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In the recent conference (May 10, 11) at Harvard University1 I was
asked to take part in a question-and-answer session with Carol Wood
and Bjorn Poonen regarding questions that relate Mathematical Logic
to Number Theory.

1. Our three “discussion problems.”

Bjorn Poonen discussed the “recognition problem” for finitely gen-
erated rings (and fields). That is, given two finitely generated commu-
tative rings A and B, presented in terms of generators and relations,
is there a decision procedure to determine whether or not these rings
are isomorphic (this being, one would think, a basic issue for algebraic
geometry!). Of course, if one drops the requirement of commutativity,
one comes up against the unsolvablity of the corresponding problem
for finitely generated groups (by taking A and B simply to be integral
group rings).

Carol Wood brought up cases where model theory, applied to number
theoretic problems provided bounds that are impressively good! Model
Theory—in some instances—yields significantly new proofs of theorems
obtained by the number-theorists 2. In other instances, model theory
achieves startling results for problems not yet considered by number
theorists 3. Carol Wood discussed the recent article of Pila and Wilkie
([PW07]) that provides asymptotic upper bounds (as a function of
the variable T ) for the number of Q-rational points of height ≤ T that

1MAMLS@Harvard, a meeting on the intersections of logic and mathematics. I
want to thank Rehana Patel for organizing it and inviting us to participate.

2For example, Hrushovski’s model-theoretic proof of the Manin-Mumford Con-
jecture was recently revisited and formulated as a (new) number theoretic proof in
[PR06].

3For example, explicit bounds for the number of transcendental points on the
intersection of subvarieties of semi-abelian varieties and a given finitely generated
subgroup [HP00]. These bounds are double exponentials in the rank of the finitely
generated group.
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lie in a given semi-analytic set X ⊂ Rn but are outside any positive-
dimensional semi-algebraic set contained in X.

I talked about examples of unsolvable problems given in Diophantine
language (following Matiyasevich). Specifically, the negative solution
of Hilbert’s Tenth Problem. Here are some notes on this4.

2. Comments on Hilbert’s Tenth Problem

Following recent work on this problem it is useful to phrase the
discussion for a general commutative ring A finitely presented over Z
or over Q, and of infinite cardinality5.

The basic question is:

Does there exist a finite algorithm to determine whether
any finite system of polynomial equations in finitely
many variables with coefficients in A has a solution in
A or not?

Here, in a nutshell, is the general status of this question we inherited
from Hilbert and from “classical work” ( Julia Robinson/Davis/Putnam/
Matiyasevich). The culminating theorem is Matiyasevich’s:

Theorem 2.1. Every recursively enumerable6 subset of Z is diophan-
tine (relative to Z).

This fundamental result, of course, gives a negative answer to the
question above, but does far more than just that.

For example:

(1) The result implies that relatively benign subsets of Z can be
diophantinely described, as well. This is not as clear as one

4I want to thank Bjorn and Carol for their comments about, and corrections to,
an early draft of these notes.

5Of course, the historically interesting case for this problem is A = Z or A = Q.
A close translation of Hilbert’s formulation of the problem is as follows:

Given a diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: To devise a
process according to which it can be determined in a finite number
of operations whether the equation is solvable in rational integers.

6I’m told, by Bjorn, that logicians these days are suggesting that the terminology
“computably enumerable” replace “recursively enumerable”.
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might think even for the most familiar subsets, and seems in-
teresting to me: for example, there is a polynomial over Z whose
set of positive values is the set of exactly all prime numbers for
integral substitution of its variables. A specific such polynomial
(taking hardly two dozen lines of print) is given in [JSWW76].

(2) One is not yet finished mining this for concrete versions of “un-
solvable problems” but it clearly will give us a wealth of such
problems. See, for example, recent postings of Harvey Fried-
man; these have possible relations to Mnëv’s (1988) result that
any scheme over Z can be expressed as a moduli space classi-
fying configurations7 of finite points in P2. Harvey Friedman
poses nine different “Families of Problems” regarding configu-
rations of rational lines in the Euclidean plane, These problems
ask for existence or nonexistence of integral intersections (with
various properties) of linear configurations. Friedman discusses
whether the problems in each of these families can be done in
ZFC or whether there are examples of problems in that family
that cannot: apparently three of Friedman’s problem-families
can be solved in ZFC, three cannot, and for the remaining
three—if Hilbert’s Tenth Problem (over Q) is undecidable—
then these cannot be done in ZFC.

More recent work (Denef/Denef-Lipschitz/Pheidas/Shalpentokh/Poonen)
developed ideas that culminated in the following result:

Theorem 2.2. If a certain stability result in the arithmetic of elliptic
curves holds8 over K, then for any number field K every recursively
enumerable subset of OK , the ring of integers in K is diophantine
(relative to OK).

Karl Rubin and I have recently shown that this stability result holds
if you assume the 2-primary part of the classical Shafarevich-Tate Con-
jecture [MR09]. As a consequence we have shown that, conditional on

7By a configuration type let us mean a number N and a collection of subsets
S1, S2, . . . Sn of the set [1, 2, . . . , N ]. The configuration space associated to such a
type is the space of all ordered sets of N points in P2 subject to the requirement
that the points corresponding to S1 are collinear, and ditto for S2, . . . , Sn.

8Specifically the stability result asserts that for every prime degree Galois exten-
sion of number fields L/K there exists an elliptic curve E over K with

rankE(K) = rankE(L) > 0.
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the 2-primary part of the Shafarevich-Tate Conjecture, Hilbert’s Tenth
problem has a negative answer for the ring of integers in any number
field.

Since Kirsten Eisenträger has, in her thesis, related Hilbert’s Tenth
Problem over rings of integers in number fields to a much more general
class of rings, one gets—thanks to her work:

Theorem 2.3. Conditional on the 2-primary part of the Shafarevich-
Tate Conjecture, Hilbert’s Tenth problem has a negative answer for
any commutative ring A that is of infinite cardinality, and is finitely
generated over Z.

3. The focus on cubics!

One variable is OK; linear and quadratic are OK. There are unsolv-
able fourth degree polynomials over Z (in a large number of variables).
This focuses on the third degree, and there—to my knowledge—our
knowledge essentially stops9.

4. Rational points on cubic plane curves

A famous half-century-old example here is Selmer’s equation:

3X3 + 4Y 3 + 5Z3 = 0

which has NO (nontrivial) solutions over Q even though all “local in-
dicators” don’t rule out the possibility that a rational (nontrivial) so-
lution exists10 So that particular problem is “solved.” But, more gen-
erally, we want to know:

Is there an algorithm to answer—for any third degree
polynomial F (X, Y ) over Q—the question: is there a
pair of rational numbers a, b such that F (a, b) = 0?

9It is interesting how our lack of understanding of cubics seems to color lots of
mathematics, from the ancient concerns in the “one-variable case” having to do
with “two mean proportionals,” and Archimedes’ Prop.4 of Book II of The Sphere
and Cylinder and Eutocius’ commentaries on this, and–of course—the Italian 16c
early algebraists.

10This projective curve has points rational over every completion of Q.
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A proof of the Shafarevich-Tate Conjecture11 would provide a proof
that a certain algorithm works for the general third degree polyno-
mial F (X, Y ) and—more generally—to find rational points on curves
of genus one. The algorithm itself is currently known, and used quite
extensively. If it (always) works, then it gives an answer to the question
posed above, and indeed allows us to find the rational points. But we
don’t know whether it will always terminate (in finite time) to provide
us with an answer. The Shafarevich-Tate Conjecture would guarantee
termination in finite time. This is a huge subject (the arithmetic theory
of elliptic curves) and it would be good to understand it as well as we
can possibly understand it. Note the curious irony in the formulation
of Theorem 2.3:

If we have a proof of the (2-primary part of the) Shafarevich-
Tate conjecture

—i.e., colloquially speaking: if the algorithm that en-
ables us to deal with arithmetic of cubic plane curves can
be proved to work—

then we have a proof of the non-existence of a general
algorithm for the ring of integers over any number field.

5. Integral points on plane curves of genus one

Here one has a striking explicit result, thanks to Baker’s method. Let
f(X1, X2) ∈ Z[X1, X2] be an absolutely irreducible polynomial such
that the associated projective curve f = 0 has genus one. Let n := the
(total) degree of f(X1, X2) and let H := the maximum of the (ordinary)
absolute values of the coefficients of f(X1, X2). Then there are finitely
many integral solutions (a1, a2) of the equation f(X1, X2) = 0 and they
are bounded explicitly by the inequality

max{|a1|, |a2|} < exp exp exp {2H10n10}.
For discussion about this, see section 4.4 of [B75].

6. Polynomials of degree three in many variables, over Z

We are now left to ponder one of the big open problems in this area:

Is there an algorithm to answer—with input third de-
gree polynomials F (X1, X2, . . . , Xn) over Z for arbitrary

11In fact, just, the p-primary part of the Shafarevich-Tate Conjecture, for any
single prime number p will do it.
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n ≥ 3 —the question of whether there is an n-tuple of
integers (a1, a2, . . . , an) such that F (a1, a2, . . . , an) = 0?

In the discussion Curt McMullen asked us to speculate—given current
knowledge— what the eventual answer will be. I know what I “want the
answer to be” (i.e., solvable, why not?) but I can’t give any compelling
reason for my optimism. Curt McMullen pointed out that in the topol-
ogy the recognition problem for manifolds of dimension four or higher
is unsolvable (it being related directly to the recognition problem for
finitely presented groups, and it is patently solvable for dimension ≤ 2.
For manifolds of dimension three the recognition problem is, in fact,
solvable, but this is a deep result.

7. An Open Question

In the question period, Gerald Sacks suggested that solvability or
unsolvability may be only one of a number of different ways of framing
questions regarding diophantine algorithms. I agree, and have always
liked Serge Lang’s attitude towards these matters, who—in effect—
focussed much attention to the question of determining whether there
are finitely many, as opposed to infinitely many, solutions 12 and asked
algebro-geometric questions about structure of the infinitely many so-
lutions when they exist.

In this spirit allow me to formulate a question—without prejudice—
that seems worth contemplating even if it is a bit premature to try to
make much headway with it.

If V is an algebraic variety over Q let X(V ;Q) ⊂ V be the Zariski
closure in V of the set V (Q) of Q-rational points of V .

Define D(V ) = D(V ;Q) := the number of irreducible components
of X(V ;Q).

Suppose that we set out to find upper bounds for this function from
algebraic varieties to natural numbers:

V 7→ D(V ).

Consider, for example, the case where V is an irreducible curve.

• If V is of genus 0, then D(V ) is either 0 or 1 depending upon
whether V has a rational point or not.

12rather than existence or nonexistence of solutions
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• If V is of genus one, then
– D(V ) is 0 if V has no rational points,
– D(V ) is 1 if V has infinitely many rational points, and
– D(V ) is the order of the Mordell-Weil group of V over Q,

if that group is finite.
In all cases for V of genus one, then, (using [M77]) we get

that D(V ) ≤ 16.

• If V is of genus > 1, by Faltings’ Theorem D(V ) is the (finite)
number of rational points of V . Conditional on a conjecture of
Lang, Caparoso, Harris and I have shown that D(V ) is bounded
by a function that depends only on the genus of V .

In sum, we have that (conditional on a conjecture of Lang) for all
algebraic varieties V of dimension one,

D(V ) is bounded from above by a function F (|VC|) that
depends only on the homotopy type |VC| of the complex
analytic space associated to V .

Is the above statement true or false for algebraic surfaces? Or, more
generally, for algebraic varieties of arbitrary dimension?
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