
Primes, Knots and Po

Barry Mazur

July 22, 2012

For the conference “Geometry, Topology and Group Theory”

in honor of the 80th birthday of Valentin Poenaru

held in Autrans July 1st-6th, 2012

1



Po and I became instant friends when we met over half a century ago. In the intervening years our
friendship has only deepened.

I viewed Po, especially during the time that the photo in front of you was taken, as someone ready—
with his own intense energy and centeredness; as someone ready to create—from scratch—his own
culture, his own goals, his own mountains to climb, as well as his own language.

Po once commented that to really engage in any aspect of history or science–that is to say, to
understand a culture—you’re faced with the contradiction of a certain catch22 in that you must
manage, somehow, to have already achieved a critical mass of prior questions and reflections and
knowledge about it, before anything about it comes into focus. Happily, Po is at home in many
cultures, many languages, many histories, and he’s blessed with this type of intellectual critical
mass for so many subjects; physics and mathematics—of course—included.
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We first met each other through correspondence—he was in Romania and I in the US—and we were
both working on contractible four-manifolds that bound homology three-spheres, each of us having
had constructed examples of nonsimply connected homology 3-spheres that occur as boundaries
of contractible four-manifolds. (Po’s article is: Les décompositions de l’hypercube en produit
topologique, Bull. Soc. Math. France 88 (1960), 113-129).

Both Po’s examples (of contractible 4-manifolds that bound non-simply connected manifolds) and
mine were obtained by sewing a thickened 2-disc onto the boundary of D3×S1 along a knot in the
boundary that winds its way around the S1 so as to homotopically kill the S1. The result—given
the particular knots we chose—is the construction of contractible 4-manifolds that with non-simply
connected boundary. The kinds of 4-manifolds we construct are simply connected, of course, but—
as Po mentioned to me in this conference—an (unpublished) result of Casson implies that they are
not geometrically simply connected in the sense that it cannot be built as handlebodies having no
handles of index 1.

The concept of a manifold being simply connected but not geometrically simply connected is one that
is intimately related to Po’s work. This turns out to be uniquely a dimension four phenomenon;
as Po commented, “strange things happen in dimension four.” Indeed, as we now know, for n 6= 4
all simply connected compact manifolds are geometrically simply connected. For n ≤ 2 this is
classical; for n = 3 it is proved by Perelman and for n ≥ 5 it is true, thanks to Smale.

As for the related question of whether or not a homology n − 1-sphere actually bounds a smooth
contractible n-manifold, again, and for similar reasons, the case n = 4 shows itself to be peculiar.
For the answer is yes if n 6= 4; and the answer is not always when n = 4, thanks again to an
invariant of Casson ([2])

It is curious that even now, half a century after this issue was first broached, there are still open prob-
lems in this general domain, not the least of which is the still unresolved smooth four-dimensional
Schoenflies Problem.

Both Po’s examples (of homology 3-spheres that bound contractible manifolds) and mine had
the further feature that when you doubled them on their boundary—i.e., put two copies of them
together by identifying their boundaries—you got a closed differentiable manifold diffeomorphic
to the four-dimensional sphere, which means that there is a smooth involution of S4 (switching
the two copies of the doubled manifold) with non-simply-connected fixed point set, and therefore
’exotic’ in the sense that the involution is not equivalent to a linear involution. I remember that at
the time—the late fifties of the past century—I was very much in awe of the magical construction
of R.H. Bing who showed that the double of the closure of the bad component of the complement of
the Alexander horned sphere in S3 is again (topologically) S3 giving, therefore, a thoroughly wild
and untamable involution of S3. I imagine that Po was similarly inspired by Bing1. The surprising
re-creation of S4 by sewing together the boundaries of two manifolds continued as a theme of Po’s
work, as in the marvelous theorem that he proved with Francois Laudenbach in the early seventies
([6]).

1One might also mention that a related issue in the theory of homology n − 1-spheres is the double suspension
conjecture that asserts that the double suspension of a homology n − 1-sphere is homeomorphic to Sn+1. This was
proved for all n by Cannon ([2]) building on earlier work of Edwards [3]).
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But the great and abiding interest of Po centered on the mysteries of three-dimensional topol-
ogy, even though—very often—his mode of approach was through four dimensions. The Poincaré
Conjecture of course was one of his beloved focal points over decades. Now the way in which Po
dealt with the prospect of Perelman’s wonderful proof, and the way he engaged in appreciating the
insight of Perelman, and at the same time adroitly reshaping his own research projects makes Po
one of the truly fine models for our profession: fully at home in the world of ideas for their own
sake; and devoted to—and deriving inspiration from—the beauty of that world, their depth, its
power of explanation.

Knots and their exquisitely idiosyncratic properties, are the vital essence of three-dimensional topol-
ogy, the DNA that governs the development, and evolution, of that field. I know that Po has a
special love and affinity for them, and I also think that they form a link to many other—seemingly
far-flung—aspects of mathematics. For example, when I was trying to get a feel for number theory,
I found that a certain analogy between the knot theory that I knew as a topologist and the phe-
nomenology of prime numbers (that I was trying to become at home with) was exceedingly helpful,
as a bridge. I’ve returned to it often as a learning device and it seems that it might allow two-way
traffic, from knots to primes, and from primes to knots. In celebration of Po for this conference, let
me explain very briefly what this analogy consists of. For a beautiful introduction to this subject,
see M. Morishita’s treatise, Knots and Primes, [7].

In this conference, after listening to a lecture by Michel Boileau, it occurred to me that it might
make sense to be somewhat sharper than one traditionally is, when one frames the basic analogy.
Perhaps we should be making the comparison between prime numbers and—more specifically—
the class of hyperbolic knots (which, in contrast to the class of all knots have very few members,
conjecturally, in each commensurability class2). This choice also has the virtue of allowing us
to make use of the hyperbolic volume of the complement of the knot, vol(K), as a ready-made
analogue to the logarithm of the norm of the prime3. The format of our comparison is then:

Prime Numbers p ↔ Hyperbolic Knots K

log p ↔ vol(K)

It is interesting to focus on the parallels that can be drawn, as well as the distinctions that can be
made.

2Two knots K,K′ are said to be commensurate if there are finite covers M,M ′ of their respective knot comple-
ments such that M is homeomorphic to M ′.

3As Morishita commented on an early draft of these notes, one might also take the closely related Gromov norm
of the knot complement.
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1 One knot and one prime

1.1 A single knot K embedded in the three-sphere S3

The separate geometries of the two spaces involved are these: the ambient three-sphere S3 is 2-
connected and enjoys a 3-dimensional Poincaré duality with a canonical isomorphismH3(S3; Z) ' Z
while the knot K is diffeomorphic to S1. For technical reasons I will always take K to be given
with an orientation–i.e., with a canonical isomorphism H1(K; Z) ' Z—so K is (canonically) a
K(Z, 1)-space. Now consider the knot embedded in S3,

K ↪→ S3,

and the knot complement
X = XK := S3 −K ↪→ S3.

Alexander duality establishes a Z-duality between H1(X; Z) and

∂ : H2(S
3,K; Z)

'−→H1(K; Z) = Z,

giving us a canonical isomorphism:

H1(X; Z) = Z

which tells us that all finite abelian covering spaces of S3 branched at the knot, but unramified
outside it, have cyclic groups of deck transformations, that these cyclic groups have canonical
compatible generators, and that Xab → X, the maximal abelian covering space of X, has group of
deck transformations Γ canonically isomorphic to Z.

Or equivalently, setting
ΠK := π1(X,x),

with suitable base point x—the fundamental group of the knot—we have

Πab := Π/[Π,Π] ' Z.

Up to isotopy, the knot complement XK may be viewed as compact manifold with torus boundary,
TK = ∂XK , and within that torus—up to homotopy—there’s a normal (’meridianal’) loop that
generates the infinite cyclic subgroup

NK ⊂ TK ⊂ XK .

In anticipation of our comparison we might call

DK = π1(TK) = Z× Z
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the decomposition group of the knot, and

IK = π1(NK) = Z

the inertia subgroup. The fundamental group of the knot then comes with maps

(1) IK ↪→ DK −→ ΠK .

A basic theorem gives us that V = VK := H1(X
ab; Q) is a finite dimensional Q-vector space. The

natural action of the canonical generator of the group of deck transformations Γ ' Z on Xab induces
an automorphism of VK whose characteristic polynomial PK(T ) is the Alexander Polynomial of the
knot K.

There are multiple ways of approaching, and understanding, the information in PK(T ) (e.g., through
the combinatorial braid group theory around HOMFLYS). Here is an attitude to the zeroes of
the Alexander Polynomial that is natural enough: for any nonzero complex number z consider
the homomorphism ψz : ΠK → C∗ that sends the generator of Πab := Π/[Π,Π] to z. This
defines a linear system (of complex vector spaces of dimension one) V (z) over X. We have that
dimCH1(X,V (z)) is equal to the order of vanishing of the Alexander polynomial PK(T ) at T = z.

Since the analogue (in number theory) to the topological fundamental group is the étale funda-
mental group—which for a smooth complex variety is the profinite completion of the topological
fundamental group—we might prepare for this, in anticipation of our analogy, by defining two knots
K, K ′ to be profinitely equivalent if there is an isomorphism between the profinite completions
of their basic group diagrams,

(1̂) ÎK ↪→ D̂K −→ Π̂K .

and

(1̂′) ÎK′ ↪→ D̂K′ −→ Π̂K′ ;

and similarly for links.

This raises two questions:

1. Are profinitely equivalent knots, or links, isomorphic?4 Are knots that are profinitely trivial
actually trivial?

2. Let us say, casually—not precisely—that a knot invariant has a “profinite definition” if it can
be computed directly from the profinite completions (1̂). Which of the knot invariants have
profinite definitions (and therefore carry over directly to the context of primes numbers) and
which do not?

4As I learned in this conference from Norbert A’Campo and Louis Funar, there has been some–not yet published—
investigation of this. So, perhaps,in a later draft of these notes I will be able to include some discussion of this.
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For example, the Alexander polynomial does have a “profinite definition” but it is not obvious that
the general HOMFLYS does; perhaps it doesn’t.

1.2 A single prime number p in the integers Z

The algebra here is just given by the natural “reduction mod p” homomorphism

Z→ Z/pZ = Fp.

We will avoid the prime p = 2 since some minor differences would have to be acknowledged at
various points otherwise; so prime will mean odd prime in the discussion below. We will be taking
the standard viewpoint of modern algebraic geometry, and think of this surjective homomorphism
as giving us an embedding of schemes,

Spec(Fp) ↪→ Spec(Z),

and our analogy begins by thinking of K := Spec(Fp) as ‘like’ the knot K and S := Spec(Z) as
’like” the three-dimensional sphere S3. To understand this, we should examine, first, the separate
geometries of the two schemes Spec(Fp) and Spec(Z). The facts of life of the theory of finite fields
tells us that for every positive integer n, up to isomorphism, there is a unique field of cardinality
pn, Fpn given as a field extension Fpn/Fp which is Galois, cyclic, and degree n.

Moreover the (cyclic) Galois group of this field extension has a canonical generator: the Frobenius
automorphism x 7→ xp. In a word

Spec(Fpn)→ Fp

is a cyclic (unramified!) Galois cover with Galois group canonically Z/nZ. An algebraic closure
F̄/Fp is an appropriate union of these field extensions, and its Galois group is (canonically) iso-

morphic to Ẑ, the profinite completion of Z. From the étale homotopy perspective, Spec(F̄) is
contractible, and therefore K := Spec(Fp) is homotopically a K(Ẑ, 1)-space.

The theory for S := Spec(Z) requires some class field theory, as reformulated in the vocabulary of
étale (and some other Grothendieckian) cohomology theories. Firstly, S is simply connected, in the
sense that every connected finite cover of S is ramified. Moreover, S enjoys a three-dimensional
‘Poincaré-type’ duality theorem for étale and flat cohomology with values in the multiplicative
group Gm in the sense that

• H i(S,Gm) is (canonically) equal to {±1}, 0, 0,Q/Z, and 0 for i = 0, 1, 2, 3, and > 3 respective;

• If F is a finite flat group scheme over S and F ∗ := Hom(F,Gm) its (Cartier) dual finite flat
group scheme, then cup-product induces a perfect pairing of flat cohomology groups

H i(S, F )⊗H3−i(S, F ∗) −→ H3(S,Gm) = Q/Z.

In a word, S is morally 2-connected and enjoys a 3-dimensional Poincaré duality “oriented”
by the coefficient sheaf Gm.
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Now consider our prime p viewed as ’knot’ K embedded in S,

K ↪→ S,

and form the ‘knot complement’

X := S − K = Spec(Z[1/p] ↪→ S.

An argument very akin to Alexander duality (given the cohomological facts we have just recalled)
establishes a canonical isomorphism

H1(X ; Z) ' Z∗p

(where Z∗p is the group of units in the ring Zp of p-adic integers. If p > 2 we can write

Z∗p ' F ∗p × Γ

where Γ is the infinite cyclic pro-p-group of 1-units in Zp and is generated, for example, by the
1-unit 1 + p:

Γ = (1 + p)Zp .

In particular, all finite abelian covering spaces of S branched at K—i.e., finite abelian extensions of
Q unramified except at the prime p (and ∞)—have Galois groups that are cyclic, and canonically
isomorphic to the finite quotients (Z/pmZ)∗ of the topological group Z∗p. In anticipation of things
to come, set:

Λ := Zp[[Z
∗
p]]

noting that this ring is isomorphic to a direct product of p−1 copies of the power series ring in one
variable Zp[[T ]], where if i is an integer modulo p− 1 the i-th factor of Λ is given by the surjective
Zp-algebra homomorphism

χi : Λ −→ Zp[[T ]].

This is the unique Zp-algebra homomorphism that extends the continuous group homomorphism
from Z∗p =' F ∗p × (1 + p)Zp ⊂ Λ∗ to Zp[[T ]]∗ obtained by the stipulations that

• x ∈ F ∗p be sent to

(xi, 1) ∈ F ∗p × Γ = Z∗p ⊂ Zp[[T ]]

and

• (1 + p) ∈ Γ be sent to 1 + T ∈ Zp[[T ]].

Set
ΠK := πet1 (X , x),

with suitable base point x —the étale fundamental group of our knot K—we have that in relatively
standard parlance,

ΠK = GQ,{p,∞},
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i.e., is the quotient of Gal(Q̄/Q that is the Galois group of the maximal extension of Q in an
algebraic closure Q̄ that is unramified except at p and ∞.

As with topological knots the ‘fundamental group of the prime,’ comes with inertia and decompo-
sition groups

IK ↪→ DK −→ ΠK = GQ,{p,∞}.

From our previous discussion,
Πab
K := ΠK/[ΠK,ΠK] ' Z∗p,

and if X ab → X is the maximal unramified abelian (connected) cover, then we can also say

“Gal(X ab/X )” = Πab
K = Z∗p.

A natural analogue to the finite dimensional Q-vector space VK := H1(X
ab; Q) discussed above is

the étale 1-st homology group, taken first, with p-adic integral coefficients,

MK := Het
1 (X ab; Zp) = lim

n
Het

1 (X ab; Z/pnZ),

or—tensoring with Qp—we get the vector space

VK := Het
1 (X ab; Zp)⊗Zp Qp.

The module MK is naturally a Λ-module, and VK a Λ ⊗Zp Qp-module. Tensoring MK with the
p − 1 projection operators χi described above, we get for each i mod p − 1 a Zp[[T ]]-module that
we’ll call M i

K.

The behavior of these modules depends crucially on the parity of i. It is a marvelous theorem in
Iwasawa theory that if i is ’odd’ (which makes sense since our prime p is not 2) then our module M i

K
is a finitely generated Zp-module, and therefore V i

K = M i
K⊗Zp Qp is a finite dimensional Qp-vector

space. By definition–but subject to possibly different normalization—the Iwasawa polynomial
for the pair (p, i) (i odd, modulo p − 1) is the characteristic polynomial gp(i;T ) ∈ Zp[T ] of the
operator T acting on this vector space VK. These polynomials gp(i;T ) or, more precisely, their
zeroes are crucial for much number theoretic phenomena. For example, if for a given p and all
odd i mod p − 1, they are all 1—i.e., have no zeroes—the prime p is what is called regular and
Kummer’s relatively easy procedure of proving Fermat’s Last Theorem for exponent p can be made
to work. In general, by what is known as the ‘main conjecture” (which is a theorem) the zeroes of
gp(i;T ) correspond in a one-one fashion, and in a natural way, to the zeroes of the Leopold-Kubota
L-function Lp(s, ω

1−i).

1.3 Brief comments on comparison and differences

• If by unknotted one means that the fundamental group of the knot is abelian, every prime
is ’knotted.’

• A serious distinction between knots and primes has to do with what is called wild inertia
a phenomenon that exists, and is of crucial importance in number theory, but there’s no
corresponding complexity in our analogous situation in knot theory.

9



• There is a duality in the structure of the Alexander polynomial (it is invariant under inversion
t 7→ t−1; hence if θ is a root, so is θ−1). But there is nothing like that for Iwasawa polynomials.

Given the Gm-orientation of S, the corresponding duality for the Iwasawa polynomial would—
if it existed—send the index i to j := 1 − i and since j would then be even, gj(T ) has not
been defined. Of course, you could simply, by fiat, define gj(T ) so that it exhibits the duality,
but lacking (yet) any number theoretic motivation, that would be too formal a move to
contemplate.

2 Two knots and two primes

2.1 A pair of (disjoint) knots K,L embedded in the three-sphere S3

Here we can consider the embeddings:

K ↪→ XL := S3 − L
and

L ↪→ XK := S3 −K

Choose arbitrary base points and consider the induced homomorphisms of π1,

π1(K) −→ ΠL.

In anticipation of the analogy to come, let

{FrobK} ∈ ΠL

denote the conjugacy class of the image of the canonical generator of π1(K). This is indeed well-
defined, independent of the choice of base points. Similarly we have

{FrobL} ∈ ΠK

.

To be sure, we can’t yet compare these conjugacy classes, since they live in different groups. But
passing to the abelian quotient groups of ΠK and ΠL, both are canonically isomorphic to Z we can
indeed compare the images of {FrobK} and {FrobL} in

Πab
K = Z = Πab

L ,

and those images are given— respectively—by the linking number of K in L and the linking
number of L in K, these being equal with opposite sign. The proof of this equality is usually given
by identifying these numbers with the cup product of the fundamental classes in H1(XK) and
H1(XL) in H2(XK,L) = Z where XK,L := S3 − {K ∪ L}.
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2.2 A pair of (distinct) primes p, q

In parallel with our previous subsection, let K := Spec(Fp) and L := Spec(Fq). Consider the
embeddings:

K ↪→ XL := Spec(Z[1/p])

and

L ↪→ XK := Spec(Z[1/q])

Choose arbitrary base points and consider the induced homomorphisms of the étale fundamental
groups

πet1 (K) −→ ΠL.

Denote by
{FrobK} ∈ ΠL

the conjugacy class of the image of the canonical generator of πet1 (K) which is independent of the
choice of base points. Similarly we have

{FrobL} ∈ ΠK

.

Here again, we can’t yet compare these conjugacy classes, since they live in different groups. Even
passing to the abelian quotient groups of ΠK and ΠL, which are canonically Z∗p and Z∗q respectively,
and where the image of {FrobK} is the element p ∈ Z∗q and the image of {FrobL} is the element
q ∈ Z∗p, we simply have elements in different groups and so are not (yet) comparable. In a word,
the linking “number” of p with q (in that order) is the element p in Z∗q , while the linking “number”
of q with p (in that order) is the element q in Z∗p–no clear way to make any correspondence, yet.
Nevertheless each of these groups Z∗p and Z∗q have unique subgroups of index two (consisting of
‘squares’ of elements) and the famous comparison to be made here is to ask whether p being a square
in Z∗q (or equivalently, mod q) has anything to do with q being a square in Z∗p (or equivalently, mod
p). Indeed it does, as given by the classical quadratic reciprocity theorem. Namely, p is a square
mod q if q is a square mod p , except in the case where both p and q are both congruent to −1 mod
4, in which case p is a square mod q if and only if q is not a square mod p. (One of the many proofs
of this follows the lines of the proof I hinted at above of skew-symmetry of linking number.5)

5Po raised the question (in this conference) of whether Gauss himself—who, after all, had introduced the integral
formula for the linking number—might have seen some analogy between that concept and the structure surrounding
the quadratic reciprocity theorem.
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3 Borromean primes and ’Cebotarev arrangements’

3.1 Borromean primes

The Borromean Ring is that well-known link of three disjoint ‘unknots’ that has the property that if
you ignore any of the three unknots the other two are unlinked, yet the three taken all together are
somehow linked. John Milnor defined a class of invariants that serve as obstructions to linkage of
the above sort, these being secondary (or higher) linking numbers that can be defined—in analogy
with standard linking numbers—as secondary (or higher) cohomology operations related to the
vanishing of cup-products, the Massey triple product being the first example of these. The clean
general structure corresponds to what is called an A∞-algebra structure on chain complexes, such
as was discussed by Francois Laudenbach in this conference (he obtained it from Morse functions
on the knot manifold with Dirichlet and Neumann conditions on the boundary).

One can establish a striking analogy to this, with prime numbers, obtaining secondary (or higher)
versions of the quadratic reciprocity theorem, as is done in the work of Morishita, Redei, and others
(cf. [7]). Specifically, given three distinct primes p, q, r all congruent to 1 mod 4 and each a quadratic
residue of any of the others, there is a mod 2 invariant which gauges how triply-entangled the three
primes are; moreover, as is the case with old-fashioned linking numbers, the natural definition of
this invariant is given somewhat asymmetrically in terms of the roles played by p, q and r; yet, the
theorem is that the invariant itself is independent of permutation of these.

Here is the description of this invariant,

link(p, q, r) ∈ {±1},

as given by Redei (cf. section 8 of [7]). Under the assumptions of the previous paragraph there is
a nontrivial integral zero (x, y, z) of the quadratic form

X2 − qY 2 − rZ2

and moreover, one can assume that g.c.d((x, y, z) = 1, y is even, and x− y ≡ 1 mod 4. Now form
α := x+

√
qy and consider the (non-Galois) extension of Q,

K := Q(
√
q,
√
α).

Then
link(p, q, r) = 1 ∈ {±1}

if and only if the prime p splits completely in K. Otherwise, link(p, q, r) = −1.

An example of linked Borromean triples of primes is given (by D. Vogan—cf. loc.cit.) by

(p, q, r) = (13, 61, 937).
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3.2 ’Cebotarev arrangements’

Here is a thought-experiment that I once mused about a long time ago, but will try to sharpen a
bit here: I think of it not at all as a problem to be resolved6 but rather as just a somewhat casual
way of appreciating visually how vastly entangled the collection of all primes are.

Imagine choosing one hyperbolic knot in every commensurable equivalence class of hyperbolic knots,
and then arranging these knots (up to equivalence) in S3 so that they form a mutually disjoint
ensemble:

C := tiKi ⊂ S3

where we have ordered them compatibly with their hyperbolic volume. By an admissible Galois
cover of S3 (relative to C) let us mean a finite cover f : M3 → S3, Galois and ramified over at
worst a finite subcollection of knots Σ = K(1) t K(2) t · · · t K(n) of C in the natural sense; i.e.,
such that f restricted to Y := M3− f−1Σ the pullback of S3−Σ is a locally trivial covering space
of X := S3 − Σ with free action of a finite group G on M3 (the “Galois group ”of the cover) such
that Y/G = X.

A knot in C which is branched in M3 → S3 we say is ramified in the cover and if it isn’t we say it
is unramified in the cover. Any unramified knot K in an admissible cover M3 → S3 gives rise to
a conjugacy class of elements in G = Gal(M3/S3) by the analogue of the Frobenius construction
alluded to earlier. Thus, for all but finitely many knots in C we have a well-defined conjugacy class

{FrobK(M3/S3)} ⊂ G.

Let us say that the collection C is a Cebotarev Arrangement if the following statistical rule
holds for every admissible cover M3/S3 and every conjugacy class {c} ⊂ G = Gal(M3/S3)

lim
k→∞

1

k
#
[
Ki, i ≤ k | {FrobKi(M

3/S3)} = {c}
]

=
|{c}|
|G|

,

where the limit here is compiled by ordering the knots compatibly with their hyperbolic volume.

In effect, one is asking that—with these conventions–the Frobenius conjugacy classes are uniformly
distributed in fundamental groups.

The only reason for my formulating this notion is that there is an important theorem in number
theory (The Cebotarev density Theorem) that makes the closely analogous statement for primes.

Is there such a Cebotarev arrangement? If so, how bewilderingly complex, and yet somehow
organized, this entangled collection would be, each knot winding about infinitely many others
according to various proportions! As I said, I brought this up only to have a visualizable counterpart
to the type of entanglement represented by the facts of life for prime numbers; and–of course—to
offer a birthday greeting for my friend Po!

6although the easiest is just to formulate it as a ’question’
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4 Appendix: Cebotarev dynamical systems

In the conference Jérome Los mentioned to me that he has constructed (unpublished as of yet)
a dynamical system in S3 whose closed orbits run through all knot types. So one might sharpen
one’s quest by insisting that the knots in the Cebotarev arrangements (as formulated above) all be
closed orbits of some globally defined dynamical system.

As I understand it, Los has a spin-construction that realizes many elements in the braid group. It
begins with a self-mapping of the disc f : D2 → D2 which is used to patch the top and bottom of
D2× [0, 1] together to get a solid torus T which is then imbedded in the natural way in S3 to finish
up with an appropriate dynamical system on S3 . This dynamical system has the property that
going “one circuit” through T effects the mapping f ; hence following through n contiguous circuits
effect the n-th iterate of f . Of course, one can consider a version of this spin-construction of Los for
any topological automorphism f of any connected 2-manifold M2 that has finitely many periodic
points of any specific period, but infinitely many periodic point in all. For any such self-map, form
the 3-manifold M2 × [0, 1] → M3 obtained by attaching the ‘bottom’ M2 × {0} of M2 × [0, 1] to
the ‘top’ M2 × {1} via the mapping f and viewing the periodic orbits of the dynamical system
f : M2 → M2 as an interesting collection of knots nicely organized by period (or equivalently, by
length). If f has a fixed point m ∈M2 one has the further option of taking m as base point, killing
the loop [0, 1] × {m} ⊂ M3 by the adjunction of a thickened two-disc and viewing the preceding
collection of knots as being in the 3-manifold N3 obtained from M3 by the corresponding surgery7.

One can formulate analogous conditions regarding dynamical systems in more general, or different,
contexts.

1. As Curt McMullen explained to me, beautiful examples can be gotten by considering the
collection of knots given by closed geodesics in the spherical tangent bundles of hyperbolic
surfaces. Are these ‘Cebotarev’?

2. Also, one needn’t stick to manifolds: let f : X → X be any continuous self-mapping of a
connected CW-complex X, fixing a basepoint xo ∈ X. Let Π(X,xo; f) be the quotient group
of π1(X,xo) that equalizes f and the identity map; i.e., it is the quotient by the normal
subgroup generated by f(α)α−1 for all α ∈ π1(X,xo).
Put I := [0, 1], and form X × I. Attaching X × {0} to X × {1} by the mapping (x, 0) 7→
(f(x), 1), construct the space

Y := X × I/{(x, 0) ∼ (f(x), 1);x ∈ X}.

Identifying S1 = ∂D2 with the closed loop C := xo × I/{(xo, 0) ∼ (xo, 1)} ⊂ Y (via, say,
ι : e2πit 7→ (xo, t) ∈ Y for t ∈ I) form the CW complex Z by adjoining the disc D2 with the
attaching map

∂D2 ι−→C

to build the space:

Z := Y ∪ι D2.

7One might also require the maps to have specific dynamical features, such as being Bernoulli ([5], [4]).
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Fix the base point zo := the image of (xo, 0) in Z.

We have (by van Kampen’s theorem):

(1) π1(Z, zo) ' Π(X,xo; f).

Any finite f -orbit in X,
O = {x, fx, f2x, . . . , fn−1x} ⊂ X

with period n (denote this: “Per(O) = n”—so n is the smallest positive number such that
fnx = x) gives rise to a loop, i.e., an oriented closed curve, γO ⊂ Z, defined to be the image
of

x× I t fx× I t f2x× I t · · · t fn−1x× I ⊂ X × I

under the natural mapping
X × I −→ Z.

We give γO the natural orientation (i.e., ‘induced’ from the natural orientation of I).

Definition 1. By the Frobenius conjugacy class attached to the finite f -orbit O ⊂ X
we mean the conjugacy class in Π(X,xo; f) determined by the loop γO ⊂ Z. Specifically, the
image of the canonical generator of the fundamental group of the oriented loop γO into the
fundamental group of Z (the map on fundamental groups being given by choosing compatible
base points) determines a well-defined conjugacy class of elements in π1(Z, zo) which we iden-
tify with a conjugacy class of elements in Π(X,xo; f) via the isomorphism (1) above. Denote
this Frobenius conjugacy class

{FrobO} ⊂ Π(X,xo; f).

Thus we have a canonical mapping

Frob : {Finite f − orbits in X} − −−−−− −→ {Conjugacy classes in Π(X,xo; f)}.

Now consider the following condition regarding the dynamics of f .

Per: The mapping f : X → X has only finitely many periodic points of any given order, but
infinitely many in all.

When f : X → X is a mapping that satisfies Per we order the collection of finite f -orbits
in a manner compatible with their periods, and we can begin to ask distribution questions
regarding the dynamics of f that are somewhat analogous to the question answered by the
Cebotarev Theorem in classical number theory.

The condition most naturally related to the facts of life given by the classical Cebotarev
Theorem is the following:

Definition 2. Let ρ : Π(X,xo; f) −→ G be a surjective homomorphism onto a finite group
G. Say that f : X → X is ρ-Cebotarev if for any conjugacy class C ⊂ G we have:

lim
n→∞

|{O ;Per(O) ≤ n; ρ(FrobO) = C}|
|{O ;Per(O) ≤ n}

=
|C|
|G|

.
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3. Also, there are other ‘Cebotarev’-like questions in this context that have no very close ana-
logues to the types of questions that can be asked in number theoretic contexts. Here, is one:
Note that Galois groups in number theory are (finite, or more generally) profinite and there-
fore do not admit homomorphisms to real or complex Lie groups that have infinite image8.
But it is very possible for the types of groups we are currently interested in—e.g., the groups
Π(X,xo; f) of item (2) above—to have homomorphisms to, say, compact real or complex Lie
groups with infinite image.

Definition 3. Let then f : X → X satisfy the condition Per as above. Let G be a compact
Lie group and let µ be Haar measure on G, normalized to have total mass 1. Let

ρ : Π(X,xo; f) −→ G

be a homomorphism with dense image. Say that f : X → X is ρ-Cebotarev if for every
measurable subset N ⊂ G closed under conjugation by elements of G, we have:

lim
n→∞

|{O ;Per(O) ≤ n; ρ(FrobO) ⊂ N}|
|{O ;Per(O) ≤ n}

= µ(N ).

Note that when G is finite, Definitions 2 and 3 both apply, and are equivalent. Are there
any interesting examples of f : X → X satisfying the condition Per and nontrivial homo-
morphisms ρ for which f : X → X is ρ-Cebotarev—at least for some of the (nontrivial) ρ’s
considered in this section?
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