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These are skeletal notes describing what I talked about in the “Number Theorist’s Lecture” that
I gave on Friday October 6, 2017. I actually had also planned to display slides that Karl Rubin
and I have that connect with statistics related to diophantine stability, but the discussion—Q&A—
seemed complete enough that time being short, it made more sense not to display them but rather
just offer them via a link on my web-page:

http: // www. math. harvard. edu/ ~ mazur/ papers/ For. N. T. Seminar. talk. pdf

1 Opening questions about Diophantine Stability

A variety V defined over K is diophantine stable for the field extension L/K if V (L) = V (K);
that is, if V acquires no new rational points when one extends the base field from K to L. We will
be discussing theorems and conjectures that point to the prevalence of diophantine stability in a
range of contexts.

For example, V is Diophantine Un-stable for any nontrivial field extension L/K if and only if V
contains a curve over K isomorphic to a Zariski open in P1 (over K).

(If V/K contains a new rational point in the extension K(t)/K, then V does contains a curve that
is the image of a Zariski open in P1; the proof in the other direction is clear.)

Question 1. Do we have the same equivalence as above, when we restrict to number fields K and
extensions L/K of finite degree?

From now on, K will be a number field.

Karl Rubin and I proved a result—quite weak in comparison with the numerical phenomena, we
think—which guarantees a certain amount of diophantine stability in the following context.

Let V be either a curve over K of genus g ≥ 1, or an absolutely simple abelian variety.
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Theorem 1. Then there is a finite field extension K ′/K for which there exists an arithmetic
progression of prime numbers ` such that for each positive integer n there are infinitely many
Galois cyclic field extensions L′/K ′ of degree d := `n that are Diophantine stable for V ′ (the base
change of V from K to K ′).

An interesting open question:

Question 2. Is the same true if one drops the condition that the abelian variety be absolutely
simple?1

For simplicity, let’s consider questions regarding diophantine stability restricted to cyclic extensions
of K of prime degree `, noting that class field theory gives us neat control of what we might denote
P(K, `)≤m, the set parametrizing all such extensions of a given number field K of conductor ≤ m.
If we pass to the limit, P(K, `) = P(K, `)≤m we get an ind-system of finite dimensional projective
spaces over F` ordered by conductor m, so we have a natural way of formulating statistical questions
about this.

Question 3. Let A be an abelian variety over K. What can one say about the subset

U(K, `,A) ⊂ P(K, `)

consisting of those cyclic extensions of degree ` that are Diophantine UN-stable for A over K?

Discuss the special case of K = Q and A = E, an elliptic curve:

Conjecture 2. (This is equivalent—conditionally2—to an inspiring conjecture of David-Fearnley-
Kisilevsky.) Let K = Q and A = E, an elliptic curve. Then U(K, `,A) is infinite only if ` = 2, 3,
or 5.

Note that there are indeed cases where we expect, or can prove, that U(K, `,A) is infinite. I.e.,
we might have we can be called root number reasons to expect this—as in the above case when
` = 2; or we might have geometric reasons—as in the above case—as we shall see below—for
particular elliptic curves E over Q when ` = 3; or at least for one case for an elliptic curve over a
quadratic imaginary field when ` = 5.

One of the many important viewpoints regarding algebraic geometry and number theory that the
mathematician Serge Lang stressed is the following: for an algebraic variety to possess infinitely
many rational points over a number field, there has to be, Lang felt, a good reason— best: a
clear geometric reason. He conjectured, in fact, that this happens only if the variety contains the
(nonconstant) image of a rational curve or an abelian variety. I imagine he would also be looking
for similarly striking reasons for U(K, `,A) to be infinite.

1It is tempting to offer this question as a possible graduate student project, but Karl and I think that it might be
quite difficult.

2 D-F-K make their conjecture about vanishing of central values of L-functions of elliptic curves over Q twisted
by abelian characters, this being conjecturally equivalent to what is formulated here.
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One possible geometric reason arises from the existence of what we’ll call `-pencils:

Let C be a smooth projective curve over K admitting an automorphism of (prime) degree ` (defined
over K) such that the quotient of C by that automorphism is P1 over K. Then take A any abelian
variety quotient of the jacobian of C, and note that the K-rational points of the “P1” quotient of
C (except for the K-rational points of P1 that are in the image of C(K)—this being a finite set of
points if the genus of C is > 1) parametrize cyclic extensions of K of degree ` that are Diophantine
unstable for A.

Definition 1. When we have such a C above with A an abelian variety quotient of its jacobian,
say that A admits a pencil of Diophantine unstable extensions of degree ` over K. Or,
for short: an `-pencil.

E.g., (Exercise:) Consider the case when A = E is an elliptic curve and ` = 2. Then all the points
of U(K, 2, E) come from the ‘natural’ pencil C = E → P1 of degree 2.

Remark:

1. Such a pencil is (essentially) equivalent to a K-rational curve of genus 0 (with a K-rational
point) in a fiber of the mapping

E`/cyclic action
sum−→ E.

These are interesting `− 1-folds! Do they possess any Q̄-rational curves of genus 0 if `� 0?

2. For ` > 2 and E an elliptic curve over K the following is—pretty much—all that’s known (at
least to Karl Rubin and me) so far.

Any elliptic curve E admits a pencil of Diophantine unstable extensions of degree 3
over some finite extension of K. Moreover, there are examples of elliptic curves over
Q that admit a pencil of Diophantine unstable extensions of degree 3 over Q. We
know one example of one elliptic curve over Q (Cremona classification: 50a1) that
admits a pencil of Diophantine unstable extensions of degree 5 over (appropriate)
quadratic fields.

Question 4. 1. For E an elliptic curve over Q is it true that there are no pencils of Diophantine
unstable extensions of (prime) degree ` > 3 over Q?

2. For E an elliptic curve over a number field K are there any pencils of Diophantine unstable
extensions of (prime) degree ` > 5?

3. For any abelian variety A over K is there an upper bound b(A,K) for the primes ` for which
A admits a pencil of Diophantine unstable extensions of degree ` over K? Is there such a
bound b(n, d) that depends only on n := the dimension of A and d := the degree of K?

An affirmative answer to (1) above would follow from the conjecture of David-Fearnley-Kisilevsky
(which is the inspiration for our project).

As for (3), examples show that b(n, d)� nalpha with α = 1/2 (of course, possibly: b(n, d) = +∞).
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Question 5. Can one find examples that show b(n, d) � nalpha for some α strictly greater than
1/2?

2 Pencils for ` = 3

Here I discussed the K3 surface business related to ` = 3, and here’s an example over
Q:

Take E : y2 = x3 − 9x + 9 over Q. Putting r(t) := 8(t2 − 162t)/(t2 + 8748) one computes to find
that the points (x, y) on the curve E with y = 3x+r(t) for rational values of t parametrize a pencil
of cubic cyclic points on E.

3 A pencils for ` = 5

The classical “Bring’s Curve” C is defined over Q and will provide an example (e.g., over the field
of Gaussian numbers Q[i]) of a cyclic pencil of genus 4 for a certain elliptic curve E . ”Bring’s
curve” is the (smooth, projective) curve in P4 defined by three equations—in the five homogenous
variables (x1, x2, x3, x4, x5):

∑
i

xni = 0 for n = 1, 2, 3. (1)

Visibly C admits the symmetric group S5 as group of automorphisms (all of this defined over Z)
the action being by permutation of the five variables. The group S5 is the entire group of its
automorphisms since C is a curve of genus 4. Also, C has no real points since its quadratic defining
equation has none.

Let τ := (12345), and σ := (1234) be the indicated 5- and 4- cycles, respective.

Proposition 1. 1. There are exactly four fixed points of τ in C. Namely: {(1, ζ, ζ2, ζ3, ζ4)}
where ζ runs through the nontrivial fifth roots of 1. These are the only points of ramification
for the mapping

C → C/{action of τ}.

2. There are exactly two ramified points for the mapping

C → C/{action of σ}.

Namely: {(1,±i,−1,∓i, 0)}. These two points are all fixed points of σ; i.e., they are ‘totally
ramified.’
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Proof. Taking the indices 1, 2, 3, 4, 5 mod 5, for a (C-valued) point (x1, x2, x3, x4, x5) to be a fixed
point of τ we must have, for some λ ∈ C that xk+1 = λxk for all k ∈ Z/5Z which forces λ to be a
fifth root of unity, and by the linear equation in 1 it must be a nontrivial fifth root of unity. For
each such λ there is exactly one such point, proving (1).

For (2):

Lemma 1. If x = (x1, x2, x3, x4, x5) is a fixed point of σ2 = (13)(24), then x5 = 0.

Proof. If x is such a fixed point, then there is a λ ∈ C such that σ2(x)k = λ · xk for all five
coordinates xk. In particular,

x3 = λx1; x4 = λx2;x5 = λx5.

By the latter equality (if x5 6= 0) it would follow that λ = 1. That is, x = (a, b, a, b, c) for some
a, b, c, with c 6= 0. The linear equation in 1 gives c = −2(a + b) so a and b cannot both be zero.
Without loss of generality, suppose that a 6= 0, and scale it so that a = 1. So, the linear equation
in 1 gives

c = −2(b+ 1) (2)

and combined with the quadratic equation in 1,
i.e., c2 = −2(a2 + b2), we get that

b =
5

3
or

11

3
. (3)

Now comparing 2 with the cubic equation in 1 gives the relation b3 + 1 = 4(b + 1)3 and neither
value in 3 satisfies this.

Now let x = (x1, x2, x3, x4, 0) be a fixed point of σ2 = (13)(24). Such a point satisfies the relations
x3 = λx1 and x4 = λx2 for λ ∈ {±1}. Again, without loss of generality we may suppose that
x1 6= 0, and scaling suitably, x1 = 1. So, putting x2 = b, our point is of the form x = (1, b, λ, λb, 0).
The linear equation in 1 then gives: (1 + λ)(1 + b) = 0; i.e., either b = −1 in which case the
quadratic equation in 1 is violated, or else λ = −1 and the quadratic equation in 1 tells us that
b = ±i. Therefore {(1,±i,−1,∓i, 0)} are the only fixed points of σ2 = (13)(24).

Noting that {(1,±i,−1,∓i, 0)} are actually fixed under σ concludes the proof of Proposition 1.

Corollary 3. Let P (resp: E) denote the quotient of C (over the field Q) by the action of τ =
(12345) (resp: σ = (13)(24)). Then P is of genus 0 and E is of genus 1.

Proof. Recall that the Euler characteristic of Bring’s curve is −6. If u and v denotes the Euler
characteristics of P and E respectively, the Riemann-Hurwitz formula and Proposition 1 give:

− 6 = 5u− 4 · 4 and− 6 = 4v − 2 · 3 (4)

That is: u = 2 and v = 0.
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If K is a number field over which C has a K-rational point, then P ' P1 (over K) and taking the
image of that point in E as the ’origin’ we view E as an elliptic curve over K. The structure

P C
i
oo j // E , (5)

is a cyclic pencil of degree 5 (and genus 4) for the elliptic curve E over K.

Are there cyclic pencils of degree 5 (and genus 4) for other elliptic curves?

4 Framing a heuristic for Diophantine Stability from statistics of
theta-elements

Here I discussed the extemely close connections between:

• Diophantine stability → (conjecturally)

• Special values of L-functions of abelian varieties twisted by abelian characters → (when
K = Q and A = E) →

• weighted sums of modular symbols →

• the issue of θ-coefficients all being equal to a specific value.

One notes here that the first bullet is arithmetic, the second is analytic, the third is essentially
combinatorial, and the fourth is arithmetic again—but with quite a different feel than the first
bullet. The last two bullets are amenable to interesting statistical investigation, especially since the
question of whether a collection of θ-coefficient be all equal to a specific value should be detectable—
at least somewhat—from their general statistics. It seems to Karl and me that the statistics is worth
exploring in depth for its own sake.

I felt, at this point that there wasn’t time to display on the screen the statistics for modular symbols
and theta-elements that connect to these questions, leaving this for another lecture and putting
the ’slides’ for this part of the talk on my web-page.
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