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Open Problem 2014001 (Number theory) Pro-

posed by Barry Mazur, Harvard University, USA.

I was asked by the organizers of the August 2011

birthday conference in honor of Joe Harris to give

a short presentation in the session on “Open Prob-

lems” in the conference. Now, a great thing when you

work together with Joe is that you find yourself in the

midst of loads of inspiring problems, thanks to his

deep engagement with, and intense curiosity about,

all aspects of his subject. He’s a master of formulat-

ing problems on somany levels that it’s already some-

thing of an open problem simply to choose just one

or two of them in his honor.

Sometimes Joe introduces a problem very broadly

and somewhat obliquely, as when he once asked

“How many curves are there defined over Q?” Of

course, this was an invitation to discuss the dimen-

sion—as a function of the genus g—of the Zariski clo-

sure of the set of Q-rational points in Mg the moduli

space of curves of genus g. Hyperelliptic curves al-

ready gives you 2/3 of the dimension of that moduli

space (mod O(1), and as g → ∞) but can you get, say,

a better fraction than that? This question, of course,

immediately connects, via celebrated conjectures of

Lang, to questions regarding the algebraic geometric

structure of Mg.
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And sometimes, when you come to him with a

general question—even a vague unformed one—he

will clue you in to a rich tradition of very concrete in-

stantiations of it. This happened recently when John

Tate, Mark Kisin, and I asked him a certain general

question. In the remaining minutes of my presen-

tation today I’ll hint at that question and mention

briefly at least one specific instance of it that Joe and

Mike Roth and Jason Starr had investigated (also Joe’s

student Arnav Tripathy) opening up, it seems to me,

a wide area of excellent algebro-geometric structure.

The general title of the problem, then, could be

the title of these notes: descending cohomology, ge-

ometrically. Take, for example, a smooth projective

threefold1X over Q with the property that it pos-

sesses no holomorphic everywhere regular differen-

tial 3-forms; i.e., h0,3 = h3,0 = 0. For any prime number

` let

Q`(1)) := Q`⊗Z`
T µ`∞ ,

that is, we’ve “Tate-twisted” the constant sheaf.

Now let

H` := H`(X) := H3
et(X ⊗Q Q̄;Q`(1))

denote the three-dimensional `-adic étale cohomol-

ogy group of X viewed as GQ̄ := Gal(Q̄/Q)-repre-

sentation, but “descended” in the sense that it is

twisted as indicated.

The reason why it is reasonable to do this is that

for all primes p of good reduction for X , the eigen-

1 We’re fixing dimension three and base field Q just for speci-
ficity since we have an interesting open problem even in
this level of generality, but—of course—one could consider
more general contexts such as odd-dimensional varieties of
“niveau de Hodge un,” as defined by Deligne in [7].
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values of Frobenius in the original untwisted repre-

sentation are algebraic integers divisible by p (since

h0,3 = 0: this is a consequence, for example, of a con-

jecture of Katz that is now a theorem; see specifically

[4]; for explicit results regarding divisibility, see [6];

for related issues see also [15], [16]) and therefore

the downward twisted representation has the prop-

erty that these eigenvalues divided by p remain alge-

braic integers, and therefore—in the usual sense—are

“Weil numbers” of absolute value p/2.
Even better, the `-adic Hodge numbers of the

downward twisted representation are zero except

for h0,1 = h1,0. That is, given these numerical invari-

ants, the downward twisted representation could con-

ceivably be the Galois representation attached to an

isogeny class of an abelian variety over Q. By Falt-

ings’ Theorem, if there is such an isogeny class it is

unique (also independent of `). Call “it” (whether it

exists or not) the phantom isogeny class of abelian

varieties over Q related to this X . Within this isogeny

class (over Q)—if it exists!—there is a unique isomor-

phism class of abelian varieties, J(X)Q, possessing

Gal(Q̄/Q)-equivarient isomorphisms:

H` = H3
et(XQ̄;Z`(1))' H1(J(X)Q̄;Z`)

for all primes `. Here the subscript Q̄ refers to base

change from Q to Q̄, and the Galois action is the nat-

ural one.

It is known that much of this phantom abelian

variety actually does exist. For example:

• The complex abelian variety: The intermediate

jacobian construction (cf. [5] ) gives us a complex

torus,

J(XC) :=H3(XC,Z)\H3(XC,C)/H2,1(XC)

=H2,1(XC)/H3(XC,Z),

and cup-product provides a Riemann form on

J(X)C rendering it a principally polarized abelian

variety over C that is (the conjectural candidate

for) the complex analytic abelian variety associ-

ated to the putative phantom. (Also, if XC varies

algebraically over a parameter space—over C—so

does this principally polarized abelian variety

J(X)C.)

• The abelian variety over Fp: For every prime p of
good reduction, there really does exist a unique

isogeny class, J (X)Fp , of abelian varieties over Fp

that would play the role of the reduction mod p
of the phantom if the latter were to exist.2 This

2 It might be fun to look for a somewhat direct construc-
tion of an abelian scheme J(X)Zp over Spec Zp whose spe-
cial fiber is in the isogeny class J (X)Fp and for which the

p-adic Gal(Q̄p/Qp) representation on H1
et(J(X)Q̄p

;Qp) is—when

appropriately twisted—isomorphic to the representation of
Gal(Q̄p/Qp) on H3

et(XQ̄p
;Qp).

follows from our discussion above, plus the the-

orems of Tate and Honda3 ([17], [18], [9]) that

guarantee that conjugacy classes of Weil num-

bers of absolute value p/2 correspond bijectively

to isogeny classes of simple abelian varieties over

Fp.

• Descent of the complex abelian variety by the

method of “irreducibility of themonodromy ac-

tion”: If X is a complete intersection with the

above properties (i.e., h0,3(X) = h3,0(X) = 0) then
Deligne ([7]) established the existence of a unique

(principally polarized) abelian variety J(X)Q of

the sort we seek. The method is quite conceptual,

and depends on irreducibility of monodromy ac-

tions for the universal family of which X is a

member. It works—mutatis mutandis—for com-

plete intersections X of any (odd) dimension

n = 2m + 1 such that X is of “level one” in the

sense that its only nonzero n-dimensional Hodge

numbers are the middle two: hm,m+1 and hm+1,m.

More specifically, let S be the universal family

of smooth complete intersections of dimension

n cut out in Pn+ν by ν homogeneous forms of de-

grees a1,a2, . . . ,aν and assume that these smooth

complete intersections are of “level one” and that

X is a member of that family corresponding to

the point s ∈ S. As mentioned above, the ma-

jor property that Deligne relies on for the con-

struction of J(X)Q is that the monodromy ac-

tions of π1(S,s) on H3(XC;Q) and on H3(XC;Z/`Z)
(for every prime number `) are all absolutely ir-

reducible.

There has been some beautiful recent work devel-

oping the theme that absolutely irreducible mon-

odromy sometimes allows one to descend fields

of definition from C to number fields while keep-

ing control of the natural Galois actions, thereby

constructing natural arithmetic models of po-

larized abelian varieties associated to Hodge

structures. Starting with period maps4 related

to Hodge structures for various moduli prob-

lems—as developed in recent work of Allcock-

Carlson-Toledo ([1], [2]), Kondo ([10], [11]), and

Looijenga-Swierstra ([14]) Kudla and Rapoport

([13]) descend fields of definition (via the tech-

nique irreducibility of monodromy) in a number

of cases.

3 For another very nice exposition of this, see also Theorem
4.1(1) of Kirsten Eisenträger’s exposition article “The theo-
rem of Honda and Tate” which can be found on her web page.
4 These are called occult period maps since they aren’t al-
ways the straightforward evident map associating to the al-
gebraic variety its natural Hodge structure; at times—for ex-
ample—one rather makes an intermediate construction such
as viewing the variety of interest as the branch locus of a
cyclic cover of the ambient projective space, and then pass-
ing to the Hodge structure of that cyclic cover.
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• Construction of the phantom abelian variety by

direct algebro-geometric means:

1. Prym constructions: For a smooth cubic

threefold X , the classical construction due

to Mumford gives its intermediate jacobian

as the Prym abelian variety of a certain

curve constructed from the cubic threefold.

Roughy, one blows X up at a line L ⊂ X
and exhibits this blow-up as a conic bundle

over the complement of a curve C projec-

tive space; the curve C has a double cover C̃
(see Jeff Achter’s article [3]) that establishes

a Prym construction—extending the classi-

cal work of the intermediate Jacobian of a

cubic threefold over an algebraically closed

field.

2. Intermediate Jacobian as Albanese: The

classic paper of Clemens and Griffiths [5] es-

tablished that the intermediate jacobian of

a smooth cubic threefold X in P4 is the Al-

banese variety of the Fano scheme of lines

on X .

With this latter route of construction as a possi-

ble proto-type we were led to ask Joe:

Question 1. Can the intermediate jacobian,
i.e., this phantom abelian variety, be con-
structed as—or at least in terms of—the Al-
banese variety of someHilbert scheme geomet-
rically attached to X?

When we asked Joe about this, he responded:

Mike Roth, Jason Starr and I looked at an exam-
ple of this, the cubic threefold X in P4 (Abel-Jacobi
maps associated to smooth cubic threefolds): in this
case, it’s known that the Albanese variety of the
Fano scheme of lines on X is what you want; we
wanted to see if the same was true for the space
of rational curves of any degree. We were able to
verify this up to degree 5, but not in general.
Part of the motivation, I should add, was the pos-
sibility of applying a similar construction to some-
thing like the cubic fourfold, where we don’t have
any sort of geometric object associated to the
Hodge structure.

A natural place to look for these intermediate ja-

cobians, at least for threefolds X that are uniruled5

is as Albanese varieties attached to, say, appropriate

Kontsevich spaces of parametrized genus zero stable

curves in X ; or Albanese varieties attached to variants

of Kontsevich spaces, such as in the work of Harris

Roth, and Starr quoted above, where one takes Al-

banese varieties of Hilbert schemes classifying curves

5 Uniruled means that for every point x of X there exists a
rational curve lying in X passing through x. The condition
h3,0 = 0 for a threefold is not enough to guarantee that it is
uniruled; there is a conjecture that if no positive power of
the canonical bundle of X has sections, then X is uniruled.
This is conjectured in all dimensions, and true for curves
and surfaces.

of genus zero (with specific attributes) in X . Given
that there are variant possibilities, one is led to ask

questions of stability,6 such as:

Question 2. Consider the Kontsevich space7 K(X ,β ) where X
is a smooth three-dimensional hypersurface and β ∈ H2(X ,Z)
a chosen homology class. Here β is the fundamental class of
the rational curves in X that K parametrizes; in the case of
smooth hypersurfaces, then, β is simply the degree of these
rational curves. Let J(X ;β ) := the Albanese variety of the Kont-
sevich space K(X ,β ). How does J(X ;β ) depend on β?
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