Questioning Answers
B. Mazur

[ These are prelimihary notes for the "Arnold Ross Lecture” to be given
April 27 1996 at the University of Maryland]

All of us who are fascinated by mathematics have the faith
(backed somewhat by experience) that math answers questions,
solves problems. We work hard on some problem in mathematics
because we are pursued by curiosity for the answer. Or, for the
lesser reason that it was a problem ‘that someone posed for us,
perhaps as a challenge, perhaps as a test. We work hard, and then
when we get "the answer” we might imagine that we can relax. |
want to spend this hour turning this picture upside-down to suggest
that much of the art of mathematics only begins once we have "the
answer". If we can manage, at that point, to ask the right
questions of the answer that we have gotten, we may be led to
even more interesting things.

Let us start with a frivolous-sounding question about numbers and
spend the hour investigating the realms of mathematics that the

solution(s) to this question “invite" us to investigatel.

Question: The number 210 is both the product of two consecutive
integers, 210 = 14:15, and is also the product of three consecutive
integers, 210 = 5-6.7. How many other numbers have this property
of being expressible as both the product of three consecutive integers
and the product of two consecutive integers?

Before I begin dealing directly with this question, I want to chat a
bit about its nature. Why did I choose it to talk about? What do I |

1| will not try to prove things syste'rhatically. but | will call upon you to make a few
calculations at various times "



have up my sleeve? But as I do this, those of you who can "do
background computing” in your heads (I can't !!) might try to find
some of the other numbers that are the products of two and of
three consecutive integers.

Our question, of course, can be rephrased as an algebraic problem.
Thinking of our number N as the product of three consecutive
integers, let X be the middle one of those three integers and we have

N = (X-1).X-(X+1) = X3-X.

Thinking of N as the product of two consecutive integers, let Y be
the smaller of those two integers, so we get

N = Y«(Y+1) = Y24y,
We have a solution "N" to our problem, then, every time we can
find a pair of integers [X,Y] which have the property that

(%) Y2+y = X3 - X,

We are faced, then, with an equation in two variables X and Y
whose highest degree term is a cube, and we are looking for solutions
to this equation in whole numbers. We can visualize the real
solutions to this equation as a curve C in the (X,Y)-plane

---Graph of the equation Y24y




and we are looking for points on the curve C with integral (X,Y)-
coordinates.

To "weigh"” this problem confronting us, it might pay to compare it-
to a much simpler equation that is the "standard fare" of high school
algebra: and is familiar to all of us:

The quadratic equation in one variable. Find the values of the
variable X that "solves" the quadratic equation

a-X2+bX+c = 0.

We all know the gambit here-- an idea which has come down to us
from Babylonian times: if we want to find numbers X which solve
this equation (and we might be interested in integer solutions X, or
rational numbers X, or real numbers, or complex numbers) we
"complete the square” by rewriting this equation as

a-(X+b/2a)2 + (c- b2/4a) =0,

and this rewritten equation visibly has (at most) 2 beautiful
solutions given by the quadratic formula. Of course, if we are
specifically interested in integer solutions, or rational solutions, we
must check whether the answers given by our quadratic formula
are integers or rational, etc. | said "of course” in the last sentence,
but | should remind you that this issue of whether or not the
answers “given by our quadratic formula are integers or rational,
etc.” was historically, at least, not such a humdrum affair. For

example, the fact that X2 -2 has no rational solutions in X (that
is, the fact that the square-root of 2 is irrational) was viewed as
devastating by the Pythagorean mathematicians who initially made
this discovery. The irrationality of the square-root of 2 was
considered to be such a dark secret about the universe that when
one of them revealed it to outsiders the story goes that he was
murdered as a betrayer.

This may be so, or may not be so, but one thing is certain: for the
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quadratic equation there are at most 2 solutions, and for any
polynomial equation in one variable X of degree d, there are at
most d solutions. One of the fascinations of the type of problem

posed by the equation Y24y = X3 - X that we are considering is
that we don't even have any idea how many solutions to expect !

How many solutions have you found?

Let us start with some modest solutions to (x) that are so modest,
you might have overlooked them:

X=0, Y=20,

X=0, Y=-1,
X=+1, Y =0,
X=%1, Y=-1

All of these solutions give N = 0:
0-1.2 = 0-1
= 0.1.2 = (-1).0.
We will come back to the issue of exactly how modest or immodest
these solutions are, later.

Did you also discover

X=2, Y= -3,
X =2 Y= 27

6:

These solutions give N

6 = 1.2.3 = (-3):(-2)
1.2.3 = 2-3.

And then there are the solutions which were given in the
statement of the problem itself:



These solutions give N'= 210:

210 = 5.6.7 (-15)-(-14)
= 567

14-15.

Did you find any others? Suppose you had tried out all numbers
under a million and had found no further solutions. Would you then
be confident that there were no further ones? Now although
"confidence"” is a precious virtue that counts for a lot in
mathematical work, my recommendation, in exactly this sort of
calculation is that you should NOT be confident that you have
gotten all the solutions. Let me illustrate why, by bringing up a
slightly different problem to ours. Problem: Find the integer
solutions to the equation

Y2 = %3+ 24;

that is, find the perfect squares ("Y2") which are 24 more than a

perfect cube ("X3"). Now you will surely easily guess a few of the
solutions. For example, X= -2, X=1, and X = 10 give solutions to
this problem:

42 = (-2)3 + 24
52 = 13 + 24
322 = 103 + 24,

But these are NOT all: there is one missing value of X that solves the
equation and if, we wanted to plot that value of X on the graph
below we would have to extend the "wingspan” of the graph (from
the eight and a half inches that it takes up on the transparency) to
a diameter of 20 miles!



---Graph of the equation Y2 = X3 + 24 --—-

A "basic symmetry" in the equation Y2+y = X3 - X: The first

thing that jumps to the eye, given the solutions of v2+y = X3-X
that we have already found is that these solutions come in pairs,
each pair giving the same value for N. In fact, the entire curve C is
brought to itself by the "symmetry”

X+— X; Y -Y-1.
P= [X)Y] <---> P= [X,-Y-1]

[1,0) <-=---> f1,-1],
[(2,2) «<----> [2,-3],
[6,14) <----> (6,-15],

etc .



---The "basic symmetry“---

Y —— Y-

Using this "symmetry" we can manufacture new solutions of our
equation from old ones: given the solution [1,0] we can apply the
symmetry to "discover” the solution [1,-1], etc. These discoveries are
not too exciting, of course, since the symmetry [(X,Y] <---->[X,-Y-1]
is so.elementary. But are there other geometric properties of the
graph of our equation that we can use, to force "old solutions” to
somehow lead us to new ones?

Collinear points. [ now want to use a geometric property of our
curve C which is much subtler than the symmetry we have just
discussed.

Any line L in the (X,Y)-plane intersects the curve C in at
most three points.

The proof of this is easy: plug into our equation
(«)  Y2+y = X3-X

the equation (Y = mX+b) of the line L and solve for X giving you a
cubic polynomial in the variable X which can have at most three
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solutions !

---The "chord” through P and Q gives a "new” point R---

Y3Y=X3-X ¢
. Y ‘

By

This gives us a strategy which might potentially produce new
solutions from old. It has some pitfalls, but I will first formulate it
and criticize it only afterwards.

Let P = [Xy,Y4] and Q = [X9,Y5] be two solutions of the equation ().

let L = PQ be the straight line passing through P and Q. For obvious
reasons we shall call L the chord to the curve C passing

through P and Q. Consider the intersection of L and C. There is at
most one other intersection point R of L and C. Solve for R. This
gives a ‘new"” solution R = [X3,Y3]' of the equation (»). This strategy

seems to depend upon having two distinct solutions P and Q so as
to be able ta produce a chord L passing through them. Can we
extend this strategy to the case when P=Q; i.e,, can we do something
silimar starting with only one solution? A bit of thought will
suggest that YES there is a natural extension of our strategy which
allows us to work with one point “P=Q" : take the line L to be simply
the tangent line to the curve C at the point P.
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-—-The tangent line through P gives a "new" point R---
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L

This strategy of getting new solutions from old, by the way, is
sometimes referred to as the chord-and-tangent process.

Discussion: If we have the points P and Q in hand, we can very
easily calculate R. Let us try an example: Take as our two points P
[1,-1) and Q = {2,2]. The line L passing through P and Q has the
equation Y+1= 3(X-1). So, plugging this equation for Y into (%) we
get the cubic equation in X:

Y24y = Xx3-X
(3X-4)2 +3X-4 = X3-X
or.
X3 -9%2 + 20X - 12 = 0.

Now, X = 1 and X = 2 are solutions of this equation corresponding
to the intersection points P and Q on the line L. You can easily then
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solve this cubic equation to get its third solution, which is
X= 6.

Then, since Y = 3X-4, we get Y = 14. That is, our third intersection
point R of the curve C with the line L is

R = [6,14].

The moral, here, is that if we had NOT discovered this solution [6,14]
“on our own", we might perfectly well have been led to its existence
by this strategy of finding new solutions from old if we had
previous gotten the solutions [1,-1] and [2,2]. To put it another way,
this is a strategy which forces "old" solutions to "work for us” to
possibly produce other solutions.

But there are a few tricky things about this strategy. The first
tricky thing, which is minor, is that for some choices of P and Q
there is no third intersection point R. This happens if and only if
the line L is vertical; this is the same as saying that the X-
coordinate of the points P and Q are equal; and this is the same as
saying that P and Q are brought to each other by the symmetry of
the curve C. The second tricky thing, though, opens up a whole
new issue: Sometimes the point R does not have integer
coordinates, but only has rational coordinates . You don't have to
go far to run into this. For example, take P = [1,0] and Q = [6,14].
Then the line L passing through P and Q has the awkward equation
5Y= 14(X-1) which gives us a denominator of 5 when we solve for Y:

Y= (14/5)-(X-1)

so that when we proceed as befor-e and finally get the third
intersection point of L and C we will find this point R to be:

R = [21/25, -56/125].

In a word, our strategy does not preserve integrality of the
solutions that are found, but does preserve rationality. So, if we
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are going to make any systematic use of this strategy we might be
led naturally to consider all rational solutions of the equation (%)
and to think of the integral solutions (which we were originally
after!) as a particular subcollection of rational solutions. You might
think that this is a step backwards-- in that there are, very likely, -
many more rational solutions than there are integral solutions, and
therefore our chore is that much harder. We shall follow this path
to see where it leads. By a rational solution P to the equation (x) we
Just mean a pair of rational numbers P =[x,y] that "solve” that
equation. If we want to think geometrically we can also call P a
rational point on C.

Here is the surprising answer to the question: what are all the
rational solutions to (»x) ? Answer: There are infinitely many
rational solutions. Nevertheless, don't despair! The magic here is
that you can get all rational solutions if you start with the single
solution P = [0,0] and then proceed to produce “new solutions from
old” just by systematically applying the basic symmetry P — P and
the chord-and-tangent process to all pairs of points you get along
the way. "Nothing will come of nothing" according to King Lear, but
as for our problem, the modest "double-zero” solution [0,0] to the

equation Y2+Y = X3 - X generates all the infinitely many
rational solutions by the chord-and-tangent process. A minor
miracle is that the end-result of all this is amazingly "organized”. I
will state it as a Theorem.

Theorem: There is an infinity of rational solutions to
Y24y = X3- X,
and there is a way of "listing” these rational solutions by labelling
them in one-one correspondence with the set of all nonzero (positive
and negative) integers
n {=-=--=> Pn = (xn‘yn]
such that this one-one correspondence has these properties:

A. Pp ¢=--> P_,, (under the basic symmetry)
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B. Three rational points P,, Py,, and P, (whose indices are distinct

nonzero integers n,m, and r) lie on a straight line L in the (X,Y)-
plane if and only if n+m+r = 0.

Here is the beginning of this listing for positive values of n (to get
the listing for the corresponding negative values just apply the
"basic symmetry”; that is, replace the Y-coordinate by -Y-1):

P1=(0, 0]

Po=[1,0]

Pz={-1,-1]

P4=[2,~3]

Pg=[1/4, -5/8)

Pg=16, 14]

P5=(-5/9, 8/27]

Pg=[21/25, -69/125]

Pg= [-20/49, -435/343)
Pyg=[161/16, -2065/64]
P11=[116/529, -3612/12167]
P1o=[1357/841, 28888/24389)

Pq3=[-3741/3481, -43355/205379]
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P 14=[18526/16641, -2616119/2146689]

P 15=[8385/98596, ~28076979/30959144])

P 1¢=[480106/4225, 332513754/274625]
P47=[-239785/2337841, 331948240/3574558889]
P1g=[12551561/13608721, -8280062505/50202571769]
P19=[-59997896/67387681, -641260644409/553185473329]

P5=(683916417/264517696, —18784454671297/4302115807744]

You can check my arithmetic?, because there are quite a
number of miraculous constraints on this list of numbers: they are

all solutions to Y2+Y = X3 - X but also if you take any pair of
distinct integers n,m, by part B of the theorem we formulated, we
have that P,, P,,, and P_(n+m) must lie on a straight line in the

(X,Y)-plane. For example, since 3+ 5 + (-8) = 0, the three points

Pz=[-1,-1], Pg=[1/4,-5/8], and P_g=[21/25, -56/125]

had better be collinear. Otherwise | made a mistake in compiling my
list!

I would now like to pause a minute to squint at the list of solutions
P, that is now on the screen. If we are to be as attentive as we

possibly can be to the answers that we get to the questions that we
ask, there is something about that list-- its general shape-- that
should not escape our notice! Do you see a wiggly profile of a
parabola hidden in it? To bring this out more clearly, let us
compactify our data a bit, and consider this slightly mere extensive

2 | confess that this was NOT done by hand: | used the very convenient computer package PARI
to compile this
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list, where [ give only the numerators of the X-coordinates of P, for
even values of n beginning withn = § :
---Numerators of the X-coordinates of Pp---
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Now, take another look to check out the clean shadow of a
parabola formed by the mere digits of our solutions-- this shadow
being a vivid indication that the rate of growth of the size of our
solutions seems to be following a regular pattern. Can we prove this?
Can we "question our answers" so rigorously as to get (heaven help
us!) the equations of that parabola? Will doing this lead us to an
even deeper understanding of the arithmetic behind our original
problem? The answer to all these questions is YES and following
their lead would bring you into intimate contact with a good deal of

the exciting work in Number Theory that has been taking place in
this half century!

APPENDIX: Rational solutions versus integral solutions. But
we have somehow wandered into the dazzling infinite array of

rational solutions to our equation Y2+y = X3 - X when, at the
outset of our investigation, we had intended to only study the
integral solutions . We did this because, infinite or not, the rational
solutions to the problem have a certain orderly structure that was
not in evidence when we focused only on integral solutions. Can we
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now go back and pick out the jewels -- the integral solutions-- in
our infinite list? The answer here is YES (as was known to Mordell
half a century ago) and although my hour talk will not include this,
| feel compelled to provide this appendix to give the bare bones of
the argument which clinches our problem. There are three facts
that you need to calculate. First, we must return to the graph of
the of our equation in the (X,Y)-plane and notice that it breaks into
two pieces, the oval on the left and the piece "going off the page to
infinity" on the right. .

1. Check that the points P, with odd index n lie in the oval on
the left while the points P,, with even index n lie in the the piece

going off to infinity on the right.

2. Check that the only integral points on the oval are the four
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integral points.
P4=[0, 0], P.q= [0,-1), Pz=[-1,-1)], and P_z=(-1,0].

3. Check that any prime number dividing the denominators of the -
X and Y coordinates of Py, also divide the denominator of the X and

Y coordinates of Pypp,.

Supposing that you have done those three chores, and suppose
that you know the Theorem we formulated in the lecture and the
list of P's for small n. Then you are in a position to prove:

Theorem: The only numbers N that are both the product of two
consecutive and three consecutive integers are N = 0,6, and 210.

Because: We shall search among the infinite list Py, of rational

solutions to v2+Y = X3 - X to see which of these is integral, ie,,
which has the property that neither the X nor the Y coordinate has
a denominator > 1. If a solution P, is integral, then its image Pomn

under “basic symmetry"” is also integral, so in searching for all
integral solutions we may just try to determine all positive values of

m for which Py, is integral. Write m = 2¢.m, with m, odd and
e>0. Use fact 3 to see that for if Py, has integral (X,Y)-coordinates,

then for each j = e-1,e-2,..,0, the point P also has integral

ZJ-mO

(X,Y)-coordinates. In particular, Pm has integral (X,Y)-coordinates.
0

Since m, is odd, fact 2 gives us that mg is either 1 or 3. Now let us
consider the case of my=1 and my=3 separately.

my=1: Then m is 2° and we have seen above that P,j has integral

(X,Y)-coordinates for all j s e. But, quoting our list,

P,3 =Pg=[21/25, -69/125]
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does not have integral (X,Y)-coordinates. Therefore e <2, and m is

either 1,2 or 4.

my=3: A similar argument, using that

P,2.5 = P12=1367/841, 28888/24389]

is not integral gives us that m is either 3 or 6.
[m]
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