y2 = z2, (1)

has been in our sights from the earliest days since this curve is:

the moduli space of similarity classes of right-angle triangles.

(what an obscure way of acknowledging the Pythagorean Theorem!):
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Pythagoras

{Triples of positive integers (a, b, c) such that a2 + b2 = c2}

↔

right− angle triangles with integral length sides :
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The ‘moduli space’ of right-angle triangles

The positive rational solutions correspond to isomorphism classes of
right-angle triangles with rational length sides,

and there is even a one-one rational parametrization of those solutions

(neatly effected by the ‘sweeping method’; i.e., considering a fan of
straight lines (with rational coordinates) that meet this curve at one
rational point, and

—since the curve is of degree two—

meets the curve at exactly one other point—that is, therefore, also
rational).
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The ’sweeping method’
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(10th century) Congruent number problem as a ‘moduli
problem’

To dig a bit more into the ‘moduli space’ of right-angle triangles with
sides (a, b, c), let’s fix the area of such a triangle:

A := ab/2

and consider the family of right-angle triangles with that (fixed) area A.

Define new parameters X and Y by:

X := Ab/(c− a), and Y := 2A2/(c− a)

and noting that one can get (a, b, c) back from the knowledge of X and
Y (and A):

a = (X2 − A2)/Y, b = 2AX/Y, c = (X2 + A2)/Y,

and that. . .
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The ‘modular curve’ of right-angle triangles with area
equal to A

the relation between X and Y is given by the plane curve

Y2 = X3 − A2X.

we see that:

right-angle triangles with area A are parametrized by
this curve.
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Congruent Numbers

A positive integer A is called a congruence number if it is the area of
a right-angle triangle with rational sides (a, b, c). So, from the above
discussion, it is the area of such a triangle if

Y2 = X3 − A2X

has a solution (X,Y) = (u, v) where u and v are positive rational numbers.

(AND: it turns out that if there’s one such solution for a given A there are
infinitely many—i.e., if there is one right-angle triangle with rational sides of a
given area A there are infinitely many with the same area A.)
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The three types of algebraic curves just discussed:

the ‘Pythagorean’ curve:
x2 + y2 = z2 ,

the curves connected to the 10th century Congruence Number Problem:
Y2 = X3 − A2X

and
the curve related to Diophantus’s problem:

y2 = x6 + x2 + 1

are members of the most basic trichotomy of algebraic curves
(respectively): curves of genus 0, genus 1, and genus > 1.
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Genus

The genus of an algebraic curve is the fundamental geometric
numerical invariant of a (smooth complete) algebraic curve. It depends
only on the topological surface defined by the complex points of the
curve and counts the number of ‘holes’ in this topological surface. The
trichotomy distinguishes these three different class of curves:

Genus 0: topologically a two-dimensional sphere
Genus 1: topologically a torus
Genus > 1: topologically a ‘many-holed’ torus
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The arithmetic of these three types of curves differs
substantially:

Genus 0

An application of the Riemann-Roch Theorem gives that:

Any smooth projective curve of genus zero over a field can be
expressed as a conic, and so the ‘sweeping method’ gives us
that if such a curve has one point rational over a field K it has
a fan of points parameterized by P1(K).
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And curves of genus 0 also have the extraordinarily
useful local-to-global property

(also called the “Hasse property"):

If a curve of genus zero over the field of rational numbers Q

has a real point and a p-adic point for all primes p,

then it has a Q-rational point.

“locally soluble" ↔ “globally soluble"
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Curves of genus 1

The arithmetic of these curves is much subtler than curves of genus 0.
First, there is the local-to-global issue:

A projective curve of genus 1 over Q known personally to many
number theorists is

E : 3x3 + 4y3 + 5z3 = 0.

It was the curve shown in 1951 by E. Selmer to have p-adic points for
all p (and over R) but no Q-rational points—i.e., it does not have the
local-to-global property.

Mazur Arithmetic of Curves Einstein Lecture



Elliptic curves.

But once a curve E of genus 1 over any field K has a K-rational
point—taking that point to be the origin—there is a canonical structure
of a (commutative) algebraic group on E . . . as in the figure shown at
the beginning of this lecture:
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Mordell-Weil groups

Given this structure, E is called an elliptic curve. The set E(K) of
K-rational points of an elliptic curve (or of any commutative algebra
group) inherits a (canonical) structure of an abelian group.

The group E(K) is called the Mordell-Weil group of E over K in honor of
the classical theorem of Mordell (the theorem was extended by Weil to
apply to all abelian varieties) that guarantees that these Mordell-Weil
groups are finitely generated.

The range of questions related to Mordell-Weil is vast, and we’re only
at the beginning of an unfolding story.
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Curves of genus > 1

Although there is the well-known and dramatic
‘pre-history’ of this subject dealing with the plane
curves

xn + yn = zn,

related to afterthoughts of Pierre de Fermat on
thinking about the Pythagorean curve, the general
question of considering the arithmetic of all curves of
genus > 1 began in 1922, with Mordell’s Conjecture,
nowadays framed over any number field.
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Mordell’s Conjecture

Conjecture

(Mordell 1922) A curve X over a number field K of
genus > 1 has only finitely many K-rational points.

This conjecture was proved about a half century later
by Gerd Faltings.

So, Diophantus’s curve (which is of genus 2) has only
finitely many Q-rational points.
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The scarcity of rational points

It was the mathematician Serge Lang’s firm belief that on the whole,
algebraic varieties over K tend not to have all that many K-rational
points unless there is something structural, such as a group structure
that forces it.

.

Is it true that a variety V over K possesses infinitely many
K-rational points if and only if there exists a connected
algebraic group G over K possessing infinitely many
K-rational points and a nonconstant mapping

G→ V

defined over K?

This is true for curves!
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Curves of genus > 1 have finitely many rational points

We’ll discuss three essentially different arguments establishing
finiteness of X(K) for curves X defined over K and of genus > 1: the
methods of:

(1) Faltings, (2) Vojta, and (3) Chabauty-Coleman-Kim,

the last of these methods working (at present) only under further
hypotheses. My aim is not to give an exposition of them—but rather to
invoke enough of their nature so that we can appreciate how
thoroughly incomparable they are! Here, again, is the above list:
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Curves of genus > 1 have finitely many rational points

Gerd Faltings (1983)—

his method applies generally, and was the first full
proof of Mordell’s Conjecture.
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Curves of genus > 1 have finitely many rational points

Paul Vojta—

his method also applies generally—later
elaborations and some simplifications by Faltings,
Bombieri, McQuillan.
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Chabauty-Coleman-Kim

Claude Chabauty (1941)— his method works
under the restricted hypothesis that the genus is
greater than the Mordell-Weil rank of the jacobian
of X.
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Sharpened later

And led to a (semi-) effective theorem by ideas of

Robert Coleman.
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And more recently made even more powerful

by ideas of

Minhyong Kim—

who extends the ideas of Chabauty and Coleman
to deal with a range of examples that do not satisfy
the restricted hypotheses required by Chabauty.
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Chabauty-Coleman-Kim

This method is currently being used (and
augmented) by many people who are finding all the
rational points on some challenging, and important,
curves.

People including: Jennifer S. Balakrishnan, Netan
Dogra, J. Steffen Müller, Jan Tuitman, Jan Vonk, and
others.
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Brian Lawrence and Akshay Venkatesh

In their very recent work:

Diophantine problems and p-adic period mappings

we see a proof of Mordell’s Conjecture, that
(excitingly) has the flavor of Faltings’ approach but
also has the spirit of Chabauty-Coleman-Kim!

Mazur Arithmetic of Curves Einstein Lecture



Various types of finiteness

When you claim the set X(K) of K-rational points on a curve is finite,

you might mean, for example, that you have proved that:

1 there is an explicit constructed upper bound on
the heights of rational points, or perhaps that:

2 there is an explicit constructed upper bound on
the number of rational points.
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Consequence of bounding the heights of rational
points

In this case it is possible that you’ve set the stage for actually finding
the full set of rational points. That is, if your bound isn’t too high, you
could systematically test—e.g., by computer—all points of K of height
≤ your bound to see if they yield points on the curve.

Among other things, your bound might also allow you to compute an a
priori finite estimate for the amount of computer time it would take to
resolve the issue.
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Consequence of bounding the number of rational
points

The best would be if your upper bound were the actual number of
rational solutions.

So, as you search systematically (e.g., in rising heights) looking for
rational solutions if you find as many solutions as your bound, you
know you’re done.

But you won’t know before this event happens that it would happen,
nor would you have an a priori time estimate for when such a thing
might happen.

In many set-ups where one has an upper bound for the number of
rational points, the upper bound is far greater than the actual number
of points, so even if you’ve got all the rational points, you may never
know it.
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An Algorithm?

All the proofs that we know are of the second type: they bound the

number but not the height of K-rational points on X, leaving us with the

fundamental question:

Questions

Does there actually exist an algorithm such that for

Input:=any curve X, of genus > 1 over K,

it provides

Output:=an upper bound B(X;K)
for the heights of the points in X(K)?
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How different are the different proofs of finiteness of
the number of rational points of curves of genus > 1?

They all prove finiteness of number of rational points, but they seem to
get to finiteness in strikingly different ways.

Is there some way of fitting these different approaches into one
coherent picture?
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The method of Faltings. . .

establishes finiteness of rational points on curves of genus > 1 as a
consequence of finiteness of quite a different species of mathematical
object—namely:

finiteness of the number of isomorphism classes of abelian varieties
with good reduction outside a finite set of primes, and of bounded
polarization degree.
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The method of Faltings. . .

So, this finiteness deduction is very indirect and depends–at the very
least—on the quantity of such isomorphism classes. Although the
bound obtained on the number of rational points is effective, this
bound—in practice—is surely enormous; I wonder whether anyone
has worked it out explicitly in any nontrivial example.

Comment on:

Roses in the garden < Flowers in the garden < ∞
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The method of Vojta. . .

is guided by analogies that relate finiteness of rational points to
problems in quite different arenas of mathematics:

hyperbolic geometry and

approximation of algebraic numbers by rational numbers.

Vojta’s strategy takes off by banding together a large collection of
rational points to get a point (P1,P2, . . . ,Pm) ∈ Xm (for large enough m
where the Pi are rational points of X whose heights are appropriately
growing humungously . . . ) to get a contradiction.

It is reminiscent of the shape of the proof of the classical Roth’s
Theorem.
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Roth

Roth’s Theorem guarantees that for a given algebraic irrational (real)
number α, and for any ε > 0, there are only finitely many rational
numbers p/q that approximate α as closely as:

|α− p/q| < 1
q2+ε.
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Roth

Roth’s strategy is to suppose there are infinitely many such good
approximants and to combine enough of them to make one vector

v := (p1/q1, p2/q2, . . . , pm/qm) ∈ Rm,

with m enormous, which is a pretty good approximation to the diagonal
m-tuple

u := (α, α, . . . , α) ∈ Rm.

—And then to get a contradiction by assiduously engineering
polynomials in Z[x1, x2, . . . , xm] that vanish (to ’high degree’) on
u = (α, α, . . . , α) but don’t vanish on v = (p1/q1, p2/q2, . . . , pm/qm).

Since such a polynomial f (x1, x2, . . . , xm) has coefficients in Z and v is
rational, and f (v) 6= 0, it follows that |f (v)| has a clear lower bound.

Since f (u) = 0, and v approximates u, you get a contradiction.
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Roth

Roth’s strategy is to suppose there are infinitely many such good
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Chabauty, Coleman, Kim

Here is a way of thinking about how the method of Chabauty as
extended by Coleman, Kim and others offers finiteness of
number—when it applies.

Imagine if for a given curve X (of genus > 1 over a number field K) you
had an algorithm that produces a nontrivial meromorphic function φ(x)
on the complex analytic Riemann surface X(C) such that φ vanishes
on all K-rational points of X.

Since φ has only finitely many zeroes, your algorithm would have
shown finiteness of rational points.
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A scenario

Moreover, imagine that φ is algorithmically explicit in that in finite time
the algorithm exhibits any finite number of Taylor series coefficients (at
some specific point) that is desired.

In such a scenario, beyond a proof of MERE finiteness you would have
lots more information as well!

You have an upper bound—not only on the number—but on the
possible locales of the rational points.
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But. . .

There is no known finiteness proof of rational points of a curve of
genus > 1 that follows exactly the above scenario,

but if you replace the complex numbers C by:

appropriate p-adic completions Kv of the number field K,

and replace the requirement that φ be meromorphic on X(C) by:

the requirement that φ be a locally (‘p-adic") analytic function on
the (‘p-adic’) analytic curve X(Kv) —φ being given by a power
series on every residual disc—

then the method of Chabauty enhanced by Coleman, by Kim and
others—but only, of course, when it applies!— proves finiteness by
offering such a function!
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A cartoon that gives (the barest) hint of how the
method of Chabauty and its recent extensions work

Mazur Arithmetic of Curves Einstein Lecture



Diophantus

Returning to Diophantus’s problem and the curve:

X : y2 = x6 + x2 + 1,

this curve has Mordell-Weil rank = genus = 2, so is not amenable to
the straight classical method of Chabauty,

but a mild extension of it can be applied, and was indeed applied in
Wetherell’s thesis to prove that Diophantine had found all positive
rational values of x that give rational points on X. namely:

x = 1/2.
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Diophantus’s curve is a hyperelliptic curve over Q

Curves that are double covers of the projective line, i.e., of the form

C : y2 = f (x)

where f (x) ∈ Q[X] is a polynomial with no multiple roots are called
hyperelliptic curves—an intensely studied family of curves. If
degree(f ) ≥ 5 then C is of genus > 1.

Mention Drosophila
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Statistically. . .

Fixing g and ordering isomorphism classes of hyperelliptic curves
defined over Q by the discriminant of their defining polynomial f (x), we
may ask statistical questions about the set of those curves. If degree(f )
is odd, the point at∞ is a Q-rational point of C.

Questions
Is it true that with probability 1 the rational point∞ is
the only Q-rational point of C?
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Bjorn Poonen and Michael Stoll have shown that most
hyperelliptic curves given by y2 = f (x) with f (x) of odd degree have
only the one rational point∞.

More specifically, for g ≥ 3 a positive portion of such curves have
∞ as their only rational point, and this proportion tends to 1 as g
tends to infinity.

Following these results, Arul Shankar and X. Wang show that
when g ≥ 9, a positive proportion of hyperelliptic curves of genus g
having two non-Weierstrass Q-rational points have exactly those
two rational points, and that this proportion tends to 1 as g tends
to infinity.
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Locally soluble hyperelliptic curves are often not
globally soluble

A theorem of Manjul Bhargava, Benedict H. Gross, and Xiaoheng
Wang asserts that:

Le k be any fixed odd integer.

The proportion of locally soluble hyperelliptic curves
over Q of genus g having no points over any odd
degree extension of Q of degree at most k tends to 1
as g tends to infinity.
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An atypical collection of hyperelliptic curves:

C : y2 = (x− a1)(x− a2) . . . (x− ad) + c2

where the ai are distinct rational numbers, and c is a nonzero rational
number chosen such that C is smooth.

There are (at least)

2d ∼ 4g
rational points on such curves C.
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So. . . how many rational points does a general
algebraic curve of genus > 1 have?

Here’s a challenge: can one beat that “atypical collection"?:

Fix any number field K and ε > 0 , can you find—for arbitrarily large
genus g infinitely many curves defined over K of genus g with more
than (4 + ε)g K-rational points?
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Even after 17 centuries we are still at the beginning of
any full understanding of the nature of rational points
on algebraic curves

Pure mathematics is, in its way, the poetry of logical ideas.
One seeks the most general ideas of operation which will
bring together in simple, logical and unified form the largest
possible circle of formal relationships.

Albert Einstein
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