Questions about
Powers of Numbers

Barry Mazur

umber theory has quite a few famous
ancient and modern problems that can
be asked in not too technical, almost
premathematical, language:

e questions about prime numbers and their
“placement” among all numbers (e.g., the Gold-
bach conjecture, the twin prime conjecture, the
“Schinzel hypothesis” predicting when there
are an infinite number of prime number val-
ues of a given polynomial, etc.);

and also

= questions about the behavior of the sets of
“perfect powers” under simple arithmetic op-
erations.

It is this second type of question that we will be
discussing here as a way of introducing some basic
issues in contemporary number theory. More
specifically, we want to stay on the level of fairly
elementary mathematics, holding back from any
specific discussion of advanced topics (e.g., the
arithmetic theory of elliptic curves, and modular
forms), and to give, nevertheless, a hint of why cer-
tain constructions “coming from” the theory of el-
liptic curves (see the “quadratic and sextic trans-
fers” below) find a very natural place in the study
of problems involving integers. We will also see why
the Mordell Equation, y? + x3 = k, plays a pivotal
role. At the same time, I hope this article serves
as an elementary introduction to the still unre-
solved “ABC-Conjecture” due to Masser and
Oesterlé. It also gives a pretext for asking related
questions (called “(a, b, c)-questions” below), many
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of which have not yet been treated in the literature
and for which, perhaps, the “circle method” may
provide at least partial answers.!

Problems about Perfect Powers

A perfect power is the n-th power of an integer for
some natural number n > 1. These have attracted
attention from the earliest times, beginning with
perfect squares, which arise in the Pythagorean
Theorem, applied to right-angle triangles all three
of whose sides are integral multiples of a given unit.
Of course, perfect squares arise in other ways as
well; consider Fibonacci’s reflection in the trans-
lation [F] of his treatise on perfect squares, Liber
Quadratorum, in 1225:

I thought about the origin of all square
numbers and discovered that they arise
out of the increasing sequence of odd
numbers; for the unity is a square,
namely 1; to this unity is added 3, mak-
ing the second square, namely 4, with
root 2; if the sum is added to the third
odd number, namely 5,....

There is no end of famous problems regarding
the most simple-seeming questions of placement
of perfect powers, and sums of them, on the num-
ber line:
e Fermat. For n > 2 the sum of two n-th pow-
ers is never an n-th power.

L The circle method, a powerful Fourier analytic technique
designed for applications to number theory, will occa-
sionally be alluded to in this article but will not be discussed
in detail; the reader need not know about the circle method
to understand the article.
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« Catalan, 1844 (cf. [R], [B2]). The numbers 8 and
9 are the only consecutive perfect powers.
 Waring Problems. This is a host of problems
having to do with the number of ways an in-
teger can be written as a sum of k “perfect”
n-th powers. One does not have to go far to
come to an unsolved problem among these
Waring problems. For example, it is guessed
that any integer not congruent to 4 or 5 mod-
ulo 9 can be expressed as a sum of three cubes,
but to tackle such a question seems to be out
of range of any of the available techniques.
Also, there is the problem (at first glance, it is
somewhat curious to single this problem out!) of
finding for any fixed integer k all integral solutions
(x,y) to the Mordell Equation

Y2 - X3 =k,

where x and y are relatively prime integers.

What do we know about these problems?

As for Fermat’s Last Theorem, we now have a
proof of it, thanks to the celebrated efforts of
Wiles (1995).

In the direction of the Catalan Problem, we
know, thanks to a 1976 paper by Tijdeman [T], who
used Baker’s theory of lower bounds for nonvan-
ishing linear forms in logarithms [B1], that there
is only a finite set of pairs of consecutive perfect
powers. By work of Langevin, an upper bound for
a perfect power whose successor is also a perfect
power can be computed from Tijdeman’s proof to
be
2730
e

As for the Mordell Equation, a general theorem
of Siegel (1929) guarantees that for a given nonzero
integer k the equation has only a finite number of
integral solutions (as does any affine curve of
genus > 0 over the ring of integers). Moreover,
much explicit work has been done toward finding
concretely the solutions for given values of
k < 100,000 (cf. [G-P-Z]).

But, for the moment, let me say that this Mordell
Equation, special as it may seem, is a central player
in the Diophantine drama and in a certain sense
“stands for” the arithmetic theory of elliptic curves.
One of the objects of this article is to give hints
about why the Mordell Equation plays this central
role. The proposition in the last section of the ar-
ticle gives one relationship of the kind we have in
mind.

If one views each of the problems above as “Dio-
phantine”, i.e., as the problem of finding integral
solutions to specific algebraic equations, one is
struck by how specific indeed these equations are.
To emphasize the point, I will label all of these
problems about perfect powers as sharp Dio-
phantine problems. To nudge ourselves towards
a more flexible type of problem that still carries
much of the flavor of the ones we have reviewed,
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why not generalize somewhat the notion of “per-
fect power” and deal instead with integers pos-
sessing comparatively large perfect power divi-
sors? We will make this notion precise below and
then formulate what I want to call rounded Dio-
phantine problems. I have two reasons for doing
this.

My main reason for considering this kind of
generalization is that it is a leisurely way of get-
ting some intuition for, and appreciation of, the re-
cent ABC-conjecture due to Masser and Oesterlé.
The current view of this conjecture is that it lies
at the core of arithmetic. Nevertheless, it has the
simplicity of any one of the grand “direct” un-
learned questions about numbers.

A second reason for the generalization of “per-
fect power” comes from thinking about the circle
method, which is the key technique that is brought
to bear on Waring-type problems: this method has
the disturbing feature (disturbing, at least, to peo-
ple like me who are not expert in it) of not really
caring about the particular nature of the equation
it is solving. It would seem that all one has to “tell”
the circle method in order to get it going is the de-
gree of an equation, the number of variables in-
volved, and the codimension of its singularity
locus. Perhaps, then, the circle method, applied to
problems about perfect powers, is also effective in
estimating the number of solutions to some prob-
lems having to do with integers possessing com-
paratively large perfect power divisors. We will
formulate below such problems, which have the
further advantage that they can be stated in rela-
tively nontechnical language.?

Powered Numbers

Motivated by the use of the term radical in ring the-
ory, one defines the radical of a nonzero integer
N, denoted rad(N), as the product of all the prime
divisors of N; so rad(—1) =1, rad(24) = 6, etc.

Definition. For N an integer other than 0 and +1,
the power function of N, denoted P(N), is the
real-valued function

_ log|N|
PN) = lograd(N)

It is reasonable to simply convene P(+1) := oo
so that the power function is defined for all
nonzero integers. We have that P(N) > 1 and, for
N > 1,P(N) =1 if and only if N is “squarefree”, i.e.,
if and only if N is not divisible by any perfect
square > 1. If N is a perfect n-th power, we have
that P(N) = n.

2Nevertheless, they are reminiscent of the constellation of
more precise (but quite technical) conjectures predicting
the asymptotics of rational points of bounded height in
varieties with ample anticanonical bundle—work initi-
ated by Manin and continued by Batyrev, Franke, Peyre,
Strauch, and Tschinkel.
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For a > 1 areal number, by an a-powered num-
ber let us mean a nonzero integer N with P(N) > a.
We will want to study the properties of the set of
a-powered numbers—the “placement” of these
sets among all integers, the behavior of these sets
under simple arithmetic operations.

As away of introduction, let us first answer the
question of “how many” integers N there are with
P(N) =1.More exactly, for a positive real number
X let Sq.free(X) denote the number of squarefree
integers N in the interval 1 < N < X. How fast
does Sqg.free(X) tend to co with X?

The answer, which involves a small piece of
“sieve theory” (legacy of Eratosthenes), has been
known for quite a while, and I will review the basic
idea behind it. The first step in setting up our
sieve is to arrange “in a line” all the integers N in
therange 1 < N < X. There are roughly X of them.
Next, so as not to get confused by too many num-
bers appearing in our calculation, let us rename the
prime numbers as pi, p2,... in increasing order,
so that, in fact, p; is the prime number 2; p» is, in
fact, the prime number 3, etc. We will be sifting our
set of natural numbers

1,2,...,N,... <X

using a series of sieves with ever finer meshes; we
will see what these are in a moment. The set of in-
tegers that remain after this process will be pre-
cisely the squarefree integers. The first sieve allows
only those integers that are not divisible by the
square of the first prime number, i.e., by p%, to re-
main in our set. That is, we cross off all integers
N in our set that are divisible by p% (=4). This is
a good thing to do, for surely none of these N’s
are squarefree. After having crossed these off, we

are left with roughly X - X/p{ = (1- ) - X

remaining integers in our set. Taking this once-
sifted set of roughly (1 - #) - X integers, we now
want to subject it to our Slecond sieve, where we
cross off those integers N that are divisible by the
square of the second prime number, i.e., divisible
by p§(= 9), for, again, surely none of these N’s are
squarefree. Let us estimate how many integers
now remain. One finds that at this stage, after
numbers divisible by pf and p% are crossed off

the set of all integers from 1 to X, roughly

1 1 1 . .
(1 P TR + (mpz)g) - X integers remain. The

point here is that if we had not included the third

term, + W' we would have (erroneously) counted

twice “as removed” all the integers N that are di-
visible by (p1p2)2—the first time because N is
divisible by p% and a second time because N
is divisible by p%. Here we have quietly used the
fact that if an integer is divisible by p% and by p%,
then it is also divisible by (p1p2)?.
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Since
(A U
pi ps (pip2)
(-3l )
pP1 125}

we can see the pattern that is emerging. Sifting over
all primes p that could possibly contribute to a
square factor in an integer of size < X, i.e., over
all prime numbers p such that p? < X, we get
Sq.free(X) = n (1 — %) - X + Error term,
P=23,.. p

where the product is over all the prime numbers
p with p? < X. Of course, this is meaningless un-
less we can control the error term. To give the an-
swer in a clean form, we observe that the product
[Tp=23... (1 - %) - X does not change much in
comparison with X if we simply extend the prod-
uct over all prime numbers p rather than stopping
when p? < X. A standard calculation gives that
the “Error term” is bounded in absolute value by
a constant times /X, as X tends to . This gives
us

Safreex)= [] (1 - %) . X +0(W/X).

p prime

Now it is time to recall two wonderful equali-
ties of Euler:

Mmoo 1 1
o2 1l i-1)

p prime p?

These give us, as a final answer,

Sq.free(X) = % - X +0(VX)
=0.6079 - X + O(VX).

Speaking loosely, the chances are six in ten that a
given integer is squarefree.

Question. If one works with the ring of polynomials
in one variable t over a field rather than with the
ring of integers, it is a very rapid calculation to de-
termine, for a given polynomial f(t), whether or not
f is squarefree, the necessary and sufficient con-
dition being that the greatest common divisor of
f and its derivative be 1. Is there an algorithm to
determine whether a rational integer is square-
free that is asymptotically any quicker than just
factoring the integer?

For real numbers a > 1 and X let S(a; X) denote
the number of integers 1 < N < X such that
P(N) = a, i.e., the number of a-powered numbers
less than X. As Andrew Granville explained to me,
an easy argument gives that for fixed a > 1 and
for any € > 0 we have
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XHa=e < S(a; X) < x/ae

as X tends to . We will abbreviate this type of es-
timate as S(a; X) = X1/, emphasizing that S(a; X)
grows very roughly like X1/4. This is a good thing
for us insofar as X1/4 is also the rate of growth of
“perfect a-th powers”; i.e., by generalizing from
“perfect a-th powers” to “a-powered numbers” we
have not, at least, changed the rough asymptotics.

Linear Relations among Powered Numbers

We are now ready to raise a rounded Diophantine
question that has at least a remote connection to
each of the problems in our illustrative list. Fix real
numbers a, b, c = 1, and another real number X.
Consider the set S(a, b, c; X) of triples (A, B, C) of
relatively prime nonzero integers whose sum is
zero, such that |A|, |B|,|C| < X and such that

P(A)=a, PB)=b, PC)=c;

i.e., A is a-powered, B is b-powered, and C is c-pow-
ered.

(a, b, c)-Question. How fast can we expect the car-
dinality of the set S(a, b, c; X) to grow, if at all, for
fixed a,b,c > 1 and X tending to oo ?

Here is the typical “secret calculation” that is
popular to make to come up with an “expected rate
of growth” in this circumstance. But it is unlikely
that one could come up with a proofthat these as-
ymptotics are correct just by pursuing the argu-
ment that we will give!

Ignoring for the moment the requirement that
A, B, C be relatively prime and that they sum to 0
and remembering that the A’s are chosen from a
set of roughly X!/9 elements, the B’s from a set of
roughly X1/? elements, and similarly for the C’s,
we have roughly X1/a+1/b+1/c triples (A, B, C) with
the requisite lower bounds on their power func-
tions. The requirement that A, B, C be relatively
prime should not change the asymptotics, but the
requirement that they sum to O should. The ex-
pression |A + B + C| is bounded by a constant (3,
in fact) times X, and so the “chances” that the sum
be zero (provided that no other mitigating large ef-
fect has been ignored—an important proviso) is in-
versely proportional to X; call it X~1. Feeding all
this information into our calculation, we might
then be led to “expect”3 that the cardinality of
S(a, b, c; X) is comparable to x1/a+1/b+l/c-1

How do we interpret this “expectation”? Let us
refer tod:=1/a+1/b+1/c—1 as the basic ex-
ponent of our problem. Clearly our expectations
are quite different depending upon the two cases:

d<0 and d=0.

3The heuristic calculation we have outlined to get “expected
asymptotics” can be altered to fit a number of other re-
lated problems, but of course it never provides any logi-
cal justification for the answers it yields!
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Aside. This dichotomy is the straight analogue for
these rounded Diophantine questions of the dis-
tinction in the theory of Riemann surfaces of the
genus of the surface being > 2 or < 1: in Rie-
mannian or Kahlerian geometry it is the analogue
of the distinction between hyperbolic and nonhy-
perbolic or between spaces that are negatively
curved and those that are not; in algebraic geom-
etry itis the distinction between having the canon-
ical line bundle ample or not.

Let us consider each of the cases separately.

When the Basic Exponent d Is Nonnegative

Question (d > 0). If the basic exponent d is posi-
tive, i.e., if

l/a+1/b+1/c > 1,

does the cardinality of S(a, b, ¢; X) tend to c as X
grows; and, more specifically, if d > 0, does it
admit the asymptotics

card S(a, b, c; X) ~ X4 ?

The answer to the question is not known in full
generality. To answer this question affirmatively
would break naturally into two tasks: showing that
X4+ ig an upper bound (for sufficiently large X)
and showing that X4-€ is a lower bound. The prob-
lem of showing X4~€ to be a lower bound is in the
spirit of recent work proving that certain polyno-
mial equations have many solutions. We will give
examples of such theorems later. But here is some
vocabulary to talk about the lower-bound aspect
of this conjecture. Let S(a, b, c¢) be the set of all so-
lutions, i.e., the union of all S(a, b, c; X). Suppose
we are given a subset A(a, b, c) C S(a, b, c) of so-
lutions, with d =1/a+1/b+1/c — 1 positive. Let
us say that A(a, b, c) is an ample set of solutions
if it has at least the expected asymptotics, that is,
if
|A] < X,
|B| < X,
ICl <X

(A,B,C) € Ala,b,c) > X9-€

for any positive € and for sufficiently large X.

Now there are two facts worth mentioning be-
fore we get any further into the discussion. The first
is the curious fact that for some of the cases where
a,b, c are all integers with d > 0 (we will enumer-
ate all these cases below) there exists a single Dio-
phantine equation involving perfect powers whose
solutions already provide ample sets of solutions
to the rounded (a, b, c)-question. The second is
that there is a curious malleability in (a, b, c)-ques-
tions that enables one to convert ample sets of so-
lutions for certain (a, b, c)-questions to ample sets
for (a’,b’, c’)-questions. We will examine these is-
sues below.
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When a, b, c Are Natural Numbersand d > 0

Here we get lots of (a, b, ¢’)-solutions when d > 0
for ¢’ arbitrarily close to ¢ from single Diophan-
tine equations, for example:

xd+yb = Ez¢

for E a specific nonzero integer.

The full list of natural-number triples (a, b, c)
witha < b < cand d = 0 is given in the following
table.

1/6
1/12
1/30

W RN NN NN -
w W w w w N ¥
w D Ul B W ¥ XN

It is interesting to try to find ample sets of solu-
tions, as defined above (coming from a single Dio-
phantine equation), for the entries with d > 0. For
example, one might consider the second line of the
table and try to prove that there are ample sets of
(2,2, c)-solutions coming from solutions to the
Diophantine equation

X2+y2=ZC

alone. In the particular case where c =2, the
Pythagorean triples alone form an ample set.

For a discussion of Diophantine equations rel-
evant to the above table, one can consult [D-G]. (In
view of the proposition at the end of this article,
the next-to-last entry of the above table is partic-
ularly worth thinking about!)

The (a, b, c)-Question for Small Values of a, b, ¢
Trevor Wooley informs me that by means of the
circle method he can give an affirmative answer to
the (a, b, c)-question when a, b,c < 6/5.

The (a, b, c)-Question for Negative d

Here we return to our original “secret calculation”
to ponder what the calculation might be saying
when it predicts asymptotics of X4=¢ for d < 0. The
easy guess is that for a triple (a, b, c) with d <0
we might hope for

Conjecture ((a,b,c)-Conjecture). If 1/a+1/b
+1/c < 1, then there are, in total, only finitely
many triples A, B, C of relatively prime nonzero
integers with sum zero such that
P(A)>a, PB)=b, P(C)=c.
But let us be more ambitious.

Conjecture (Uniform Conjecture for Negative d).
Let dog be any negative real number. There are, in
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total, only finitely many triples A, B, C of relatively
prime nonzero integers with sum zero such that

P(A)>a, PB)=b, PEC)=c,

with
d=1/a+1/b+1/c—1=<dy<0.

Aside. Both the (a, b, c)-Conjecture and the Uni-
form Conjecture for Negative d have the current
status of having been verified in no case. The Uni-
form Conjecture implies, of course, the (a, b, c)-
Conjecture for any triple (a, b, c) with negative d.
The Uniform Conjecture is, in turn, implied by
Masser-Oesterlé’s “official” ABC-Conjecture.4 But
even before we get to the “official” conjecture,
here are some implications of the conjectures we
have already formulated.

(1) The (a, b, c)-Conjecture witha = 2, b = 3, and
¢ = 1000 implies that there are only finitely many
solutions to the Catalan problem. In fact, one can
take c to be any real number > 6. To see this im-
plication, first note that given a solution to the Cata-
lan problem, i.e., if we are given two consecutive
perfect powers v =u™ + 1 arranged so that
2 < m < n,we have that n > 3. Thenrecall that the
power function of the integers +1 is oo > 1000, so
that a solution to the Catalan Problem gives a
triple of integers with sum zero having greatest
common divisor equal to 1 for which the power
function takes values greater than or equal to 2,
3, and 1000 respectively.>

(2) By similar reasoning, the (a, b, c)-Conjecture
for any particular choice of (a, b, c) withd < 0 im-
plies that there are only finitely many exponents
n for which the Fermat Equation

X"+ yn=zn

has nontrivial solutions. Here “nontrivial” has the
usual meaning: XYZ #0.6

(3) Fix a triple of nonzero integers (U,V,W)
and consider the generalized Fermat Equation of
exponent n > 0 given by

UX"+VY"+WZ"=0.

The (a, b, c)-Conjecture for any particular choice
of (a, b, c) with d < 0 implies that there are only fi-
nitely many exponents n for which the generalized

4In my opinion, the Uniform Conjecture provides some im-
mediate motivation for the ABC-Conjecture.

SOf course, as we have already remarked, we know the
conclusion of statement (1) without using any conjecture,
thanks to the work of Tijdeman [T], but the point of the
exercise is simply to emphasize the strength of the asser-
tions made by (a,b,c)-type conjectures.

6Again, of course, we now know the conclusion of state-
ment (2) with greater precision, thanks to the work of Wiles.
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Fermat Equation of exponent n has solutions with
X, Y, Z all of absolute value greater than 1.7

The “Official” ABC-Conjecture

By an ABC-solution let us mean a triple of nonzero
relatively prime integers (A, B,C) whose sum is
zero. Define the power P(A, B, C) of an ABC-solu-
tion (A, B, C) to be

logmax(|Al, |Bl, |C])
lograd(ABC)

P(A,B,C) =

Conjecture (Masser-Oesterlé’s ABC-Conjecture).
For any real number n > 1 there are only finitely
many ABC-solutions with power P(A,B,C) = n.

Masser-Oesterlé’s ABC-Conjecture implies the
Uniform Conjecture for Negative d. Conversely,
the Uniform Conjecture for Negative d implies a
weaker version of Masser-Oesterlé’s ABC-Conjec-
ture; namely, it implies that there is a maximum
power of any ABC-solution.

Elkies and Kanapka have tabulated all ABC-
solutions with log max(|A|, |B|, |C|) < 232 and with
power P(A,B,C) > 1.2. The four “top” ABC-solu-
tions in this range are:

2+310.109+(-23°) =0,

discovered by Reyssat and having power
1.629912...;

112 4325673 4 (—22123) =0,

discovered by de Weger and having power
1.625991...;

283+ 511132 4+ (-2838173) = 0,

discovered by Browkin-Brzezinski and having
power 1.580756...; and

1+2-37+(=5%7)=0,

discovered by de Weger and having power
1.567887....

Rounded Waring-Type Problems

There is the following natural extension of the
above problem to m integers, where m > 3. Con-
sider the following set D in R™, a kind of sconce:

aj =1,
Jj=1,...,m,
D =-(ai,az,...,am) € R™ |and
_ym_ 1 _
d—ZJ':l a; 1
>0
Let S(ay,a»,...,am;X) denote the number of m-

tuples of integers Ay, Az,..., A, that are pairwise
relatively prime, have sum 0, are all of absolute

7Here we do not know the conclusion of statement (3) for
general U,V , W satisfying the stated conditions.
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value < X, and are such that A; is an aj-powered
number for j=1,...,m. Might one expect, using
the analogous rough calculation as above, that for
(ai,az,...,am) € D (or at least in some large sub-
region of D), we have

S(ay, az,...,amX) ~ X9?

The Transferability of (a, b, c)-Questions

View, for a moment, the letters A, B, and C as in-
dependent variables.

Definition. By a transfer T of degree n let us mean
a transformation

(A,B,C) — (A1,B1,C1)

such that

1. Ay, Bi,C; are nontrivial homogeneous forms,
each of degree n, with rational coefficients in
the variables A, B, C;

2. the sum A1 + By + C1 is in the ideal generated
by A + B + C in the polynomial ring Q[A, B, C]);
and

3. the homogeneous forms A1, B1, C1 have inte-
gral values on integral ABC-solutions.

By the defect of a transfer T let us mean the small-
est positive integer G (or oo if there is none) such
that, for any triple of relatively prime integers
(&, B, y) constituting an ABC-solution, the great-
est common divisor of the triple of integers

Ao, B,y), Bi(x,B,y), Cile,B,y)
divides G.

Examples. The quadratic transfer. Consider the
transformation

T2:(A,B,C) — (A1,B1,C1)

with Ar=(A-CP,
By = —B?,
C1 =4AC.

The defect of this transfer is G = 4. Since, up to
sign, both A7 and B; are perfect squares, we have
that for every (a, b, a)-powered solution (A, B, C)
satisfying the congruence conditions above, the
triple (A1/y,B1/y,C1/y) will be an ABC-solution
in S(2 -¢€,2b —€,a — €), where y is the greatest
common divisor of (A1, By, C1) and where € is small
when Cj is large. Here the annoying € comes from
the fact that the defectis > 1.

The sextic transfer. Consider the transformation

T6:(A,B,C) — (A1,B1,(C1)
with .
A1 = {AB+BC+AC}3,
(A=B)B - C)A-())?
B = { 2 } :
3(ABC)}2
5 .

C1=—3{
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Here A1, By, C1 are homogeneous symmetric sextic
forms in A, B, C, and one checks that the equality
A+ B+ C =0implies Ay + By + C1 = 0. The fact that
there are 2’s in the denominators of the terms above
need not bother us, for the numerators will always
be even, provided A, B, C are integers summing to
zero. If also A, B, C have greatest common divisor
equalto1,then A1, By, C; will have greatest common
divisor at most 27;i.e., the defect of the sextic trans-
fer is G = 27. This is a minor annoyance, but not a
serious one.8 The most evident fact about this trans-
formation, (A, B, C) — (A1, By, C1),isthat A isaper-
fect cube and B a perfect square, so that the triple
(A1, B1, (1) is a solution to the Mordell Equation

Y2+ X3 =k,
with y = U=BB-CA-0 " x _ AR+ BC + AC, and

k= —3{%30}2. Except for the annoying power
of 3, C7 has quite a nice formula: if, for example,
A, B, and C are a-powered, then C; is (2a — )-pow-
ered, where ¢ is small when C; is large. For any
real number a < 3, this transformation will induce
a mapping

Sa,a,a;X) — S(3-26,2-6,2a- 8« - X),

where k is a small constant and 6 can be made as
small as one likes by restricting attention to ABC-
solutions of large enough absolute values. The
reason for the presence of § is the “annoying”
factor of 3 that we mentioned. This mapping may
have some minor failures: By could be zero or
the mapping may fail to be one-one. But at least
it behaves, in terms of the rough asymptotics
that we are considering, just as well as if it
were always defined and one-one. Putd =3/a -1
andd1=d/6=(%+%+%—l , so that d is the
expected exponent for S(a,a,a;X) and d; for
S(3,2,2a; X).

The existence of the quadratic and sextic trans-
fers has implications for the questions under dis-
cussion, both for negative and positive exponent
d, so it might pay to review a surprising feature of
both of these transfers, T : (A,B,C) — (A’,B’,C’),
that make them particularly helpful to use in
(a, b, c)-problems. Let us define a transfer T of de-
gree n to be “(a, b, c¢)-good” if there are real num-
bers a’,b’, ¢’ such that

1 1 1 1 1 1
—+-+—-—=-1=n-1—-+—-+—--1

a b c¢ a
and T transfers (a,b,c)-solutions (A,B,C) to
(@ — €, b —¢, c’ — e€)-solutions, where € > 0 may
be taken to be arbitrarily small if we restrict to

8Readers familiar with the theory of elliptic curves may
recognize this transformation, (A,B,C) — (A1,B1,C1), as
giving the values of the modular invariants C4, Ce, and
A of the Frey elliptic curve corresponding to (A,B,C).

FEBRUARY 2000

(a,b, c)-solutions (A, B, C) with max{|A|, |B|, |C|}
sufficiently large.

One easily checks that the quadratic transfer is
“(a, b, a)-good” for any choice of a and b, while the
previous discussion tells us that the sextic trans-
fer is “(a, a, a)-good” for any choice of a.

Implications for Positive Exponent d

When d is positive, an (a, b, ¢)-good transfer T en-
ables one to pass from ample sets of (a,b,c)-
solutions to ample, or nearly ample, sets of
(a’,b’,c")-solutions. The following fact illustrates
matters.

Fact.Ifd=3/a -1 andd1=%+%+%—l,andif

for a given value of a with 1<a<3,
|S(a,a, a; X)| > X9€ for all positive €, then

IS3 - 6,2 —68,2a—6;X)| > xd—¢

for any 6 > 0 and for all sufficiently large X.

Proof. This is a straightforward verification, the
arithmetic behind it being just that
3 1 1 1
=2 _1=6-(2+=+— -1
d a 0 (3 2% 4 )’
i.e., the sextic transfer is (a, a, a)-good.

Implications for Negative Exponent d

We have already discussed the classical Diophan-
tine problem posed by the generalized Fermat
Equation

UX"+VY"+WZ" =0

for a fixed triple of nonzero integers (U,V,W).
Consider the corresponding rounded Diophantine
problem given by the (a, b, c)-Conjecture with
a=b=candwithd = 3/a — 1 negative. We can re-
state it as follows.

Conjecture (Rounded Fermat-Type Conjecture).
Leta > 3. There are only finitely many triples of rel-
atively prime a-powered integers (A, B, C) such that
A+B+C=0.

The sextic transfer allows us to connect the
Rounded Fermat-Type Conjecture with the Mordell
Equation. To prepare for this, let us formulate the
following conjecture.

Conjecture (Conjecture about Sums of Squares
and Cubes). For any « > 6 and positive integer G,
there are only finitely many «x-powered numbers
k for which the Mordell Equation

y2+x3 =k
has a solution in nonzero integers (x, y) with great-
est common divisor < G.

It is easy to see that the ABC-Conjecture of
Masser-Oesterlé implies the Conjecture about Sums
of Squares and Cubes.
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Proposition. The Conjecture about Sums of Squares
and Cubes implies the Rounded Fermat-Type Con-
Jecture.

The essential mechanism behind the proof of
this proposition (and a number of its variants) has
long been known (by Oesterlé, Szpiro, Hindry; see
[O]). It has been phrased in the literature using the
vocabulary of the arithmetic of elliptic curves. In
the proof below we shall use the Conjecture about
Sums of Squares and Cubes with G = 27.

Proof of the Proposition. Let us assume that the
Rounded Fermat-Type Conjecture is false, so that
for some real number a > 3 we have infinitely
many triples of relatively prime a-powered integers
(A,B,C) such that A+ B+C=0. We have that
|ABC| tends to infinity as we run through our se-
quence of triples (A, B, C). Apply the sextic trans-
fer to each of the triples in this sequence to ob-
tain again infinitely many triples (A1, B1, C1), where
A1 is a perfect cube and B; is a perfect square. Writ-
ing A1 = x3, B1 = y2, and C; = —k, we obtain an in-
finite set of solutions to the Mordell Equation with
greatest common divisor dividing 27. It remains
to estimate the powers of the integers
k =3(3ABC/2)? that occur. Since |[ABC| tends to
infinity, P(k) will approach
P(ABC?)=2 - P(ABC) = 2a in the limit. Since
a > 3, we may take e = a + 3 and obtain a contra-
diction to the Conjecture about Sums of Squares
and Cubes, thereby proving the proposition.

The proposition suggests that we focus on find-
ing pairs of relatively prime integers (u, v) such that
P(u? +v3) is large. Apart from the Catalan solution
(u,v) = (3, —2), a few known ones where u? + v3 is
plus-or-minus a perfect power are 132 +73 =29,
712 +(=17)3 = 27, and the following other larger
ones recently found by Beukers and Zagier:

21063928% + (-76271)% = 177,
2213459° + 14143 = 657,
153122832 + 92623 = 1137,
30042907° +(—96222)3 = 438,
1549034° + (—~15613)3 = —338,

Noam Elkies communicated to me the following so-
lution of the Mordell Equation:

230532 — 5053 =3 - 2%7;

here P(3 - 227) =11.05817.... Can one find rela-
tively prime u and v such that P(u? +v3) = 12? It
would be good to gain enough insight to be able
to offer a plausible prediction of a specific upper
bound B for P of integers of the form u? +v3,
other than the Catalan solution, with u and v rel-

atively prime.
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