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Questions about Number

B. Mazur

(for the volume: New Directions in Mathematics)

If you read the chapter entitled Proto-history in Andre Weil's
Number Theorv : An aDDroach through history From Hammuragi
to Legendre, you might well be struck by how many of the earliest
and the most innocent-sounding questions about numbers still hold
much of their mystery for us today.

Not that there has been NO progress since the Babyloneans etched

their cuneiform table of fifteen Pythagorean triples1 or since
Brahmagupta contemplated Pell's equation! It is rather the opposite
course of events that has deepened the mystery for us: There has
been progress. Questions about whole numbers have been studied
with a range of powerful mathematical techniques; they have been
illuminated by diverse mathematical structures.

And yet: we still seem to be novices, facing these questions.

The form of question-asking has evolved through the centuries.
One might expect that the newer questions would get less "innocent",
become more encrusted with theory, and stray further from the
stuff of numbers that inspired Diophantus. But Mathematics has its
inevitable, yet always surprising, way of returning to the simple.
One simple, surely fundamental, question has been recently asked
(by Masser and Oesterle) as the distillation of some recent history of
the subject, and of a good many ancient problems. This question is
still unanswered, and goes under the name of the ABC-Conjecture.
It has to do with the seemingly trite equation A + B + C = 0, but
deals with this equation in a specially artful way.

1 This tablet is labelled PLIMPTON 322 and dated to between 1900 and

1600 B.C., published in [N-S] ; See p. 9 of [We] for a photograph of it.
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What might lead one to respect such an equation? We will
examine this, and show how the "solutions" to this equation lace
their way through a constellation of different mathematical
structures all bearing on the nature of number, intermingling "Old
Directions in Mathematics" with quite new ones. The discussion
seems to break naturally into two parts, Part I requiring
significantly less mathematical background than Part II. Two brief,
bu t technical, synopses of proofs which come up in our discussion
are given in Appendices A and B below. There also are a few
"technical boxes" sprinkled at various points in the text which can
perfectly well be skipped, but which treat peripheral issues which
require more background than the text supposes.

For related expository reading, see the publications .[Co], [Oar 2], fD-
D-T], [Ed], [G), [H-R], [Ma 2], [Ri 1], and [R-S] cited in the
bibliography below, and for further expository articles, consult the
bibliography in [Ri 1].

I am grateful to J. Cremona, H. Darmon, P. Diaconis, N. Elkies, F.
Gouvea, A. Granville, R. Kaplan, K. Ribet, C. Stewart, and S. Wong for
help, conversation, and comments about early drafts of this paper.

Part I

§ 1. Perfect powers.

Fibonnacci's treatise, Liber Quadratorum, written in
1225, is devoted to Diophantine questions about perfect
squares. The prologue to it begins:

"I thought about the origin of all square
n umbers and discovered that they arise out of
the increasing sequence of odd numbers; for the
unity is a square and from it is made the first
square, namely 1; to this unity is added 3,
making the second square, namely 4, with root 2;
if the sum is added to the third odd number,
namely 5, " [Fi]
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This manner of generating squares was already known to
the Pythagoreans, and the similar recipe for generating

cubes is described by Nicomachus in his Introduction to

Arithmetic II:

"For when the successive odd numbers are set

out in an endless series beginning with unity,

observe that the first makes the. first cube, tne

sum of the next two makes the second cube, the
sum of the next three following these makes the
third cube, the sum of the four following these

makes the fourth cube and so on indefinitely."

By a perfect power let us mean any power an of a
whole number a, where the exponent n is greater than
one. The arrays of perfect squares, perfect cubes, perfect

fourth powers, etc. , ( i.e., perfect n-th powers for each

n= 2,3,4,...) have long been a fount of innocent-sounding

questions.

Looking at an array of perfect n-th powers on the
number line, such as the array of squares pictured above,
one is impressed only by the almost boring regularity in

the spacing, and also by the thoroughly predictable way
in which any two of these arrays "interact" (for example,

the numbers that are both squares and cubes are
precisely the perfect sixth powers).

But for any fixed n, m > 1 if all we do is to translate the

array of perfect n-th powers (along the number line) by a

fixed positive number k, i.e., by adding the integer k to

each n-th power, and then if we ask:

3

!

I
~£i"~,",, Ii



'"

,,-

Problem: Determine the set of perfect m-th
powers in the transla ted array;

or in other words,

Problem: Find all solutions to the equa tion

(1) Xm = yn + k

(for X and Y natural numbers, and for the fixed
exponents n,m > 1 and fixed positive integer k),

we are in deep water.

Even simple specific instances of this problem can have

quite surprising answers: for example, the reader might

have difficulty guessing the four perfect cubes such that

when 24 is added to each of them the results are perfect

squares. That is, solve X2 = y3 + 24 in integers X, Y, there -,J

being precisely four pairs (IX, Y) of solutions to this

equation.

Answer: The four cubes that do the trick are 1, -8,
1000, and 542939080312. If we graph the equation

X2 = y3 + 24 in the Cartesian plane, as in Diagram 1

below, we can comfortably visualize the first three pairs
of solutions (IX, Y) but to encompass the last pair on the
same scale, this book would have to have a wing span of
about twenty miles!

* * * * * * * (put diagram 1 here) * * * * * * * * * * * * * * * *

The equation X2 = y3 + 24

Diagram 1
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The texture to this set of solutions to our problem posed
above is not entirely untypical; that is: a cluster of
solutions, plus one more solution which is noticeably
larger than the rest, a sort of "top quark", and a good
warning not to make conjectures about these matters on
the basis of too limited numerical investigations. We will
revisit this particular equation in §5 below.

The qualita tive answer to the general Problem
displayed above is that there are only a finite number of
solutions to (1), i.e., only a finite number of m-th powers
that are also in the array of n-th powers translated by
the fixed positive number k.

This was known in 1929, by work of Siegel (following a
line of development begun by Thue). The qualitative
statement "only a finite number" is not much help,
though, if, for some reason, you actually want to find
the set of m-th powers in such a translated array. Nor
does it help even if you have the somewhat less ambitious
aim of giving an a priori upper bound for the size of the
perfect m-th powers which are of the form: a perfect n-
th power plus k. "A priori upper bound" here just means
to give such an upper bound which is relatively easy to
calculate, given the exponents n,m and the displacement
k.

Some forty years after Siegel's Theorem was proved, the
work of Baker (on lower bounds for nonvanishing linear
forms in logarithms; cf. [Ba 3]) provided such a priori
upper bounds. But even these upper bounds, sharpened in
a series of papers [Ba 1,2], are not yet always sharp
enough to closely reflect the thorny, and fascinating,
numerical phenomena here.

To underscore the gap between qualitative results, and a
thorough-going "finding of all solutions" for the type of
problems such as the one displayed, consider this
astounding result:
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Theorem (Tijdeman, 1976): There are at most a finite
number of pairs of consecutive perfect powers.

Or, in terms of equation (1), this theorem says:

Theorem: Setting k= 1, there are at most a finite

number of solutions to the equation (1)-- even when
one allows m and n to vary arbitrarily through all

numbers grea ter than one.

The status of the Diophantine problem posed by (1) in the
case k = 1 is quite special. In the case k=.2, for example, or

for any fixed k different from 1, we still do not even

have a proof of finiteness of the number of solutions of (1)

if m and n are allowed to range over all numbers> 1
(but such a finiteness statement would follow from the

ABC-Conjecture below).

The proof of Tijdeman's Theorem depends upon the theory
of lower bounds for nonvanishing linear forms in

logarithms [T]; see [S-T] for a complete exposition of the

proof; we will also give the briefest sketch of the main

tactics of the proof in Appendix B below.

The only known example of a consecutive pair of perfect

powers is 8 and 9. The general guess (made originally by

Catalan in 1844; cf. Ribenboim's book, Catalan's

Con_iecture [Riben 2] for background) is that 8 and 9 is

the only such example.

And here, even though Tijdeman's result actually assures
us that there is a computable a priori upper bound to the

size of such consecutive pairs of perfect powers, this
computable bound is so high that we remain ignorant of

whether or not this guess is correct. For an up-to-date
description of where the current work is on this, see
Baker's recent review [Ba 4] of [Riben 2]. In particular, I
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understand from Baker's account that one knows the
following facts about possible exponents m and n of
consecutive perfect powers: both m and n must be at
least 100, (due to work of Mignotte, using results of
lnkeri) and the larger of the two exponents is known to be

19 13
~ 10 ,the smaller ~ 10 (results of Glass and
coworkers at Bowling Green State University; see [G-M-O-
S] and [L-M-N]). For more on the nature of explicit
bounds in this problem cf. p. 217 of [S-T] (e.g., work of
Langevin, elaborating Tijdeman's proof, provides an upper
bound of

e730ee -
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for any perfect power occurring in a pair of consecutive
perfect powers).

The undisputed favorite among questions about perfect
powers of numbers is Fermat's Last Theorem which
asserts that the sum of two cubes is never a cube, the
sum of two fourth powers is never a fourth power, and so
on. The cleanness and simplicity of its statement, the
pointed contrast of the behavior of higher powers with
that of squares (for one has an infinity of instances of a
sum of two relatively prime squares equal to a square),
the enigmatic way the statement made its entrance onto
the stage of Mathematics with a coy hint of the existence
of a "marvelous proof", the way in which any proof of it,
marvelous or not, failed to surface for three centuries,
and the great amount of Mathematics its pursuit has
given rise to, culminating in its recent splendid resolution
(by Andrew Wiles, completed by Taylor- Wiles, [Wi], [T- W],
using prior work of Frey, and the key "level-lowering
theory" of Ribet which in turn was inspired by an
important conjecture of Serre [S 2])-- all this justifies
the special place this 17-th century question has held in
the imagination of many people who think about
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numbers.

§2. The "odds" of hitting on a solution.

But perhaps it is time to backtrack, to develop a bit of

intuition, which might allow us to hazard guesses on
which equations (such as among those displayed above)
could be expected to have few solutions, and which could
be expected to have many. The idea here is that, if nand

m are large, there as so few n-th powers and so few m-th

powers, that an "accident", such as a solution to (1), is

simply very rare. Without trying to justify this kind of

reasoning let us simply indulge in it, and see where it

leads. And, for variety, let us modify the context a bit,

by contemplating integer (i.e., whole number) solutions
(in the variables X, Y ,Z) to equations of the general form

(2) aXcx + bY,s + cZ1I' = 0

where a,b,c are fixed (nonzero) integers, where for

simplicity let us assume that no two of the three

coefficients a,b,c have a common factor, and where the
exponents cx"s,1I' are fixed positive numbers. This includes,

for example, equations like those in Fermat's Last

Theorem.
Imagine that we are going to look for solutions to (2) in

the following mindless way. Fix a large positive number T,
and simply "tryout" all possible integer choices of X, Y ,Z

subject to the cut-offs

(3) IXI ~ T1/cx, IY! ~ T1/,s, IZI ~ T1/1I',

and let us also make the extra requirement that X, Y, and
Z are "relatively prime" (meaning that these three

numbers have no common factor larger than 1)2. With

8 .
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this trial-and-error-strategy, we are guaranteed that the

left-hand-side of (2), i.e., LHS= aXcx + bY,B + cZ'-6 is less,
in absolute value, than a fixed constant times T. "Fixed"
here means simply that the constant depends only on the
parameters a,b,c and not on our choice of T.

At this point let us imagine betting on each trial. To bet
effectively, of course, you need some rough-and-ready
way of computing the odds. And with our near total lack
of knowledge, a natural first guess is that each of these
trials is "random" in the sense that the values of our left-
hand-side, LHS, are evenly distributed over the entire
"possible range". In a word, we are going to guess that
LHS hits any given value in its possible t:"ange equally-
often. Since there is a constant times T possible values,
the expectation of hitting 0, (with the thoroughly
unjustifiable assumption we have just made) i.e., the
"odds" of getting a solution to (2) from any given trial
would then be a constant times liT. Since the number of
trials allowed to us by our trimming-strategy (3) is
roughly a constant times

Tl/cx. Tl/,B. Tl/'-6 = Tl/cx+l/,B+l/'-6 ,

our "expected payoff", i.e., the number of solutions to (2)
we might benightedly hope to get from this procedure, is
the number of trials times the expectation for anyone
trial, i.e., a constant times

2 We take this precaution for otherwise, visibly "nonrandom" phenomena

will swamp the data; for example, given any solution (x,y,z) you get

infinitely many other ones by taking, e.g., (X'A~~, y 'AO(~, z 'AO(~) for integer

values of A. But also there is some subtler "nonrandom" behavior ruled out

by our precaution; here is an example pointed out to me by Granville:

consider the two-parameter family of rational solutions to the equation

334. 33 33 33 .X +Y = Z given by: X= A.(A +1-1 ) , y= 1-1'(A +1-1 ), Z= A +1-1 parametrized by

A and 1-1.

9
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(4) T1/cx+1/~+1/'6'. (1/T) = T(1/cx+1/~+1/'6' -1).

Let us now glance at the exponent in (4) in order to
predict something about the qualitative behavior of the
solutions to (3).

I. If 1/cx+1/~+1/'6' is less than 1, the exponent in (4) is
negative, so one might expect few solutions! And this is
the case, as Darmon and Granville have recently

proved3 (cf. [D-G]):

Theorem (Darmon-Granville): Let a,b,c be nonzero
constants, no two of which have a common factor, and
let (cx,~,'6') satisfy the inequality -

1 I cx+1/~+1/'6' < 1.

Then there are only a finite number of solutions to the
equa tion

aXcx + b y~ + cZ'6' = 0

in (nonzero) triples of integers (X, Y,Z) such that X, Y,
and Z have no common factors.

II. If 1/cx+1/~+1/'6' is greater than 1, i.e., if (cx,~,'6')
written in nondecreasing order is among the entries of
the table:

3 by applying Faltings' theorem judiciously to Galois coverings of the

projective line with ramification-signature ()(,~,~); see [D-G] for this elegant I

argument.
10
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cx ~ ~
1 * *
2 2 *
2 3 3
2 3 4
2 3 5

(where * means any integer allowed by the convention of

nondecreasing order),

the exponent in (4) is positive, so we might not be
surprised to find that the equation has an infinity of
solutions. This, of course, is subject to some sort of cayeat,
for there are, at times, visible facts about a particular

equation (like a,b,c positive and cx,~,/j' even) that would
preclude the equation from having too many solutions.

For each triple (cx,~,/j') in the table above, it isn't hard to
produce equations whose exponents are given by that
triple, and which has an infinity of solutions in relatively
prime integers (X, Y,Z); for example: the equation

(5) XCX + Y~ - Z/j' = 0

has this property, for any triple (cx,~,/j') occurring in our
table. For explicit "rationally parametrized" formulas for
the infinitude of solutions in each of these cases, see [D-G].
The case (cx,~,/j') = (2,3,5) is particularly interesting and I

understand that F. Beukers has recently found the
complete set of rationally parametrized families of infinite
solutions to it (there are twenty-three such families). The
case of cx = ~= 2 and arbitrary /j' is simple, and ancient: for

variables U ,V, let XCV, V) and Y(U, V) be the homogeneous
polynomials in U and V which come about as the real and
imaginary terms of the expansion of the ~-th power of
(U+~.V):

X(U,V) + ~.Y(U,V) = (U+~.V)/j'.

1 1
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Now multiply left and right side of the displayed equation
by their respective complex conjugate to get

X(U,V)2 + Y(U,V)2 = (U2+V2)~,

so that any substitution for (U,V) of a pair of relatively
prime integers (u,v) gives the solution

X=X(u,v), Y= Y(u,v), and Z = u2+v2

to equation (5) with triple of exponents ((X,.8,~) = (2,2,~).

III. If 1/(X+1/.8+1/~ is exactly 1, i.e., if ((X,.8,~) is one of
the three triples

(X B 1!'

2 3 6
2 4 4
3 3 3,

the exponent in (4) is zero, so perhaps we had better
hedge our bets. Hedging bets seems to be a good idea, in
view of some numerical calculations that have been
carried out with equations of exponents ((X,.8,~) occurring
in this table; e.g., consider the equation

3 3 3E(m): X + Y + m.Z = O.

Kramarz and Zagier [Z-K] have shown (making use of
standard conjectures and computer calculations) that for
precisely 10,292 of the cube-free numbers m in the
range 1 < m < 20,000, the equation E(m) has an infinitude
of solutions (X, Y,Z) in integers with no common factors;
i.e., for this range of coefficients m, roughly 62% of these
equations have an infinity of relatively prime solutions,
while the remaining 38% of them have only a finite

12
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number of such solutions. See also the report in [G-P-Z] of
more recent calculations carried out for all values of m in
the range 1m! < 100,000. If one restricts attention to
equations E(m) where m is the negative of a prime
number (m = -p) then we have somewhat more precise
information: If p = 2,3 or 5 modulo 9 there are no
nontrivial solutions to E(m). If p = 4 or 7 modulo 9, Elkies
has recently announced that he can prove that there is
an infinitude of solutions (x,y,z) with x,y, and z relatively
prime. This leaves p = :tl modulo 9. When p = -1 modulo
9 we expect that there is an infinitude of solutions

(again with x,y, and z relatively prime)4, and, finally,
the case p = 1 modulo 9 is the interestingly erratic case:
things can go either way; there are either no nontrivial
solutions, or there is an infinitude of solutions (with x,y,
and z relatively prime). For an account of all this, see [V-
Z].

For further discussion of equations in all three categories
I,ll, III, see [D-G].

The trichotomy that we have fallen onto by this
gambler's type of reasoning, i.e.,

l/(X+l/~+l/~ < 1

(6) l/(X+l/~+l/~ = 1

1/(X+l/,8+1/~ > 1,

is hardly a spurious one. It separates equations such as (2)
above into three classes and this same three-way
distinction can be rediscovered by considering the
differential-geometric features of the locus of complex
zeroes of these equations, or their algebraic geometric

4 This would follow from the Conjecture of Birch and Swinnerton-Dyer
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features, or even, to some extent, their topology.

I have often wondered what historical role this type of
unjustified "probabilistic reasoning" has played in the
shaping of ma thema tical subjects. Are these heuristic
arguments used more as a predictive tool ( as a guide for
the establishment of some theory) or more as a
mnemonic, or handy codification after some theory has
been established? Whenever such a heuristic argument
actually "works", i.e., conforms to theory or computation,
we may derive from it, at least, some sense (or hope) that
the analysis that went into it does not leave out any of
the grosser features of the phenomena being studied.
Number Theory has its share of these heuristic devicgs,
some as perfectly explicit as our "gambler's argument"
above, and others which are vaguer, but which still
illuminate. It might repay the effort for a historian of
Mathematics to examine these in a detailed scholarly
way. There is the famous elementary calculation (by
Gauss? and others?) giving the estimate of l/log x for the
probability that a number "around the size of x" be
prime, and leading to the conjecture ( a version of the
"Prime Number Theorem") that the number of primes ~
x is asymptotic to

x
f dE./log E.,
2

this being a visibly predictive use of such heuristics, at
least in the sense that this result was eventually
established much later, not in the lifetime of the original
conjecturer(s). Nowadays, there are innumerable
predictions and codifications in the subject which depend
on some probabilistic model. For example, there is
Mon tgomery's Conjecture that the gaps between the
zeroes of the Riemann Zeta-function are distributed like
the gaps between eigenvalues of large random Hermitian

matrices5; there is the so-called "Cohen-Lenstra

1 4
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Heuristics" which predict statistics on the structure of the
ideal class group of quadratic fields; there is a significant
elaboration of the very "gambler's reasoning" we described
above which "predicts" the asymptotics of the number of
rational points of "height" :s x on certain projective
algebraic varieties (Manin's Conjecture).

Getting back to our particular subject, the reader might
wonder, as I do, whether one can refine our gambler's
heuristics so as to comment intelligently, one way or the
other, on the statistical likelihood of the finiteness result
given by Tijdeman's Theorem formulated above.

§3. ABC.

The reader might also ask for a more fluid context than
is given by equations of the particular form of (2) in § 2,
for a discussion about powers of whole numbers and their
relations. It seems amazing that despite many centuries
of devotion to such questions, it was less than ten years
ago that Mathematicians (specifically, Masser [Mas] and
Oesterle [Oe], refining an idea of Szpiro, and guided by a
result about polynomial algebras due to Mason)
formulated a startlingly simple problem that focuses on
such a fluid context, and that still captures something of
the essence of the type of question posed by equations of
the form (2).

Masser and Oesterle consider the humble linear
equa tion

(7) A + B + C = o.

They boldly define an ABC-solution to be absolutely any

5 For numerical work on this, see Odlyzko [ad], and for work on higher

correlations of zeroes of the Riemann ZetC>.-function, see [Rud-SC>.r]
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solution to (7) in relatively prime nonzero integers A,B,C.
There is no obstruction, then, to finding as many ABC-
solutions as you might want! The sensible tactic, though,
is to sort through ABC-solutions "grading" them according
to "interest", where an ABC-solution is considered
"interesting" if A, B, C are divisible by high perfect
powers. We will do this "grading" in a moment, but the
guiding idea will then be to conjecture that there are
relatively few "interesting" ABC-solutions; i.e., once you
put a linear relation (7) on three relatively prime
integers, Masser and Oesterle will be conjecturing that
there is a strong compulsion for these integers not to be I
highly divisible by perfect powers, where the adverb
"highly" is about to be given a quantitative meaning.-

If N is a nonzero number, define its radical to be that
number which is the product of each of the distinct
primes dividing N. Denote the radical of N by rad(N). So,
for example: rad(12) = rad (18) = 6, and rad(2100) = 2.
Our point of view will be to think of a number N as being
"highly divisible by perfect powers" if it is, roughly
speaking, large in comparison with its radical.

Let us convene, for our ABC-solutions, to have C be the
maximum of the three numbers A,B,C, in absolute value.
By the power P of an ABC-solution (A,B,C) let us then
mean the quantity:

P(A,B,C) = log ICI / log( rad(A.B.C) ).

If the power P of an ABC-solution is high, we want to
think of that solution as being "highly divisible by powers".
To check quickly that this is not an unreasonable way of
thinking of P let us do the exercise of estimating P for an
ABC-solution consisting of perfect n-th powers

A= an B:::: bn C = cn for some n.
, , , ,

i.e., the triple (a,b,c) would then be a nontrivial solution
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to the Fermat equation of exponent n (which, of course,
we now know does not exist for n >2, but let us follow
through the consequences~of the existence of such a
solution),

Since log ICI = log max( IAI, IBI, ICI ) ?: 1/3. log( IA.B.C! )

?: n/3. log( la.b.cl) ?: n/3. 10g(rad(A.B.C)),

the "P" of such an ABC-solution would be 2: n/3, and
hence would be large if n is large.

Weare now ready for the formulation of the rather
remarkable (and still unsolved!) -

ABC Conjecture (Masser-Osterle): For any number
1") > 1, only a finite number of ABC-solutions can have

power P?: 1").

The beauty of such a Conjecture is that it captures the
intuitive sense that triples of numbers which satisfy a
linear relation, and which are divisible by high perfect
powers, are rare; the precision of the Conjecture goads
one to investigate this rarity quantitatively. Its very
statement makes an attractive appeal to perform a range
of numerical experiments that would test the empirical
waters. On a theoretical level, it is enlightening to
understand its relationship to the constellation of
standard arithmetic theorems, conjectures, questions,
etc., and we shall give some indications of this below.
There is also the lure of actually trying to prove this
conjecture, and if not the conjecture in its full strength,
then perhaps something (even if a good deal weaker) in its
direction. To give an example of such a weaker but more
tractable statement (e.g. (9) below), first note that the
ABC-Conjecture implies that there is a constant K such
that

(8) log ICI < K' log rad(A.B.C)

17

I



.

for all ABC-solutions (A,B,C). This is because the ABC-
Conjecture implies that for any fixed number 11 greater
than 1, there is only a finite set 8(11) of ABC-solutions
with power P > 11; so fix such an 11 and take K greater

than the maximum power of all ABC-solutions in 8(11).

Now since (8) may be out of reach at present, and since
log rad(A.B.C) goes to infinity more slowly than any fixed
positive power of rad(A.B.C), one might try to establish
an inequality of the form:

(9) log ICI < K. rad(A.B.C)O,

valid for all ABC-solutions, for 0 some fixed positive
number, as a gauge of how powerful the available
methods are: the smaller 0 one can prove this for, the
better. In fact, Baker's "theory of lower bounds on linear
forms in logarithms" implies such inequalities. At the

present time6 this inequality is known for any
exponent 0 > 2/3, where the constant K, dependent upon

0, is effectively computable.

In the direction of making further conjectures, the
bluntly qualitative form of the conjecture ("only a finite
number of ABC-solutions) begs to be sharpened to
more precise quantitative statements (e.g, it would be
good to have a conjecture carrying some conviction, that
gives an explicit upper bound for IA.B.CI for ABC-solutions
such that P > 11 > 1, as a function of 11 ).

As for numerical experiments, no one, to my knowledge,
has yet found an ABC-solution with P ?; 2. And note that
by the exercise we did above, a proof that there are no
ABC-solutions with P ?; 2 would give another proof of

6 See [S-YJ. This is an improvement of a prior inequality due to Stewart

and Tijdeman and incorporates ideas of Waldschmidt

18
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Fermat's Last Theorem for exponents> 5. As a similar
exercise, using only elementary algebra, it is easy to show
that the ABC-Conjecture (even without any particular
upper bound given for P) would imply the Theorem of
Darmon-Granville quoted above, as well.

The four most "powerful" ABC-solutions presently known,
taken from a table in [B- B] , are:

Equa tion P .

1. 2 + 310.109 + (- 235 ) = 0 1.629912
2. 112 + 32.56.73 + (- 221.23) = 0 . 1.625991

3. 283 + 511.132 + (- 28.38.173) = 0 1.580756
4. 1 + 2.37 + (- 54.7) = 0 1.567887

These examples were discovered by the mathematicians

Reyssa t, de Weger, Browkin- Brzez inski, and de Weger,
respectively. Elkies and Kanapka have systematically
tabulated all ABC-solutions (where IAI ~ IBI ~ ICI ) whose

power is greater than 1.2, in the range ICI < 232. There
are 986 such ABC-solutions, and this tabulation is
displayed by the printing of a dot with x,y coordinates
(log2 ICI, P) for each such ABC-solution:
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§4. Digression on ABC and Mordell's Conjecture.

There is a direct theoretical connection between the ABC-
conjecture and some of the more classical problems in
arithmetic, besides the connection that we have already
seen between ABC and Fermat's Last Theorem. In this
section, which can be skipped in that it will not be
referred to later in this article, I want to give a brief
description of Mordell's Conjecture because of its
immense importance to our subject, and also because
Elkies has shown by a fairly elementary argument that
the ABC-Conjecture (for number fields) implies the
Mordell Conjecture (see [E]; we will sketch this argument
in appendix A below).

The Mordell Conjecture was originally formulated in 1922,
and it was first proved by Faltings in 1983. It is about
ra tional solutions (x,y) of polynomial equations P(X, Y) = O.
That is, the problem it addresses is the study of pairs of

20 f
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rational numbers x, and y such that P(x,y) = o. This is in
contrast to the type of question we have been asking so
far where the focus has been rather on integer solutions.
Although these two kinds of problems, to find ra tional
or to find integral solutions, are visibly related, there
are many qualitative differences between them. I will
return to one somewhat surprising difference at the end
of this section.

The full assertion of Faltings' Theorem (MordeU's
Conjecture) in technical language asserts that any
algebraic curve of genus> 1 over any algebraic number
field has at most a finite number of rational points. For
an introductory discussion of the notion.s of algebraic
curve and genus, and of Faltings' Theorem, see [Ma 2].

We can illustrate the power of Falting's Theorem by
considering this example which can be stated in i

I. i
completely elementary terms7. Fix n an integer?:; 5.
Let G(X) be any polynomial of degree n,

G(X) = Xn + an-1.Xn-1 + an-2.Xn-2 + aO

with coefficients a j which are rational numbers, and such

that G(X) has no "multiple roots" when it is factored over
the complex numbers. A convenient necessary and
sufficient criterion for G to have no multiple roots is that
the polynomial G(X) and its derivative G'(X) have greatest
common divisor equal to 1. It follows from Faltings'
Theorem that the equation

y2 = G(X)

has at most a finite number of rational solutions (x,y). If
you wish, another way of saying this is that as you allow

7 "stated in elementary terms", yes, but definitely not proved by

elementary meansl
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x to run through all rational numbers, the values G(x)
are almost never squares of rational numbers, and
more precisely they are squares for at most a finite

number of choices of x.

While we are considering this example, we might ask
how many rational solutions can an equation of the

form y2= G(X) have? Recently it has become (at least)

plausible to hope that this number is bounded only by the
degree of G. Specifically

Conjecture: For each n ?; 5 there is a number B(n) < 00,

such that for any polynomial G(X) of degree n with no
multiple roots, the equation

y2 = G(X)

has no more than B(n) rational solutions.

For reasons for this to be plausible, see [C-H-M 1,2]. From

an experimental point of view, it seems to be hard to

come up with polynomials G of small degree?; 5 (say,
precisely of degree 5) for which the displayed equation

above has a large quantity of rational solutions. As I am

writing this, the record (for polynomials of degree 5) is

held by Kulesz and Keller [K-K]: they have found an

example having?; 588 points. But we still lack sufficient

experience here to even begin to guess whether this is

close to optimal or very far from it (E.g., is the

maximum number of solutions for polynomials G of

degree 5 on the order of 103? Or is it closer to 10103?)

Or is the above Conjecture false and is there no uniform

bound at all?

One "surprising difference" between rational vs.

integral questions is in our present understanding of

"decidability issues" related to these questions. Well over

two decades ago, Matijasevic explicitly produced a
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polynomial P(T; X1""'Xm) in the variables T and the X's

with integral coefficients for which there does NOT exist a
computer program which, for any given specialization of
the variable T, T~ 1, T~ 2, T~ 3, and in general T~ to'

correctly answers the question of whether or not the
polynomial equation

P(to; X1""'Xm) = 0

has an integral solution in the variables X j' In a word,
the problem of deciding whether or not a given
polynomial has integral solutions,is "unsolvable". But, to
this day, one does not know whether the corresponding
problem for ra tional solutions is decidable!

§5. The passage from ABC to cubic curves. Nothing
Icould be simpler. Given an ABC-solution I

(E) A + B + C = 0,

(recall that A,B,C are integers with no common factors)
you write the cubic equation

E(E): y2 = X.(X-A).(X+B).

The intended effect of writing such an equation is to
invoke its locus of (say, complex-valued) zeroes, i.e., pairs
of complex numbers (x,y) such that y2 = x.(x-A).(x+B).
These points (x,y) on E(E) trace out a smooth plane cubic

curve in (X, Y) space. If we were to complete (X, Y)-space
to form the projective plane (by adding a line "at
infinity") our curve E(E) would have one extra point "at

infinity" and in the discussion below we include that
extra point (denoted 0) in the locus E(E)'

23 I
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Let us review the geometric construction which
provides an extremely important addition law on the
points of E(£) . That is, given any two points u, v of E(£) ,
we will define a point which we will call u + v in E(£).

The reason for using the + sign here is to signal that this
operation is an "additition law" in the sense that it
satisfies the usual laws that addition in arithmetic
satisfies. Explicitly: this addition law is commutative and
associative; the point of E(£) referred to as "0" above plays

the role of "zero-element" in the sense that 0 + u = u for
any point u of E(£); and given any point u of E(£) there is

an "additive inverse" which we might call -u with the
property that u + (-u) = O. In other wor?s, the set of-
points of E(£) with this operation "+" forms a

commutative group. The key fact that allows us to
define such a law of addition is that any straight line Q in
the (X, Y)-plane intersects a cubic curve E(£) in precisely

three points. That is, this will be true if we interpret
things correctly! For a number of things may seem to
conspire to make that statement false. First, if our
straight line is tangent to E(£) at some point u we have

must interpret u as being a double point of intersection
of Q and E(£). Second, we must not only count

intersection points (x,y) with x and y real numbers for
then we might miss some intersection points: we must
allow x and y to be complex as well. Third, we must not
forget that the "extra point at infinity" on E(q) which we

have labelled 0 may very well occur as an intersection
point: specifically a line Q in the (X, Y)-plane contains 0 if
and only if it is vertical.

With all these provisos, a characterizing property of this
law of addition is that any three points u, v, w on E(£)

which lie on a line in the (X, Y)-plane sum up to o.

It follows from this characterizing property that if w
= (x,y) is a point of E(£), then its inverse, -w, ("additive
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inverse" in the sense of this addition law on E(E)) is the

point (x,-y). To see this from the above discussion, draw
the vertical line Q in the (X, Y)-plane passing through w.
Since Q passes through the point 0 as well, the third point
of intersection w' in Q nE(E) , which is visibly the point

(x,-y) , has the property that w + 0 + w' sums to 0, i.e.,
w' is an additive inverse to w.

Since any two distinct points U,v on the curve E(E)

determine a unique line Q in (X, Y)-space going through
them (Q = the "chord" passing through u and v) and this
chord Q has a unique third point of intersection (call it w)
with our cubic curve E(E) :-- our recipe gives u + v = -w.

* * * * * * * * * * (pu t diagram 2 here) * * * * * * * * * * * * *

The addition law of points on y2 = X3_X.

Diagram 2
It is natural (and rather forced on us) to define u + u to
be -w, where w is the third point of intersection of the
curve E(E) with the unique line Q tangent to E(E) at the

point u:

* * * * * * * * * (put diagram 3 here) * * * * * * * * * * * * * * * *

Twice a point in y2 = X3_X

Diagram 3

From its very description, it is clear that this law (for the
"addition" of points on E(E)) is commutative; the fact that

this law is also associative, is proved by fairly
elementary means but is, nevertheless, a minor miracle,
which has been rediscovered in different ways, and put to

,
I
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different uses, over the course of centuries. If you haven't
seen this proved before, it would repay the effort to do

this: Construct the "triple sums" (u+v)+ wand u+(v+ w)
in Diagram 4 below by simply drawing the appropriate
straight lines on that diagram to construct in turn the
points u+v, v+ w, and then the triple sums to check, by
eye, that these triple sums are in fact equal. This, of
course, is not a proof. But this exercise already gives a
sense of what sort of statement in Plane Projective
Geometry it is, to affirm that these two triple sums are

equal.

'* '* '* * * '* * * '* '* (put diagram 4 here) * '* * '* * * * * * * * * '* * * * *

The associative law on y2 = X3- X

Diagram 4

An algebraic curve such as E(£) (e.g., any plane cubic

curve y2 = g(x) where g(x) is a cubic polynomial in x
with no multiple roots) together with this attendant
additive law for its points, is called an elliptic curve.

This additive law for any given E(£) has the convenient

aspect of being "algebraic" in the sense that the
coordinates of u + v may be given in terms of rational
functions of the coordinates of u and of v; for example, as
an exercise in the definition of the "addition law" plus a
bit of plane geometry, you can try to derive the formula
for the coordinates of u + u in terms of the coordinates of
u.

For a short account of elliptic curves see [G].

The elliptic curve E(£) is often referred to as the Frey

curve of the ABC-solution (£) in honor of Gerhart Frey,
who realized that there is a distinct advantage to
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changing the focus of our attention from the ABC-solution
(E) to this elliptic curve E(E)' especially if we are

interested in ABC-solutions of high power P; See [Fr] and
the prior, closely related, construction due to Hellegouarch
in the early 70's given, e.g., in the discussion preceding
Th. 4 in [He]). Frey noticed that one can re-express the
hypothesis that an ABC-solution (E) has the property that
A.B.C is divisible by a perfect power, as a specific, and
sometimes quite "telling", property of the group structure
of the elliptic curve E(E). Roughly speaking, the more

divisible by perfect powers the ABC-solution (E) is, the
more peculiar the corresponding Frey curve E(E) is.

What it means for an elliptic curve to be peculiar,
however, we must leave for Part II below. The point is
that we do have almost a century's worth of detailed
mathematical theory concerning the arithmetic of elliptic
curves, giving us a fairly developed sense of what to
expect, and what not to expect, in the way of elliptic
curves and their arithmetic behavior. And if we start
with an ABC-solution (E) where A, B, and C are perfect n-
th powers for n a prime number?; 5 (i.e., a solution of
Fermat's Last Theorem for prime exponent?; 5) the
corresponding Frey curve E(E) seemed so .peculiar, that no
one working in the field thought that such an elliptic
curve could plausibly exist. Plausible or not, though, its
actual existence could not be ruled out until the recent
advance due to Wiles and Taylor-Wiles. We will be giving
brief hints below; for more elaborate and excellent
accounts of this story, see [Co], [Dar 2], [D-D-T], [G], [Ri 1],
and [R-S].

But let us take a step backwards and ask what kind of
a thing we are doing when we make a "transformation"
such as:

(8) ABC-solution > Elliptic curve
(E) A+B+C = 0 E(E) :y2 = X.(X-A).(X+B).
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Ignoring its specifics, this "transformation" is in the
format of

The set of all The set of all
solutions to a examples of

(9) certain ) a specific
equation mathematical

EQU. structure
STR.

Now it is often a healthy sign, in studying an equation, if
you find yourself dealing with such a format. There are
two clear reasons to be pleased when this happens: First,
if you have established a rule such as (9), then every
time you have a solution to your equation EQU, you don't
only have a solution to a particular equation, you have
something more: you have "animated" the solution by
relating it to a specific instance of the mathematical
structure STR, which has, perhaps, interesting features of
its own, and may be worth further study in its own right.
But going the other way, by understanding conceptually,
and perhaps classifying the structures STR, you might
gain a new technique for constructing, or constricting, or
just understanding better the solutions to your equation
EQU.

Sometimes such a transformation as (9) helps in simply
counting structure, or solutions to equations; we will
consider this question of counting, with regard to the
transformation (8), in the box labelled [* 1].

And sometimes it is useful to study transformations
that go in the other direction, from "structures" to

solutions of an equation.8

8 The example of this most closely like an "inverse" to the transformation
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********(put box labelled [*1] here)*************

§ 6. The Mordell Equations. .I

Consider the integer solutions (X, Y) of the equation

(10) X2 = y3 + k

for some fixed non-zero integer k. These equations are
special cases of equation (1) discussed in .§1, i.e., we have
fixed the exponents m,n in equation (1) to be m = 2 and
n= 3. The study of the system of equations (10) for k =
:t 1,:t 2, ... occupies a position in the history of
Diophantine equations somewhat akin to the position that
the study of fruitflies occupies in genetics: these are
intensely studied "model systems". The equations (10),
called Mordell's Equations, have an extensive
literature, and constitute a showcase for the various
methods that can be brought to bear on similar problems.
A particular attraction of the Mordell equations is that
they are connected to the theory of elliptic curves in at
least two (somewhat incommensurate ways). For one
thing, for each k, the Mordell equation (being of degree 3)
is the equation of an elliptic curve. For another, the
Mordell equations provide us with another illustrative
example of the sort of transformation (9) that we talked
about in the previous section: For any k = 1728.6 each
rational solution (b,a) of the Mordell equation

(8) is given by the classical theory of moduli for elliptic curves. This

classical theory constructs a natural transformation that passes, e.g., from

pairs consisting of an elliptic curve together with a chosen cyclic subgroup of

order N in it, to solutions of a specific polynomial equation in two variables,

the "modular equation" of level N, or, essentially equivalently, to points on a

specific algebraic curve, the "modular curve" XO{N).
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determines an elliptic curve E(a,b) given by a cubic

equa tion of discriminant equal to 6.:

E(a,b) : y2 = x3 -(a/48).x - (b/864).

The integral points (X,Y) of Mordell's Equations (10) are
entirely known for Ikl ~ 10,000 and known with the
exception of about 1000 values of k for Ikl ~ 100,000
(these computations are very recent; cf. [G-P-Z]). A
Conjecture due to M. Hall asserts that the integral
solutions are bounded by the size of k according to the
following rule:

Hall's Conjecture: There is a constant.C such that

/Y11/2 < C. Ikl.

Given any integer solution (X, Y) of equation (10) for

some k, the ratio IYI1/21 Ikl, then, gives us a lower
bound for the constant C conjectured to exist by Hall.
For example, the largest integral point on the curve

(11) X2 = y3 + 24

which we discussed in §1 has its V-coordinate equal to

8158 and therefore the ratio IYI1/21 Ikl is 3.76...

The data of [G-P-Z] suggests that C might indeed be

relatively small: the largest value for this ratio IYI1/2/1kl
achieved by any integral point (X, Y) of (10) that Gebel,
Petho, and Zimmer find ( in the range Ikl ~ 100,000 ) is
4.87... and, in fact, all the integral points tabulated in [G-

P-Z] with ratio ly/1/2/1kl greater than 1.5 are given in
the following table.

,
1
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Table of some large integral points
(taken from [G-P-Z])

k Y IYI1/21 Ikl

17 5,234 4.26...
24 8,158 3.76...

-207 367,806 2.93...
225 720,114 3.77...

-307 939,787 3.16...
1,090 28,187,351 4.87...

28,024 3,790,689,201 2.20...

Assuming Hall's Conjecture, one can define another
constant, call it c, which is relevant to the above data.
Namely,

c = lim.sup. IYI1/21 Ikl i

where the "lim. sup" is taken over all integral pairs (X, Y)

with k:= X2- y3. That is, c is the smallest non-negative
number such that the equation

IYI1/2 < (c+£). Ikl

has only a finite number of integer solutions (X, Y) for any
choice of £ > o.

According to [Dan] we have that c > .0032. Is c ~ 1?

The maximum number of integral solutions that Gebel,
Petho, and Zimmer found for a single given equation (10)
is 48 pairs (:tX,Y). Is the number of integral solutions on
the Mordell equation uniformly bounded independent of
k? My guess is that they are not.
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Part II

§7. The passage from ABC to "cuspidal modular
forms".

For this discussion, we will be assuming some
knowledge of the theory of complex analytic functions of
one variable. A cuspidal modular form of weight two,
f(z), is a function of a complex variable z, convergent in
the upper half-plane z = x+iy for y > 0, having a Fourier

expanSIon

(12) f(z) = a1e2niz + a2e4niz + ... + ane2ninz + ...

and such that for some choice of positive integer N
(called a level for f) f(z) satisfies the transformation laws

f(Tz).d(Tz) = f(z).dz

for all linear fractional transformations T(z) = az+b/cz+d,
with a,b,c,d integers, ad-bc=1, and c a multiple of N. For
an introductory treatment of this subject, see 2.3 of [G],
Ch. VII of [8 1], or [Mi]. To complete the definition of
modular form, or of cuspidal modular form, one
must also require a further technical condition which I
won't describe fully except to say that for the complex
analytic function f to be a modular form f must be
holomorphic at all "cusps"; for it to be cuspidal f must be
holomorphic and vanish at all "cusps"- the Fourier
expansion of f displayed in (12) above guaranteeing this

latter condition at the "cusp" z=i.oo.9

9 For a definition and treatment of the notion of "cusps", see [Mi]; the

cusps at level N are the points "at infinity" of the Riemann surface obtained

by dividing the upper half-plane by the action of the group of linear

transformations T (discussed ill the paragraph above), One may develop the
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For any fixed level N the vector space of modular forms
of weight two is finite-dimensional. That is, for any fixed
N we can select a finite set of modular forms f1,...,fs (of

weight two and level N) such that any other modular
form of weight two and level N is a linear combination of
the f j's. One has good numerical understanding of these

modular forms and of their Fourier coefficients, at least
for reasonably small level N. For example, there are no
modular forms at all of weight two for level N= 1. For any
prime level N, there is at least one modular form GN(z) of

weight two and level N (up to scalar multiplication) called
the Eisenstein series of weight two and level N; its
Fourier expansion is

00

(13) GN(z) = (N-1)/24 + ~ dN(n)e2Trinz

n=1

where dN(n) is the sum of the positive divisors of n which

are relatively prime to N. For each of the levels N=2,3,5
and 7, GN(z) is the only modular form (up to scalar

multiplication) of weight two and of that level.

The Fourier coefficients of a modular form f(z), i.e., the
an's occurring in the Fourier expansion (12), play an

enormous role in the theory: on the one hand, these
coefficients viewed as functions n ~ an often have

interesting arithmetic significance, and a particularly
elementary example of this can be seen in (13); while on
the other hand, various basic properties of, and

analytic function f(z) as a Laurent series in a local parameter in the

neighborhood of each such cusp; the requirement that f be holomorphic is

simply that this Laurent series be a power series; the requirement that f be

cuspidal is that this power series have vanishing constant term. The

requirement that f be cuspidal is equivalent to the growth condition

If(x+iy)1 «l/y for all x, and y >0.
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interrelations between, modular forms are most directly
seen in terms of these Fourier coefficients. The reader
wishing to have more contact with this may turn to a
number of excellent introductory and historical works
listed in the bibliography. The central role that the
Fourier coefficients n I-? an themselves play in the theory

of modular forms, and the recursive relations that, at
times, bind these coefficients together is seen quite vividly
in the theory of what are called newforms. To sketch
this theory, let us say that two modular forms f and g of

level N are "almost equal"10 if an(f) = an(g) for all

integers n which are relatively prime to the level N,
where an(f) refers to the n-th 'Fourier cQefficient of f, and

an(g) the same for g. A cuspform f(z) of level N (and

weigh t 2) is defined to be a newform if f, viewed as a
modular form of level N, is not "almost equal" to any
modular form g of level strictly lower than N, and if the
Fourier coefficients an(f) = an satisfy these recursive

relations:

(14) al = 1,

an.am = an.m if nand m are relatively prime,

ap.apm = ap2.m + p.am for all prime numbers p

not dividing the level N,

ap.apm = ap2.m for all prime numbers p

dividing the level N.

10 At first view, this may seem to be a somewhat disruptive thing to do to

functions of a complex variable: to define an equivalence relation determined

by consideration of selected subsets of their Fourier coefficients! This

strategy grows on one, though, especially when motivated by the study of the

action of Hecke operators on modular forms,
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The systematic theory of newforms begins with work of
A tkin and Lehner. It is an essential feature of this theory
that the vector space of all cuspforms of level N (and
weight 2) has a "chosen" basis comprised of modular
forms all of which are "almost equal" to newforms of
levels which are divisors of N. This chosen basis includes
every newform of level N. The entire package of Fourier
coefficients {an (f); n=1,2,3,...} of a newform f , and hence

the newform itself, is reconstructable using the recursive
relations listed in (14) if we are only given the Fourier
coefficients ap(f) where p ranges through all prime

numbers. It is, in fact, true that knowledge of the ap(f)

for all but a finite number of primes p uniquely
characterizes the newform f. In passing one might
mention that the notion of newform is sometimes used in
a slightly wider sense to incorporate certain noncuspidal
modular forms as well (these are "Eisenstein series", an
example of which is the modular form G2(z) in (13)

above) .

The recent work of Wiles, and Taylor-Wiles (and a more
recent strengthening of these results due to F. Diamond;
or see also [D- K]) showing that a large collection of elliptic
curves defined by equations with integer coefficients

E: y2 = X3 + uX2 + vX + w

are "modular" has been explained in a numb.er of
expository articles. There are many ways to express the
fact that E is "modular" and here is one way: The elliptic
curve E is modular if there exists a cuspidal modular
newform of weight two and of some level N
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fE(z) = L an e211inz

n=1

whose Fourier coefficients an are rational integers and'

such that there is this miraculous link between fE and

E:

The Link: For all but a finite number of prime
numbers p, the number of solutions (X, Y) in integers
modulo p of the cubic equation

y2 == X3 + uX2 + vX + W . mod p

(the same equa tion which defines the elliptic curve E)

is given by the formula p - ap where ap is the p-th

Fourier coefficient of the newform fE.

The p-th Fourier coefficients of the newform fE, for all

but a finite number of primes p, are determined (via the
"link" above) by the elliptic curve E, and therefore the
newform fE satisfying this link to E is uniquely

determined by E.

The Frey curve E(E) of any ABC-solution (E) is among

the elliptic curves for which the Wiles, Taylor-Wiles, and

Diamond results apply11. And so we can make the

11 The more recent preprint [D-K] proves that all Frey curves are

modular; this proof is based directly on the results of [W] and [T- W] and and .I

is independent of [D]. It depends upon a calculation of the possible 2-parts of

the level, using Tate's well known algorithm for reduction-types of elliptic

curves.
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passage:

(E) ) E( ) ) fE E(E)

from ABC-solution to Frey curve and thence to the linked
cuspidal newform of weight two, whose double-subscript
notation fE let us shorten to f(E)- A computation of the

(E)
level N of the modular form f(E) that we get from this

passage gives that N is an explicit and relatively small
power of 2, times the radical of A.B.C:

N = 2e. rad(A.B.C),

where e can be either -1,0,2 or 4-

But why is this transformation

(E) ) f (E)

from ABC-solutions to modular forms so powerful a tool in
the study of ABC-solutions?

The short answer to this comes in two parts, (A) and (B),
below:

(A) Certain properties of the newform of level N

f(E) = 2:: ane2rrinz

associated, via the "link" above, to the Frey curve of an
ABC-solution (E) = (A,B,C) are remarkably sensitive to
the occurrence of perfect powers dividing A,B, or C.
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What I mean by this will become clearer with the
formulation of the "level-lowering principle", below.

First some standard notation: for q a prime number and
M a nonzero integer, let us denote by ordq(M) the

exponent of the highest power of q which divides M (e.g.,

ord2(24)= 3 because 23 is the highest power of 2 dividing

24).

Fix r some prime number, and let q range through the
odd prime number divisors of N for which

ordq(A.B.C) = 0 modulo r.

(that is, q raised to a power which is a multiple of r is the
highest power of q dividing A.B.C).

Let M be the product of all the above prime numbers q.
So, M depends only upon rand N. For example, for the
ABC-solution

2 + 310,109 + (- 235 ) = 0,

and for r = 5, M is equal to 3.23.

Now a theory developed principally by Ribet which might
be called the level-lowering theory (see [Ri 2-6], [Ca])
will guarantee, if r > 3 and M > 1, the existence of
another cuspidal newform (call it g ) of weight two and
of level lower than that of f (the level of g will be

N/M.2e, where e ?:O) such that Fourier coefficients of g
are related to Fourier coefficents of f(£) by congruences

modulo r. We shall give a not-so- brief discussion of this
congruence relation a bit later. But for the moment, let
us just refer to the congruence relation by saying that
the modular forms f(£) and g are "almost congruent

modulo rOO so that we can formally display:
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(15) "The Level-lowering principle for prime
numbers r > 3": Let (£) be an ABC-solution and

00

f(£) = 2: ane2ninz

n=1

its associated newform. Let N be its level, r a prime
number> 3, and M = M(N,r) the integer defined as
above. Then f(£) is "almost congruent modulo r" to

a cuspidal newform

00

g(z) = 2: bne2ninz

n=O

of weight two and of level N/M.2e, for some non-
negative integer e.

To repeat: if we are given an ABC-solution (£) where A,B,
or C is divisible by a perfect power, besides getting the
modular form f(£) linked to its Frey curve we also get

the prediction of the existence of some other newform (or
forms) g of weight two, somehow connected to this ABC-
solution (£), but of comparatively lower level. The gain
here comes from something we have already hinted,
namely:

(B) We have a very good computational understanding
of modular forms, cuspidal or merely holomorphic, of low
level (and fixed weight).

It is now time to explain what it means for the
coefficients of the two modular forms f(£) and g to be

almost congruent modulo r. The telegraphically brief

39

iI ' ,



explanation would be'just to say that we want
an == bn modulo r for all integers n that are relatively

prime to the level N. But there is a technical glitch in this
brief definition, for an important reason: although the
level-lowering principle predicts the existence of a
newform g = L:bne2iTinz , it is not necessarily the case

tha t the Fourier coefficien ts bn are ra tional in tegers . If

the bn are all rational integers, then our telegraphically

brief explanation above makes clear sense, and is, in fact,
what we would mean by the assertion that f(8) and g are

"almost congruent modulo r". In general, the construction
coming from the level-lowering principle does not always
give newforms g all of whose Fourier coefficients are
rational integers. But the set of all Fourier coefficients of
any newform generates some number field, i.e., an
extension of the field of rational numbers of finite degree.
To say that f(8) and g are almost congruent modulo r

is to say that there is some maximal ideal m of the ring
of algebraic integers <3 if the number field generated by
the Fourier coefficients of g, where the quotient residue
field <3/m is of characteristic r (i.e., contains the field of
rational integers modulo r) and

an (modulo r) is congruent to bn (modulo m)

for all n relatively prime to N.

Celebrated Example. (For a fuller exposition of this
example, see [Ma 1], [8 2], [G]). It is (A) and (B) together
that wield the punch, and this is never more
dramatically demonstrated than when we imagine
ourselves presented with an ABC-solution which comes
from a solution to the Fermat equation of prime exponent

r?:5 A=ar, B=br, C=cr . For then we may take M to be
the largest odd divisor of rad(a.b.c) and apply the level-
lowering principle to find that our modular form f(8) is

congruent modulo r to a cuspidal newform g of weight
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two and level an explicit power of 2: as it turns out, of
level precisely equal to 2 if we label A,B, C to be such that
A is congruent to -1 mod 4, and B is even. But as we
have already mentioned, there is no cuspidal newform
of weight two and that level. Hence the assumption that
there is a solution to any Fermat curve of prime
exponent ?:5 leads to a contradiction!

This kind of argument, which is a brand-new tool for
finding all solutions to Diophantine equations, goes a good
deal further, and it is a lot of fun to use it to analyze
other equations, e.g., those of the type

(16) M.Xn+yn+Zn = 0

for coefficients M divisible only by a few small primes.
For example, see ([8 2]; 4.3 Thm. 2; compare [G]) where
such an analysis is given to show that (16) has no
nontrivial solutions in integers X, Y ,Z for prime exponents
n ?: 5, and for M any power of a prime p ... n, for p taken
from the set 8= {3,5,7,11,13,17,19,23,29,53,59}. With
more work, one can get this method to enlarge the set 8
of primes p for which (16) can be proven to have no
nontrivial solutions, but the reader might note that at
least some of the small primes not listed in 8 are
excluded for good reason: e.g., p = 2, p = 31. Even for some
primes p for which solutions of (16) actually exist when
M runs through powers of p, and n runs through
exponents?: 5, this congenial method doesn't altogether
abandon us: take the case of p=211, for which (16), taken
with M = p, and n=5, has the solution

211.15 + 25 + (-3)5 = O.

An am using exercise in this method is to show that if ~ =
211, or more generally, if ~ is a prime number not of the

form 2a :t 1, i.e., neither a Mersenne prime nor a Fermat
prime, then there is a bound n~ so that no equation of the

form (16) with M a power of Q, and with exponent n > n~1
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has a nontrivial solution in integers X, Y ,2. For a hint
about how this works in the special case of ~ = 211, and in
general, see the box labelled [* 2] below. For the case of M
equal to a power of 2, it has been conjectured by Denes
that (16) has only two nontrivial solutions for odd prime
exponents n, i.e., M must be equal to 2, and

(X,Y,2) = t(1, -1, -1).

See [Ri 7] for a discussion of this conjecture and for its
verifica tion in the case of prime exponents n == 1 mod 4. I
For applications of this machinery (the Frey curve
strategy, the modularity of such elliptic curves, and the :
level-lowering theory) to other Diophantihe equations, see i
[Dar 1]and [D-G]. I

i

;

*******(put the box labelled [*2] here)**********

What about the "level-lowering principle" for the
prime r = 3? The reason why we have excluded the
case of r= 3 is that although the "level-lowering principle"
still works for r= 3, it works with a slight change:
Namely, the lower-level modular form g "almost
congruent" modulo 3 to f(£) which is guaranteed to exist 1

by the "level-lowering principle" need not be a cuspform j
if r=3: it might be an Eisenstein series (of lower weight).

Let us relegate to the box labelled [* 3] below the short
technical discussion of these matters and mention that
this contingency does happen, as we shall see in our first j

example below; in such cases the level can sometimes be '

lowered even further than predicted by the general
"principle".

********(put the box labelled [*3] here)********

At this point I want to apologize for constantly talking
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about "the" constructed newform g of lower level, in the
discussion above. There is no claim to uniqueness of g:
there may be many such g's that fit the bill.

To summarize our discussion so far, we may associate to
any simple ABC-solution (£) the following kind of dizzying
constellation of modular forms:

<---) gl

(£) ) f(£) <---) g2

<---)
g1)

where each g in this list is either a cuspidal newform of
weight two which is "almost congruent" to f(£) modulo

some prime number r, and is of level N/M.2e (where M
is the product of all odd primes q for which ordq(A.B.C) =

0 mod r), or g is an Eisenstein series of lower level which
is "almost congruent" to f(£) modulo 3.

One may wonder: How much "almost congruence" of this
sort can any single f(£) have? Is there some perspicuous

way of limiting, say, the prime numbers r occurring as
moduli for "almost congruences" satisfied by f(£)? For an

exposition of the surprising affirmative answer to this
question, building upon the work of Shimura, Doi, Ohta,
Hida, Ribet and others, the reader might consult the
excellent article by Zagier [Z] (See also Prop. 4.1 of [Wi]);
for the briefest hints about this see the box labelled [*4]
be low.
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*******(put the box labelled [*4] here)***********

In [Dar 2], Darmon has formulated some conjectures
(Conj. 4.4, Conj. 4.5 of loco cit.; these are strengthenings of
an earlier Conjecture of Frey) which have implications
about the extent to which "almost congruences" can occur
between two newforms of weight two with rational
integral coefficients. In particular, a consequence of
Frey-Darmon's Conjecture 4.4 is the following

Conjecture (Frey, Darmon): There is a constan t B <
00 such that if f and g are any two distiJ:]ct newforms
of weight two, each with rational integral coefficients,
which are "almost congruent" to each other modulo p,
for p a prime number, then

p ~ B.

For any prime number p ?: 7, one can show12 that
there are only a finite number of distinct newforms g of
level two, with rational integral coefficients, which are in
the same "almost congruence class" modulo p.

Question: For a given p, how many pairs of distinct
newforms f,g are there, with rational integral coefficients,
which are "almost congruent" mod p?

Quite a number of such pairs are known for p =7, and I
am thankful to John Cremona for making calculations

which suggest that13 for newforms of level ~ 5000 there

12 applying Faltings Theorem to an appropriately twisted model of the

modular curve of full level p structure
13 By "suggest that" I mean to indicate that Cremona lists a pair f,g as

being possibly "almost congruent" modulo p if the first 1000 of their Fourier

coefficients for exponents relatively prime to the levels involved are
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are seventeen such pairs for p = 11, two such pairs for p

= 13, and no such pairs for any prime number p greater

than 13. None of the above pairs discovered by Cremona
are newforms attached to Frey curves.

. One can think of the above question for a giv~n prime p
as being a problem about rational points on the Hilbert

modular surface (call it H(p)) attached to the order of

index p in lL x lL. This surface has a natural (Q-structure

and for this (Q-structure, any pair of elliptic curves (E,E')

together with an isomorphism between their Gal(~/~)-
modules of p-torsion points determines a ~-rational point

on H(p). If N is a positive integer relatively prime to p, the

curve XO(N) (whose points classify N-isog.enies E~ E' of

elliptic curves) maps naturally to H(p) : the map sends

the point of XO(N) corresponding to the N-isogeny E~ E'

to the point in H(p) corresponding to the pair (E,E').

Assuming the Shimura-Taniyama-Weil Conjecture, any
noncuspidal rational point of H(p) which does not lie on

any of the images of these curves XO(N) gives rise to a

pair (f,g) as described in the Question above. Elkies has

found a rational parametrization of H(7), which explains

the proponderance of such couples (f ,g) for p= 7. In the

recent preprint of Kani and Schanz [K-S] it is shown that

the Hilbert modular surface H(7) is rational, H(11) is a

(blown-up) elliptic surface, and H(p) is a surface of general

type for p ?:.13. Are there primes p ?:. 13 for which one can

find a curve of genus < 2 lying on H(p) which is not the

image of one of the modular curves XO(N)? In view of

some well known conjectures of Lang, this is directly

relevant to the study of the rational points on these

surfaces. The arithmetic, and the algebraic geometry of

these modular surfaces seem very much worth exploring.

congruent modulo p. It would be an interesting exercise to rigorously prove

that each of Cremona's pairs are indeed "almost congruent" modulo p.
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Examples of "almost congruence": The point of the
"Celebrated Example" discussed above, was that the
"level-lowering principle" ruled out the existence of ABC-
solutions of a certain type. To get a more intimate sense,
though, of the nature of this "level-lowering principle" let
us exhibit a few ABC-solutions (i.e., ones that actually do
exist!) to see how "level-lowering" plays out with them.
See also § 3 of [Dar 2] for more examples.

I. r= 3. The lower level newform g needn't be

cuspidal

Consider the ABC-solution

(£1) (-3) + (-53) + 27 = O.

whose associated Frey curve E(£1) is the one labelled

30A (F) in the extremely useful book of tables of Cremona

[C].

I am thankful to Elkies for suggesting this ABC-solution to
me and also for suggesting his (useful??) mnemonic for it:

(5/4)3 2

~~~~~~~~~
--

This is meant to illustrate how "very close" (5/4)3 is to 2.
Namely, 5:4 is the ratio of frequencies of upper to lower
notes in a major third; and the ratio of top to bottom

. notes in three major thirds, one on top of the other, i.e.
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(5/4)3:1 , is sufficently close to that of the octave, i.e. 2:1,

that the two notes B# and C are merged as one on well-
tempered instruments-- this closeness being reflected, as
well, by the rather respectable power P = 1.42656... of
the ABC-solution (£1) above. This ABC-solution is the 30-

th entry in the table of [B-B] .

The corresponding newform f(£1) is of level 30, and

writing q for e2niz in its Fourier expansion,
f(£1)(z) = L anqn, its first few terms are

f(£1)(z) = q +q2_q3+q4+q5_q6_4q7 +q8+q9+q10_q12... .

The Fourier coefficients an' for n relatively prime to 30,

satisfy the congruence .1

(17) an == dn (modulo 3)

where dn is the sum of all positive divisors of n.14 Now

there are no cuspidal newforms of level 6 or of level 3 of
weight 2, but there are Eisenstein series, and the
congruence (17) tells us that f(£1) is "almost congruent"

modulo 3 to each of the Eisenstein series G3 or G2 defined

in (13). Our "constellation", in this case looks like:

~

14 This Frey curve admits a rational 3-isogeny .

47



~

ABC-solon associated lower level

newform (noncuspidal)
modular form

(81) ---) f(81) < ) G3 level= 3

N= 30 < ) G2 level= 2

almost

congruent

mod 3.

II. r= 3. The lower level newform g might be
cuspidal. Consider the ABC-solution

(82) 33 + 24 + (-43) = 0

whose newform f(82) is of level N = 129 = 3.43 and

corresponds to the elliptic curve 129B in [C]. The level-
lowering principle guarantees a modular form g of weight
two of level 43 which is "almost congruent" to f(82)

modulo 3. In this example, however, the dimension of the
vector space of cuspforms (of weight two) of level 43 is 3.
There are three cuspidal newforms of level 43, weight 2,
forming a basis of the space of all cuspforms of that level
and weight. Precisely one of these newforms (call it g) has
its Fourier coefficients rational integers, while the other
two have Fourier coefficients in the quadratic field
obtained by adjoining /2 to the field of rational
numbers (these two newforms being "conjugate"). The
modular form f(82) is "almost congruent" modulo 3 to g

and is not "almost congruent" modulo r, for r an odd
prime, to (either of) the other two newforms or to an
Eisenstein series, so the "constellation" looks like:
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ABC-sol'n associated lower level
newform newform

(£2) ---) f(£2) < ) g

N= 129 almost N/M = 43

congruent

mod 3

III. r=5.

Now consider the ABC-solution

(£3) 13 + 35 + (-28) = 0

whose power P is 1.2727... and whose Frey curve E(£3) is

the one labelled 78A2 in [C]. By the level-lowering
principle, there should exist a newform of level 26 = 2.13
and of weight two whose n-th Fourier coefficients (for n
relatively prime to 78) are congruent to those of the
newform f(£3) modulo 5. There are, in fact, two cuspidal

newforms of weight two and level 26, both of whose
Fourier coefficients are rational integers. Call these
cuspforms g and h, corresponding (in the sense, e.g., of
"The Link" above) to the modular elliptic curves labelled
26A and 26B, respectively, in Cremona's tables. One
checks that it is the cuspform g which is "almost
congruent" modulo 5 to f(£3).

Our "constellation" in this case looks like:
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ABC-solon associated lower level
newform newform

(£3) ---) f(£3) < ) g

N= 78 almost N/M = 26

congruent

mod 5

IV. r= 3 and 5, and an example where a lower
level newform has coefficients gene.ra ting a
quadratic number field.

Try the ABC-solution:

(£4) (-53) + 35 + (-24.23) = O.

Here f(£4) is of level 3.5.23 and the associated Frey

curve is the one labelled 345C in [C]. By the level-
lowering principle, f(£4) is "almost congruent" modulo 5 to

some cuspidal newform (of weight two) of level 115. There
are seven newforms of that level, one whose Fourier I

coefficients ar~ rational integers, two (conjugate) ;
newforms g1' g1 ' with Fourier coefficients in the field

obtained by adjoining ~ to the field of rational
numbers, and four more (mutually conjugate) newforms
with Fourier coefficients generating a field of degree 4.
One checks that f(£4) is "almost congruent" modulo 5 to .

both g1 and to g1, but satisfies no further "almost

15
congruences" modulo 5. The level-lowering principle

15
I thank Siman Wong for his program which helped with this check
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also tells us that f(£4) is "almost congruent" modulo 3 to a

modular form of level 69; one checks that this modular
form must be a cuspidal newform, and there are three to
choose from at this level, one with rational integer
coefficients, call it g2' "linked" to the elliptic curve labelled

69A in [C], and two other (conjugate) newforms each with
Fourier coefficients in the quadratic field obtained by
adjoining /5 to the field of rational numbers. Our
constella tion, then, looks like:

ABC-sol'n associated lower level
newform newforms

(£4) ---) f(£4) < ) g1 ' g1

N= 345 almost N/M = 115

congruent

mod 5

< ) g2

almost N/M = 69

congruent

mod 3

§8. Passage from ABC-solutions to algebraic points
on a Fermat curve. As if the two transformations,

(£) ---) E(£) and (£) ---) f(£)

and the attendant constellation of modular forms g of
"lower level" variously congruent to f(£) already described

were not enough mathematical structure to impose on a
mere solution to the ABC-equation, Vojta and others have
proposed yet another kind of transformation, with quite a
different spirit to it, which links ABC-solutions to yet

51 -



~

:,

another branch of arithmetic and algebraic geometry. As
with the Frey construction, this construction is

elementary to describe but involves a certain amount of
choice, and one might very well be struck by its
curiously ad hoc appearance. Nevertheless, it has the

virtue of thrusting ABC-solutions into a branch of

arithmetic and algebraic geometry where a different
range of techniques might (one day!) be brought to bear
on the study of the ABC-conjecture.

To the ABC-solution

(£) A + B + C = 0, ,;
J

i,j

Vojta associates the collection of algebraic points ((X,I:',~)

on the F erma t curve

F : X4 +y4 + Z4 = 0

where (the reader may have guessed that we want)

(X4 = A, 1:'4=B, ~4 = C.

One could have equally well replaced the "'curve F of

exponent 4" with the Fermat curve of exponent n for
some fixed n ?; 4 and then give a corresponding definition
for the collection of algebraic points. The motivation for

performing this curious operation

(18) (£) ---> the set of such algebraic points

is that our curve F and these algebraic points are objects
of study in a relatively new subject with some new

techniques at its disposal. The subject, initiated by the

Russian mathematician Arakelov in honor of whom it is 1,

called" Arakelov Theory" (and its higher dimensional 1

analogue which is usually called "Arithmetic Algebraic
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Geometry") has been developed and is currently being
refined by a number of mathematicians, including
Szpiro, Soule, Gillet, Bismut, Vojta, Faltings, Bost, Zhang,
Burnol, and Kim.

"Arithmetic Algebraic Geometry" is a synthesis of
arithmetic and of classical algebraic geometry: it captures
Minkowski's "geometry of numbers", the classical theory
of algebraic surfaces, the analytic theory of Hermitian
line bundles on Riemann surfaces, and the arithmetic
theory of algebraic curves and their rational points, all in
one unified setting. It provides a geometric format for
some of the standard constructions in transcendental
number theory. It has deep ties with Nevanlinna Theory.

In Arakelov Theory, the Fermat curve F (and, in general,
any algebraic curve of genus?: 2) is given a suitable
structure so as to allow it to be treated as somewhat
analogous to a "surface S of general type" in the classical
theory of algebraic surfaces, an algebraic point P on F
being analogous to a curve C on a classical surface S. The
"size" or "height" of algebraic points P is analogous, in the
classical picture, to the degree of the canonical bundle of S
restricted to the curve C. In 1986, Parshin, pursuing this
analogy, made some conjectures in Arakelov Theory
which are analogous to known classical inequalities in the
theory of algebraic surfaces-- these conjectures of
Parshin (still unproven) having strong consequences
concerning the size of algebraic points. In this vein, the
ABC-Conjecture becomes a piece of a larger philosophy
due primarily to Vojta. The interested reader can consult
the appendix to [L] written by Vojta, for an account of
these conjectures, and for the surprising proof that if one
applies Parshin's conjecture to the collection of algebraic
points produced by the rule (18) above, one would get the
ABC-conjecture as a consequence.

What lies ahead for ABC? For Arithmetic Algebraic
Geometry? The drama of Mathematics being such that we

53



-

t

usually have no idea what shape our subject will take in
the future, this is probably the right point to end an
article for a volume entitled New Directions in
Mathematics... except for two appendices.

Part III (Appendices)

Appendix A: A hint about how ("ABC" implies
"Mordell") .

We will write down a neat inequality, due to Elkies [E],
which is the key to the connection between" ABC" and
"Mordell". The shape of the underlying 9.rgument which
makes use of this inequality is in the tradition of the
well-known constructions that connect the occurrence of
integral points on certain algebraic curves to rational
approximations of certain algebraic numbers.

Let us first give more concise "packaging" to ABC-
solutions: Given an ABC-solution (A,B,C), let r=r(A,B,C) be
the rational number -A/B. So r is a rational number
distinct from o and 1 (for if not, then A,B, or C would
have to be 0, which is not allowed) and, since A,B,C have
no common divisors, we can reconstruct A,B, and C from
r. Therefore, the set of ABC-solutions is in one: one
correspondence with the set (Q-{0,1}, where ~ is the field
of rational numbers, or (what amounts to the same
thing) with the set of rational points different from 0,1, or
00 on the projective line, i.e., the set pl(~) - {0,1,00}. Our

"power" function P on ABC-solutions may now be viewed
as a curious function,

P : pl(~) - {0,1,00} -7 positive reals.

r = r(A,B,C) ~ 10g(max(IAI,IBI,ICI))/10g(rad(A.B.C)).

Let, now, X be a smooth (projective) algebraic curve
defined over~. We use the usual notation X(K) for its set
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of K-rational points for K any field containing (Q; e.g., if (Q
is an algebraic closure of (Q, then X(Q) is the set of
algebraic points on X.

Let f be any nonconstant rational function from X to p1,

f: X -+ p1,

and let d = degree(f) and m = the number of points of
X(Q) whose image under f is 0,1, or 00 (the actual
number, without taking account of multiplicities).

If <X is any rational point of X which does not map to 0,1,
or 00 under f, then r = f«x) corresponds to an ABC-
solution (A,B,C), and therefore the power function P is
defined on f«x). Using a fairly direct analysis, Elkies
shows the following inequality:

(19) P(f«x)) > dim + E«x)

where E«x) is an "error term" bounded as follows:

(20) E«x) ~ C/(log(max(IAI,IBI,ICI)))1/2

where C is an effective constant dependent upon X, and f,
but not upon <X.

Suppose we are given an infinitude of rational points <X in
X((Q). Ignoring those (at most m of them) that map to 0,1,
or 00, we may suppose that the inequality (19) holds for :1

P(f«x)), and since there are only a finite number of ABC-
solutions (or triples of integers, for that matter) with
bounded log(max(IAI,IBI,ICI), by (18) we have

(21) lim P(f«x)) ?; dim l

the limit taken over any infinite sequence of <x's in X((Q). I

At this point, let us assume that our curve X is of genus
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?; 2, and make use of a construction of Belyi [Be]. Belyi
provides us with a (nonconstant) rational function f,
defined over~, on any smooth projective curve X, of
genus?; 2 defined over (Q, which has the property that
the number of distinct points of X("Q) which map to the
set {O,1,oo} is strictly less than the degree of f. That is,

(22) dIm> 1.

The existence of such an f is, in fact, equivalent to the
statement that the smooth projective curve X is of genus
?;2.

Now if X is of genus?; 2, and supposing that we are
supplied with a nonconstant rational function f satisying
(22) as guaranteed by Belyi's Theorem, we get (under the
assumption of an infinity of elements in X((Q)) a straight
violation of the ABC-Conjecture from (21). Therefore ABC
implies "Mordell", and also, an appropriately effective
version of ABC will translate to an effective version of
"Mordell". If, as Elkies does in [E], we apply this same
construction to an elliptic curve X having an infinity of
rational points, and a function f on X with m = d (in this
case we cannot find an f with m < d), we would get an
infinity of ABC-solutions (£) such that lim.inf. of the
power function P(£) is?; 1 (and therefore, assuming ABC,
the limit of P(£) is equal to 1).

Appendix B. Consecutive perfect powers

Shorey and Tijdeman's book [S-T] gives an excellent discussion of
the proof of Tijdeman's Theorem. Very briefly, one reduces the
question immediately to the case of an equation of the form

(23) XP-yq= £

where £ = :t 1, p, q distinct prime numbers, p > q, both reasonably
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large, and we assume that (x,y) is a solution with x and y
relatively prime, and (of necessity) x < y. The first step in the proof,
as in the classical proofs of Fermat's Last Theorem for regular prime
exponents, is a "descent" of sorts. That is, write

(24) xp = yq + E and (25) yq = xP - E.

Now, the right-hand-side of (24) factors as (Y+E) times the integer

(yq + E)/(y + E)

which one easily sees is either relatively prime to (Y+E) or, at worst,
shares a common divisor of q with (Y+E). It follows that y+E is a
perfect p-th power, except for the possible factor of. this common
divisor; in equations, if 8 denotes an integer which is either 0 or 1,
then

(26) y + E = q8sp.

The same remarks for equation (25) give us

(27) x - E = p~rq

for ~ an integer which is either 0 or 1. As Cameron Stewart pointed
out to me, this step, yielding equations (26) and (27), is the major
obstruction to extending Tijdeman's proof to more general equations

(e.g., to equations of the form Xm- yn =k for k = 2,3,...). Also critical

for the estimates to take place in the Theorem is the fact (easily
worked out from these equations) that rand s are roughly of the
same size. Putting these equations together, we have integers (r ,s)
sa tisfying:

(28) (p~ rq + E)P - (q8sp - E)q = E.

The rest of the proof consists of making two applications of Baker's
lower bound (e.g., Theorem B.1 of [8-T]) the first to show
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(29) q« (log p)4,

and the second to show

(30) p« (log q)7;

where 00 A« B" means that A is less than an effectively

computable constant times B.

The bounds (29), (30) together give us that we need only consider an
(effectively computable) finite number of equations of the form (23);
for each one of these equations, Baker's method provides an
effectively computable upper bound to the number of its solutions,
therby giving Tijdeman's Theorem.

To get the first bound (29), one (assumes, first, that q is quite large

with respect to p, and then) estimates the quantity r 1=p~rq Iq8sp

as being close to 1, in the sense that the absolute value of its

logarithm is ~ 12p3r-q. But this quantity r1 is not equal to 1, and

a direct application of Baker's theorem to its logarithm, written as

the linear form

log r1 = p~.log p - q8.10g q + pq .log(r Is)

in log p, log q, and log (rls), gives that its absolute value is greater

than r-clog(p)4. Comparing these two estimates on Ilog r 11 gives

(29). A similar argument with the quantity r2 = (p~rq+E)P/(q8s~)q I

applying Baker's theorem to log r 2, viewed as the linear form

log r2 = -q8.10g q + p. log ((p~ rq+E) /sq )

in log q and log ((p~rq+E)/sq ) gives (30); see [8-T].
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