
Rational families of 17-torsion points of elliptic curves

over number fields

Maarten Derickx, Sheldon Kamienny, and Barry Mazur

March 14, 2015

Fumiyuki Momose is very much missed. He was a generous warm human being, with
immense energy and generosity of spirit, and an extremely gifted mathematician. One
of his abiding interests was rational torsion on elliptic curves over number fields, as in
[32], [24]. This article is written in his memory.
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1 Introduction

Rational torsion points on elliptic curves present challenges that one can come back to again and
again since the topic simply continues to be a source of extremely interesting diophantine issues.
If E is an elliptic curve over a number field k, its Mordell–Weil group, E(k), is finitely generated.
Moreover, any finite subgroup of E(k) is of the form Z/NZ × Z/mZ where N,m are positive
integers with m dividing N . Ogg’s Conjecture, proved thirty-five years ago, might be phrased
as saying that there is no rational torsion on elliptic curves over Q except as directly forced by
the underlying algebraic geometry. More specifically: any example of an elliptic curve over Q
with its Mordell–Weil group containing a subgroup isomorphic to Z/NZ × Z/mZ is a member of
a rationally parametrized family, in the sense that the modular curve X(N,m) classifying such
examples is isomorphic to P1.

In a paper published over two decades ago, written jointly with M. Kenku, Momose inaugurated
an analogous investigation of certain types of subgroups of torsion points on elliptic curves rational
over quadratic fields [24]. Kenku and Momose proved the following theorem:

Theorem 1. (Kenku, Momose) For integers N that factor as a product of powers of prime numbers
< 17, and for integers m dividing N the following statements are equivalent.

1. There exists a quadratic field k and an elliptic curve E defined over k such that E(k) contains
a subgroup isomorphic to Z/NZ× Z/mZ.

2. The modular curve that classifies such torsion, X(N,m), is rational or hyperelliptic.

Following on this work, one of the authors of the present paper established general classification
results for torsion in the Mordell–Weil group of elliptic curves over quadratic fields ([21], [23]; for
a slightly different problem regarding torsion in elliptic curves and quadratic fields, see [26]).
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Nowadays, one considers even more general questions from theoretical and computational perspec-
tives.

• We might fix N and m and ask for a structural and numerical understanding of the collection
of elliptic curves defined over fields of some fixed degree d over Q—or over a fixed base number
field k—for which its Mordell–Weil group over those fields contains a subgroup isomorphic to
Z/NZ× Z/mZ.

• Or more specifically, we might ask to classify rationally parametrized families of elliptic curves
defined over number fields Kt of degree d over k and which possess N -torsion points rational
over Kt

1. In particular, we might study functions of degree d on X1(N) defined over Q.

This paper will focus on the latter type of problem2 as related to a diophantine analysis of appro-
priate Brill–Noether varieties attached to the modular curves X1(N).

A substantial amount of computation has been done. Intriguing examples have been discovered
([7], [14], [36], [15], [16]). In work in progress the authors of this paper will be treating a number of
explicit examples related to modular Brill–Noether curves. The present expository article, focusing
on 17-torsion—dedicated to the memory of Fumiyuki Momose—is a report on a piece of that work
in progress.

We are thankful to Ken Ribet for very helpful comments regarding an early draft of this paper.

2 Rational N-torsion over fields of degree d

Fix two positive integers (N, d) and darken the point (N, d) in the plane if there exists a non-CM
elliptic curve3 defined over a number field of degree ≤ d having an N -torsion point rational over
that field; call such points (N, d) simply: data points. One would like to know anything that
stands out in this data set: its structure and its statistics.

There are two standard ways to look for uniformity phenomena:

• Focusing, for example, on prime torsion, fix d and let P (d) be the largest prime p such that
(p, d) is in the data set.

Specific exact values of P (d) are known only for small d. By [28] P (1) = 7. Kamienny proved
that P (2) = 13; Parent, building on work of Kamienny, showed P (3) = 13. Recently, Maarten

1The word “rational,” then, is used in two senses: the parameter t ranges through the k-rational points of a
rational curve (over k).

2 and even more specifically when the base field is Q and N = 17
3 We’re thankful to Andrew Sutherland who suggested that one might keep separate the study of examples of CM

elliptic curves possessing rational points of order N over fields of low degree d, since they represent a very orderly
collection of known examples where for each such CM-elliptic curve, d admits a linear upper bound in N—and this
would simply muddle the essential data set.
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Derickx, Sheldon Kamienny, William Stein, and Michael Stoll [8] showed that P (4) = 17,
P (5) = 19 and P (6) = 37.

For general values of d we have the (trivially obtained) lower bound

d1/2 � P (d)

and the deep upper bounds given by Merel’s Theorem tellling us that P (d) < ∞. More
specifically, Merel [31] (and Oesterlé, Parent [34]) proved, for general d that

P (d) ≤ (1 + 3d/2)2,

so we have:
d1/2 � P (d)� 3d.

We don’t even seem yet able to come up with much more precise conjectures for the qualitative
behavior and/or the volatility of P (d). Is P (d) bounded by a constant times dA for any
A > 1/2? Or for some finite value of A? Or does it grow more rapidly than that?

Consider the ‘minimalist’ attitude that any interesting diophantine phenomenon occurs no
more often than would be predicted by general structural constraints. This viewpoint seems
to lead to firmly believed conjectures, for example, for statistics regarding ranks of Mordell–
Weil groups. This general viewpoint might also suggest the guess that P (d) � dA for any
A > 1/2. But we don’t seem to have enough experience yet to give any firm conjectures4.

Here below is a graph computed by the first author of the present article jointly with Mark van
Hoeij . It is a log-log plot where the axes are (x, y) = (log p, log d), the data points recording
examples of ‘lowest’ degree d for the corresponding p occurs as prime torsion in a non-CM
elliptic curve (over a field of degree d). The quotation-marks around the word ‘lowest’ is
meant to signal that the blue data points and the blue extrapolated line corresponds to the
lowest d for which there is a rational family of such examples of prime torsion p over fields
of degree d. The red data points correspond to the sporadic points. The green curve is the
proved (exponential) lower bound relating d to p. Visibly, much more computation needs to
be done if we are to be able to surmise any general behavior with some feeling that there is
evidence behind our guess. We should note that this graph is the result of a computation,
and is only proved to be complete for p ≤ 37.

4 Some conjectures in the literature give upper bounds for primes of torsion in elliptic curves of degree d, but
since these published conjectures also include CM elliptic curves which our “P (d)” doesn’t register, those conjectures
necessarily must allow for an essentially linear lower bound. Specifically, see [6] and [27].
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• Fix N and let D(N) be the smallest integer d such that (N, d) is in the data set.

In contrast to our knowledge of the asymptotics of P (d), with D(N) we are in slightly better
shape. There is a clear cut-off for D(N): namely, D(N) ≤ γQ(N) where γQ(N) is the Q-gonality5

of the modular curve X1(N). The basic Q-parametrization X1(N)→ X(1) ' P1 already gives us
γQ(N) ≤ Φ(N)Ψ(N)/2—where Φ(N) is the Euler phi function and

Ψ(N) = Ψ(
∏

peii ) =
∏

(pi + 1)pei−1
i .

In particular, we have γQ(N) � N2. For a discussion of the concept of gonality, see [1], [7] and
Section 7 below.

If d = γQ(N), or more generally if there exists an f : X1(N) → P1 of degree d, then not only
are there elliptic curves over fields of degree d with rational N -torsion over those fields, but there

5 See The Appendix, Section 7 below.

5



are infinitely many of them parametrized by a subset of P1(Q). See Abramovich’s basic paper [1]
where he proves the inequality

21

200
(g − 1) ≤ γC(N) ≤ (g + 3)/2,

where γC(N) is the C-gonality, and g ≈ N2 is the genus, of X1(N). For more elementary reasons

γC(N) ≤ γQ(N) ≤ g + 1.

For the Q-gonalities of the modular curves X1(N) with N ≤ 40 see [7]. In particular

N = p 13 17 19 23 29 31 37
γQ(N) 2 4 5 7 11 12 18

We will be considering data points (N, d) only for degrees d ≤ γC(N). We will call an elliptic curve
defined over a field of degree d possessing an N -torsion point rational over that field sporadic if
d = γC(N) and it is not a member of a Q-rationally parametrized rational family of such elliptic
curves defined over fields of degree d possessing N -torsion points rational over those fields. We call
it very sporadic if d < γC(N).

Very sporadic data points exist. Here is a list of some known examples:

d N γC(N) Reference

3 21 4 [33]
9, 10 29 11 [14]

9, 10, 11 31 12 [7]

A result of Pete L. Clark, Brian Cook and James Stankewicz (which builds on the work of Dan
Abramovich) [6] implies that for a prime p ≥ 5 there are at most finitely many points on X1(p)
with degree < 7

3200(p2 − 1). Related to this, see [12].

3 Brill–Noether Varieties

Let X be a smooth projective curve over a characteristic zero field k. Let k̄/k be an algebraic
closure, and X̄ := X ×Spec(k) Spec(k̄). For integers d ≥ 1, r ≥ 0, let

W r
d (X) ⊂ Picd(X)

denote the closed subvariety of Picd(X) (defined over k) classifying divisor classes of effective
divisors D of degree d that are members of linear systems (of effective divisors of degree d) of
dimension ≥ r, or equivalently such that h0(X,O(D)) ≥ r + 1; see [4], [5], [9].

The collection of Brill–Noether varieties {W r
d (X) | d ≥ 0, r ≥ 0} connect in the following ways:
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1. For r ≥ 1 we have natural inclusions W r
d (X) ↪→W r−1

d (X) ⊂ Picd(X).

2. Let α be a k-rational point of X, and let

fα : Picd(X)→ Picd−1(X)

be the morphism that sends the class of a divisor D to the class of D − [α]. For r ≥ 1 we
have a commutative diagram of k-rational maps,

W r
d (X)

⊂ //

fα
��

Picd(X)

fα
��

W r−1
d−1

⊂ // Picd−1(X).

Statement (2) above follows from considering the global sections of the exact sequence

0→ OX(D − α)→ OX(D)→ Oα → 0.

3. We have the natural surjection

ηd : Symd(X) �W 0
d (X) ⊂ Picd(X). (1)

which is an isomorphism when restricted to

Symd,#(X) := η−1
d

(
W 0
d (X)−W 1

d (X)
)
⊂ Symd(X),

i.e., to the inverse image of the complement of W 1
d (X):

Symd,#(X)
⊂ //

∼=
��

Symd(X)

��
W 0
d (X)−W 1

d (X)
⊂ //W 0

d (X)
⊂ // Picd(X).

In paticular Symd(X) is a desingularization of W 0
d (X). In certain cases of interest (e.g., as

in our analysis of X = X1(17) below) Symd(X) is a small resolution of the singularities of
W 0
d (X).

By Theorem (1.1) in Chapter V of [4] if the genus g > 1 of X is in the range

d− 1 ≤ g ≤ 2(d− 1),

the Brill–Noether variety W 1
d (X) is of dimension greater than or equal to 2(d − 1) − g. So, if it

satisfies these conditions it can be a curve only if 2d ≤ g + 3 and a surface only if 2d ≤ g + 4.

We will be specifically interested in the cases r = 0, 1:

W 1
d (X) ⊂W 0

d (X) ⊂ Picd(X),
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noting that a choice of k-rational point α of X will give us a (k-rational) closed immersion

W 1
d (X)

fα
↪→ W 0

d−1(X) ⊂ Picd−1(X).

Note: If X is a curve over k a number field, for any d, one has—applying a more general theorem
of Faltings [11]—that the set of k-rational points of W 1

d (X) decomposes into a finite union,

W 1
d (X)(k) =

⊔
j

Aj , (2)

where, for each j, the Zariski closure of Aj is a translate of an abelian subvariety of Pic0(X). For
a study of upper bounds for the dimension of such abelian subvarieties that may arise for given
values of d, gonality, and genus, see [2].

3.1 The canonical involution v

An important case for us is when d = g − 1 ≥ 0 where g is the genus of X. In this situation we
have the natural involution

Picg−1(X)
v∼= Picg−1(X)

defined by sending any linear equivalence class of divisors [D] of degree g−1 to the linear equivalence
class of [K −D] where K is the canonical divisor of X. The involution v is ‘functorially defined’
and is defined over any field k over which the curve itself is defined, and commutes with any
automorphism of X.

Consider the fixed locus Th(X) ⊂ Picg−1(X) of the involution v. The 22g geometric points of
Th(X) are classically referred to as theta-characteristics of X; they correspond to ‘square roots’ of
the canonical line bundle. The finite subscheme Th(X) ⊂ Picg−1(X) is a torsor over Pic0(X)[2].
Note that the Riemann-Roch Theorem guarantees that

h0(X,O(D)) = h0(X,O(K −D)), (3)

so v induces an involution of W r
g−1(X) for any r ≥ 0. Consider the theta divisor

Θ := W 0
d (X) = W 0

g−1(X) ⊂ Picg−1(X),

noting that choosing any theta-characteristic ∂ ∈ Th(X) ⊂ Picg−1(X) gives the commutative
diagram

Θ
v //

−∂
��

Θ

−∂
��

⊂ // Picg−1(X)

−∂
��

Θ− ∂ −1 // Θ− ∂ ⊂ // Pic0(X),

the theta divisors, {Θ− ∂ ⊂ Pic0(X)} for the theta-characteristics ∂ ranging through Th(X)(k̄)
being—each of them—symmetric under multiplication by −1 in Pic0(X) and the set of them being
a torsor under the group Pic0(X)[2]((k̄)).

Note, as well, that W 1
g−1(X) ⊂ Θ is stable under the involution v as can be seen from (3).
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3.2 Basic Brill–Noether varieties

For X a curve defined over k, denote by γ = γk̄, its k̄-gonality. Call WX := W 1
γ (X) the Basic

Brill–Noether variety attached to X. Given a k-rational point α of X, we obtain an immersion

WX = W 1
γ (X)

fα
↪→ W 0

γ−1(X) = Symγ−1(X) ⊂ Picγ−1(X).

3.3 The Basic Brill–Noether variety attached to X1(N)

Consider the basic Brill–Noether variety WX1(N) := W (X1(N)). Thanks to the functorial nature
of Brill–Noether varieties, the automorphism group of X1(N) viewed as finite group scheme over Q
acts naturally on WX1(N). Thus we have the group ∆ of diamond operators acting Q-rationally
on WX1(N), and the w-operators acting Q(µN )+-rationally. When N is a prime number all these
operators fit into a dihedral group that act Q(µN )+-rationally on WX1(N).

3.4 Basic Brill–Noether curves attached to algebraic curves of genus 5 and
gonality 4

Assume from now on that X is a curve defined over Q of genus 5 and has Q-gonality equal to
C-gonality γ = 4.6

In this case the Basic Brill–Noether variety, W := WX, is a curve defined over Q (possibly
reducible). We’ll refer to it as the the Basic Brill–Noether curve attached to X. An application
of Clifford’s Theorem7 guarantees that h0(X,OX(D)) ≤ 2 for any effective divisor D of degree 4,
so W 2

4 (X) is empty. That is, the complete linear series that corresponds to any point in the Basic
Brill–Noether curve attached to X is parametrized by a pencil.

By Lemma 1 of Section 7, a k-rational point of WX gives us a k-linear parametrization class of
maps X → P1 of degree γk̄(X), and conversely. So we have

Proposition 1. Let Aut(X) denote the group of k-rational automorphisms of X. There is a one-
to-one correspondence between k-similarity classes8 of maps X → P1 (defined over k) of degree
γk̄(X) and Aut(X)-orbits of k-rational points of the Basic Brill–Noether curve WX:

k-similarity classes ↔ WX(k)/Aut(X).

If d < γk(X) then W 1
d (X) is empty (Lemma 1 below). In the special case where γk̄(X) = g − 1 we

are in the situation of section 3.1 above, and we have the canonical involution v acting on W (X)
compatibly with its action on Picg−1(X) giving a commutative diagram:

6 The example we treat, X1(17), is of this form, as are X1(21), and X1(24).
7 See page 204 of [4] for a discussion that covers the case of interest to us: genus =5, gonality and degree =4.
8 k-similarity is the natural notion of equivalence for k-parametrizations: two parametrizations are k-similar if

one can be brought to the other by composition with appropriate k-isomorphisms of domain and range.
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W (X)
v //

��

W (X)

��
Picg−1(X)

v // Picg−1(X)

which commutes with any automorphism of X.

Consider a canonical embedding (defined over Q)

β : X
∼=−→Γ ⊂ P4.

Since the genus of X is g = 5, by a theorem of Max Noether [4] the curve Γ lies on 3 = (g−2)(g−3)/2
independent quadrics in P4.

For ease of nomenclature in this discussion (i.e., for the rest of this section) let us strictly reserve the
symbols P4 to mean the projective 4-dimensional space which is the ambient space of the canonical
embedding above, and P2 to mean the projective space generated by the linear space of those three
independent quadrics just mentioned.

In the case of our interest we will be fixing bases,

ω0, ω1, ω2, ω3, ω4

of the 5 dimensional space S := H0(X,Ω1(X)) such that the projectivization of S∨ is the P4 above.
In terms of this basis we will be stipulating three independent quadratic relations

e0 := e0(ω0, . . . , ω4)

e1 := e1(ω0, . . . , ω4)

e2 := e2(ω0, . . . , ω4),

generating the kernel of the natural cup product map

(∗) Sym2(S)
κ−→H0(X, (Ω1(X)⊗2),

and therefore representing a basis of the projective space P2 above.

Note that S = H0(X,Ω1(X)) and H0(X, (Ω1(X)⊗2) have a natural action of Aut(X) with respect
to which the morphism (∗) is equivariant.

In the cases of our particular interest S will be the space of cuspforms of weight two and the cup
product above will be given by multiplication to the space of cuspforms of weight four.

3.5 Loci of singular quadrics

For the results we are now about to quote, see page 207 of [4].
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• Let V ⊂ P2 be the sub-locus of singular quadrics9 Q ⊂ P4.

• Let W → V be the double cover determined by choosing one of the two systems of planes in
these singular quadrics.

• Let
G proj→ W

be the P1-bundle whose points consist of pairs (Π,Q) where Q ∈ V and Π ⊂ Q is a two-plane.

• Let v :W →W be the involution defining the covering W → V.

• Consider the commutative diagram

G α //

proj

��

Sym4(X)

proj

��
W α // Pic4(X)

where the morphism α : G → Sym4(X) is characterized on points by the rule that sends
(Π,Q) of G to the divisor (of degree four),

α(Π,Q) := Π ∩ Γ ⊂ Γ,

the latter being construed, via the isomorphism β : X −→ Γ of subsection 3.4, as an element

of Sym4(X). The image of α restricted to a fiber of G proj→ W runs through a complete linear
system of divisors, and therefore determines a well-defined point of Pic4(X), providing a
characterization (on points) of the morphism α :W → Pic4(X).

If ever we need to specify the curve X to which these objects are related, we indicate this in the
standard manner; e.g., we write W =WX, V = VX, G = GX etc.

3.6 The canonical representation of the Basic Brill–Noether curve

Let X be a curve satisfying our running hypotheses in this section, and put W := WX, the Basic
Brill–Noether curve attached to X. Recall the involution v : W → W constructed in subsection
3.2. Let W =WX be as in subsection 3.5 above, recalling the involution v :W →W constructed
there.

The discussion of pp. 207-210 of of [4] gives the following identification.

9 Recall that the ‘generic’ singular quadric threefold Q ⊂ P4 has a unique singular point ε and is the cone ‘at ε’
of a (nonsingular) quadric surface given by the intersection of Q with any hyperplane not passing through ε. That
quadric surface has two rulings by lines (possibly not rational over the base field k). Taking the cone through ε of each
of these rulings gives us two 2-dimensional rulings, now, of the quadric threefold Q (again possibly not rational over
the base field k). That is, Q is swept out by two pencils of planes (i.e., 2-dimensional projective linear subspaces).
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Proposition 2. The image of the canonical morphism α : W → Pic4(X) is contained in W ⊂
Pic4(X) and induces an isomorphism, α :W

∼=−→ W commuting with the involutions v on domain
and image. That is, letting V := W/{v}, we have the commutative diagram:

W
∼= //

��

W

��
V

∼= // V

3.7 Elliptic components and new components

Let X be a (“bi-elliptic”) curve defined over Q satisfying our running hypotheses in this section
and let W := WX be—as usual—the Basic Brill–Noether curve attached to X. By an elliptic
involution of X let us mean an involution ι : X → X such that the quotient of X under its action,

projι : X → X/{∼ ι} = E ,

is a curve of genus one. The involution ι induces an action on W and on the constructions of
Subsections 3.5 and 3.6. In particular ι commutes with the double cover mapping:

W
ι //

v
��

W

v
��

V
ι // V

For any such quotient, and any point u ∈ E let ju : E → E denote the canonical (nontrivial)
involution fixing the point u, and let

projju : E → E/{∼ ju} =: P1
u

denote the projection to the (genus zero) quotient (which we denote P1
u) under the action of ju.

Denote by tu the running parameter in the projective line P1
u. For any pair (u, tu) with u ∈ E and

tu ∈ P1
u let Dι(u, tu) ⊂ Symm4(X) be the effective divisor of degree four on X given by

Dι(u, tu) := proj−1
ι ◦ proj−1

ju
(tu).

For each u ∈ E , then, we have a linear system of divisors of degree four on X parametrized by the
variable tu, giving us a point on W , which we denote wι(u).

The morphism
wι : E −→W

factors through the quotient E ′ of E under the natural action of the 2-torsion subgroup of its
jacobian, i.e., Pic0

(
E)[2]. The induced morphism

w′ι : E ′ ↪→W
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is a closed immersion, and its image is a (reduced) irreducible component of W defined over the
field k. We denote this component Wι ⊂W and refer to Wι ≈ E ′ as the k-elliptic component of
W associated to ι. It is fixed by the action of the involution ι on W .

By a new component of W we will mean an irreducible component that is not elliptic in the
above sense.

4 Fine Siegel units and fine Siegel points

Let X := X1(N). A Fine Siegel unit on X is a rational function f on X defined over Q̄ whose
divisor of zeroes and poles consist only of Q-rational cusps. Let C(N) denote the set of Q-rational
cusps; so a fine Siegel unit is a unit in the ring of regular functions on X1(N)−C(N) (over Q̄). Since
the action of Gal(Q̄/Q) preserves the divisor of zeroes-and-poles of a fine Siegel unit, an application
of Hilbert’s Theorem 90 guarantees that we may normalize our fine Siegel units (by multiplication
by an appropriate nonzero scalar) so that they are defined over Q. Such a normalized Siegel unit
f is well-defined by its divisor of zeroes-and-poles up to a factor in Q∗ and gives us a Q-rational
parametrization f : X → P1. Let Z(N) denote the group of fine Siegel units modulo Q∗. By
the Manin–Drinfeld Theorem, Z(N) is a free abelian group of rank |C(N)| − 1. The action of the
group ∆ of diamond operators on X1(N) induces an action on Z(N) and there is a natural metric
on Z(N) given by the geometric degree of the function f : X1(N) → P1. This metric satisfies a
triangle inequality:

deg(f · g) ≤ deg(f) + deg(g),

and it scales well, i.e.,
deg(fn) = |n| · deg(f)

for n ∈ Z, and is preserved by the action of the diamond operators. See [37] for an explicit
description of the fine Siegel units in terms of their q-expansions and their expression in relation
to specific modular forms.

The following two conditions on X := X1(N) hold for only a (finite) number of values of N but
they do hold for the case N = 17.

1. X = X1(N) contains no very sporadic points (in the terminology of Section 2) except for the
set of Q-rational cusps C(N).

2. γC(X) < |C(N)|.

When N = 17 these conditions are indeed met10.

Proposition 3. X1(17) has no non-cuspidal very sporadic points.

10 As has been verified by the first author of this article and Mark van Hoeij, these two conditions are satisfied for
X1(N) for N = 32, and for N < 28 but not N = 21.
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Proof: There are no non-cuspidal points on X1(17) of degree 1 by [28]; none of degree 2 by [19];
and none of degree 3 by [34].

As we shall see (Proposition 6) X1(17) contains no non-cuspidal sporadic points, as well.

Under hypothesis (1) above, every function φ : X1(N)→ P1 of degree γC(X) and defined over Q
has the property that any of its fibers above points in P1(Q) either consists entirely of Q-rational
cusps, or contains no Q-rational cusps at all. This is because each fiber is of degree γC(X) and
if it contains a Q-rational cusp, the points of the fiber are all of degree strictly less than γC(X).
That is, these points are all very sporadic, so by (1) they are all rational cusps. If a fiber of such
a φ consists entirely of rational cusps, call it a rational-cuspidal-fiber of φ. By (2), φ has at
least two rational-cuspidal-fibers. Choosing two rational-cuspidal-fibers of such a φ : X → P1 and
composing φ with an appropriate linear fractional transformation of P1 that sends the image of
one of those fibers to 0 and the other to ∞ we see that any such φ is in the Q-similarity class of a
Q-parametrization of X1(N) by a fine Siegel unit f (of geometric degree equal to the gonality of
X).

It is convenient to denote such a fine Siegel unit f—up to composition by appropriate Q-automorphisms
b : P1 → P1—by listing its rational-cuspidal-fibers giving the divisors with support on cusps that
constitutes each of those fibers.

Each divisor with support on the cusps is encoded by |C(N)| integers, where the i-th integer is the
multiplicity of the i-th cusp. We display this data for a given f as a matrix, with exactly |C(N)|
columns, and as many rows as there are rational-cuspidal-fibers for f . We call it the rational-
cuspidal-fiber matrix for the Q-linear parametrization class of f .

We also organize these cuspidal-fiber matrices in ∆-orbits. Any such ∆-orbit determines a Q-
similarity class of Q-parametrizations of X1(N) of geometric degree equal to the gonality of X.

Under both hypotheses above, any such f has at least two rational-cuspidal-fibers ( |C(N)| > γC(X)
implies that there are at least two fibers containing Q-rational cusps). We can compose f with an
appropriate b : P1 → P1 sending one rational-cuspidal-fiber to 0 and another to ∞, so that b · f is
a fine Siegel unit.

Consequently

Proposition 4. Under the hypotheses (1) and (2) above

1. Any Q-parametrization of X = X1(N) of geometric degree γC(X) is represented by at least
one fine Siegel unit in Z = Z(N) of degree γC(X).

2. There are only finitely many classes of Q-parametrizations of X1(N) of degree γC(X).

Definition 1. By a fine Siegel point on the Basic Brill–Noether variety WX1(N) let us mean a
Q-rational point on WX1(N) represented by a linear system parametrized by a fine Siegel unit.
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Corollary 2. Under the hypotheses (1) and (2) above, the Basic Brill–Noether variety WX1(N)
has only finitely many Q-rational points. These are all fine Siegel points and are effectively obtain-
able.11.

The first statement in Corollary 2 follows from Proposition 4 simply by considering the number of
pairs of possible cuspidal-fibers. Effectivity follows because there are effective methods to compute
Riemann-Roch spaces of divisors on curves (cf. [13]). The computations of cuspidal-fiber matrices
can be done for some small values of N (including N = 17) by a combination of modular symbol
computations implemented by Sage ([3, p. 57]) and brute force computations.

When N = 17 we shall see that all Q-rational points of WX1(N) are fine Siegel points. It would be
interesting to understand, for more general values of N what portion of WX1(N)(Q) comes from
Siegel (or fine) Siegel points.

A computation of Derickx and van Hoeij [7] guarantees that for all N ≤ 40 there is at least one
modular unit of degree equal to the Q-gonality of X1(N). It follows that if, for these values of
N , the Q-gonality were equal to the C-gonality of X1(N), the corresponding Basic Brill–Noether
variety WX1(N) would contain at least one Siegel point.

5 Digression: 13-torsion

The case of X = X1(13) is simple, but still instructive, so it may be a good introduction to our
discussion of X1(17). For a study of the arithmetic of X1(13) and its jacobian, see [30]. Since X1(13)
is of genus two, it is hyperelliptic; γQ(X) = 2. Let σ : X → X denote the hyperelliptic involution.
We thank Andrew Sutherland who communicated to us the following hyperelliptic equation12 for
X1(13):

y2 = x6 + 4x5 + 6x4 + 2x3 + x2 + 2x+ 1 := f(x).

So, in these coordinates, σ(x, y) = (x,−y). The polynomial f(x) is irreducible over the cyclotomic
field Q(µ13) obtained by adjoining all 13-th roots of unity to Q. This guarantees that J1(13) :=
Pic0X1(13) has no nontrivial Q(µ13)-rational 2-torsion, and hence no Q-rational 2-torsion. Let
C ⊂ X1(13) denote the set of six Q-rational cusps. The hyperelliptic involution σ : X1(13)→ X1(13)
preserves the set C, and acts without fixed points on it (the latter statement following immediately
from the irreducibility of f(x) over Q). Let

C = {u, σu} t {v, σv} t {w, σw}

be the orbit decomposition of C under the action of σ.

We have the natural projection,

η2 : Sym2(X) −→ Pic2(X), (4)

11The same proof gives a similar finiteness and effectivity result for the set of Q-rational points of the Basic Brill–
Noether variety WX of any curve X defined over Q that has the property that all its very sporadic points are Q-
rational and |X(Q)| is strictly greater than γQ(X).

12 Such an equation had also been computed by J. Blass and was shown to be irreducible over Q; see the reference
[1] in [30].
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with the basic Brill–Noether variety W = W (X) ⊂ Pic2(X) equal to a single point—call it 0 ∈
Pic2(X). It can be taken to be the image of any of the three Q-rational points

(u, σu), (v, σv), (w, σw) ∈ Sym2(X).

This allows us to make the natural identification, rational over Q, Pic0(X) ∼= Pic2(X), sending 0 to
0, and to view Pic2(X) in a canonical way as an abelian surface over Q. By [30] the Mordell–Weil
group of Pic2(X) is of order 19.

The morphism η2 is an isomorphism outside Pic2(X)−{0} and identifies Sym2(X) as the blow-up
of Pic2(X) at the point 0. Let

G ⊂ Sym2(X)

denote this exceptional divisor. We may view, then, G := η−1
2 (0) as the locus {(x, σx) | x ∈ X},

or more properly as the quotient X/σ of X under the action of the involution σ. In terms of the
parameters (x, y) above, we may say that G is parametrized by the variable x.

We also interpret this as saying that there is a unique one-parameter family of elliptic curves
over quadratic number fields containing (correspondingly rational) 13-torsion, this family being
rationally parameterized by G.

We focus, now, on the isomorphism over Q:

η2 : Sym2,#(X) = Sym2(X)− G
∼=−→ Pic2(X)− {0}. (5)

Theorem 3. The morphism η2 induces a one-one correspondence between these two finite sets of
cardinality 18:

• Sym2(C)− {(u, σu), (v, σv), (w, σw)}

• The set of Q-rational points of Pic2(X)− {0}.

Proof: From the above discussion, it follows that η2 is an injection of the set Sym2(C)−{(u, σu), (v, σv), (w, σw)}
into Pic2(X)− {0}. The theorem follows by computing the cardinality of the two sets in question;
i.e., (

6

2

)
+ 6− 3 = 19− 1.

Corollary 4. , Every sporadic point for X1(13)/Q is cuspidal. Elliptic curves defined over
quadratic fields possessing (correspondingly rational) 13-torsion are parametrized by the non-cuspidal
Q-rational points of G = P1 via the natural hyperelliptic projection X1(13)→ G.

6 Families of 17-torsion

The curve X = X1(17) is of genus 5 with Q-gonality and C-gonality both equal to 4. The basic
Brill–Noether variety WX1(17) is a curve.
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The curve X1(17) has no non-cuspidal very sporadic points (Proposition 3) and no non-cuspidal
sporadic points (Proposition 6). Andrew Sutherland has computed elegant equations for these
modular curves in [36]. The equation for X1(17) is particularly crisp13:

There is a birational morphism (over Q) of X1(17) onto the bi-projective curve of bi-degree (4, 4)
in P1 ×P1 cut out by the polynomial

(∗) x4y − x3y3 − x3y + x2y4 + x2y − x2 − xy4 + xy3 − xy2 + xy + y3 − 2y2 + y = 0,

This morphism is an embedding when restricted to the complement of the cusps, Y1(17) ⊂ X1(17)
into P1 × P1. Projection to the first factor is given by the modular unit14 x := E5E6/E1E3 and
the projection to the second factor is given by the modular unit y := E6E7/E2E8. Both x and y
are functions of degree 4 and in fact there is another function of degree 4, namely:

z =
y(x2 − yx+ y − 1)

(y − 1)2x
.

An example of the type of result that we prove (based, of course, on the results already mentioned)
is the following:

Theorem 5. Any elliptic curve defined over a field of degree ≤ 4 possessing points of order 17
defined over that field can be obtained by applying a diamond operator to a point of X1(17) for
which one of the functions x, y takes on a rational value 6= 0, 1 or z takes a value 6= 0. Conversely,
setting x, y to a rational value 6= 0, 1 or z to a value 6= 0 defines an elliptic curve over a field of
degree four with a rational 17-torsion point.

Moreover, the rational parameters x, y, z give, up to Q-similarity15 all Q-rational parametrizations
of X1(17) of degree equal to its gonality (i.e., degree = 4). The Galois group of the finite extension

Q(x) ⊂ Q(X1(17))

is the full symmetric group16 S4 while the finite mappings

y, z : X1(17)→ P1

factor through the bi-elliptic representation

X1(17) −→ X1(17)/{action of 〈13〉} = X1(17)/{action of 〈3〉4}

and their Galois group is the dihedral group D4.

13 As we understand it, this equation was originally written down by Cady and Elkies; see also a closely related
description of X1(17) in [16].

14 Here we are using the notation of Yang [37], following Kubert-Lang [25].
15 Recall the definition in Proposition 1: two parametrizations are Q-similar if one can be brought to the other

by composition with appropriate Q-isomorphisms of domain and range.
16 Hilbert’s Irreducibility theorem would then guarantee infinitely many specializations x 7→ a ∈ Q∗ give a quartic

polynomial in Q[y] with full symmetric Galois group.
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The functions x, y, z of the theorem are in the equivalence classes of Q-parametrizations of type
(C), (A), (B) described in subsection 6.2 below.

The fun here is that there are, in fact, two distinct ways of getting at the diophantine problem
involved, as discussed above. They dovetail in a nice way. We can approach the problem either by
considering:

• Q-rational points on the Basic Brill–Noether modular curve WX,

or

• rational cuspidal divisors and “fine” Siegel units.

6.1 Via the Basic Brill–Noether modular curve

We have computed the Basic Brill–Noether modular curve W := WX1(17) to be a double cover of
a plane quintic (reducible) curve

(∗) V : X · (X4 − 3X2Y 2 − 3X2Z2 + Y 4 + 2Y 3Z + 3Y 2Z2 − 2Y Z3 + Z4) = 0.

The involution v of W that is the automorphism of the double cover W → V (the identity on V )
has three descriptions. First, it is given by the diamond operator involution 〈13〉 = 〈3〉4. Secondly,
it is also the involution induced on W (via the Serre duality theorem) from the transformation
of divisors of degree four D 7→ K − D where K is the canonical divisor (of degree 8) on X1(17).
The third description comes from what one might call the canonical representation of W → V as
described in some generality in Subsections 3.5 and 3.6 above.

The group, ∆, of Q-automorphisms ofX is canonically isomorphic to (Z/17Z)∗/{±1}. The operator
〈3〉 ∈ ∆ is a generator.

Let Sk := Sk(Γ1(17)) denote the Q-vector space of cuspforms of weight k on Γ1(17)). Since the
genus of X1(17) is 5 we have dimS2 = 5. The characteristic polynomial of 〈3〉 acting on S2 is
(x− 1)(x4 + 1), this means that there is a basis ω0, . . . , ω4 ∈ S2 such that with respect to this basis
we have:

〈3〉 =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 −1 0 0 0
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One such basis is given by

ω0 := q − q2 − q4 − 2q5 + 4q7 + 3q8 +O(q9) (6)

ω1 := q − q2 − q3 + q6 − q7 + q8 +O(q9) (7)

ω2 := q2 − q3 − 2q4 + q5 + q6 + q7 +O(q9) (8)

ω3 := −q2 + q3 + q4 + q5 − q6 − q7 − q8 +O(q9) (9)

ω4 := q3 − 2q4 + q6 − q7 + 3q8 +O(q9) (10)

Every nonzero element in Sym2(S2) defines a quadratic form in the ωi and and hence a quadric in
P4. Now let Y ⊆ Sym2(S2) be the kernel of the natural map:

Sym2(S2)→ S4

Then Y will be a 3-dimensional space with basis e0, e1, e2 given by

e0 := ω2
0 − ω2

1 − ω2
2 − ω2

3 − ω2
4 (11)

e1 := 2ω1ω2 + 2ω1ω3 − 2ω3ω4 (12)

e2 := 2ω2ω3 + 2ω1ω4 + 2ω2ω4 (13)

The matrix of 〈3〉 acting on Y with respect to this basis is:

〈3〉 =

 1 0 0
0 0 1
0 −1 0


Let (a0, a1, a2) be coordinates of Y with respect to the basis e0, e1, e2. Now consider the locus
V ⊂ P2 = P(Y ) corresponding to the singular quadrics in P4. This locus will be given by the
single homogenous equation of degree 5, (*) above.

Each of these singular quadrics has (generally) two rulings by planes, and each of these planes
intersect the canonically embedded curve X in an (effective, of course) divisor of degree 4. Each
ruling, then, gives a unique linear system of effective divisors of degree 4 on X. That is, we can
identify the Basic Brill–Noether curve W with the locus of rulings on these singular quadrics. The
involution v simply switches rulings on the same singular quadric.

The plane quintic V breaks up into the union of a line

V0 : X = 0

and a plane quartic

V1 : X4 − 3X2Y 2 − 3X2Z2 + Y 4 + 2Y 3Z + 3Y 2Z2 − 2Y Z3 + Z4 = 0

and W = W0 ∪W1 is a union of two irreducible components where W0 ( a double cover of V0) is
an elliptic curve of Cremona type 17a4.

The curve of genus one, W0 is directly related to the bi-elliptic representation of X1(17). It has
four rational points, two of which yield parameterizations in the Q-similarity class of the function
y and the other two yield parameterizations in the class of z.
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The more interesting component W1 is given (birationally) as a double cover of V1 given by ex-
tracting a “square root” of the function

(2Y 2Z + 2XY 2 +XZ2 −X3)/X3

on V1.

Much of the internal structure of the Basic Brill–Noether curve W is directly related to the bi-
elliptic representation of X1(17) mentioned above, so let us return to it with a bit more detail. The
diamond operators of X1(17) acting functorially on W preserve the irreducible component W1 and
we have the following curiously similar sequences of double covers:

• Consider the sequence of double covers:17

X // X/(〈3〉4) //

≈
��

X/(〈3〉2) //

≈
��

X/(〈3〉)

=

��
17a4 // 17a2 // X0(17)

We easily compute that X/(〈3〉4), X/(〈3〉2) and X/(〈3〉) are curves of genus 1, and the auto-
morphism 〈3〉 acts freely on them of order 4, 2 and 1 respectively. In particular, the action
of 〈3〉 on X/(〈3〉4) can be understood as the action of translation by a (Q-rational) point P
of order 4 in the jacobian, J := Pic0(X/(〈3〉4))). This pins things down, after consulting
Cremona’s tables, forcing (the jacobian of) X/(〈3〉4) to be 17a4 (which is the only curve
of conductor 17 that has a rational 4-torsion point, the quotient by which is isomorphic to
X0(17)) and forcing (the jacobian of) X/(〈3〉2) to then be 17a2.

It is an exercise to see, with no computation at all, that W0 can be canonically identified as
the curve of genus one given as the quotient of the curve X/(〈3〉4) by the natural action of
the 2-torsion subgroup of its jacobian. It follows then that W0 is isomorphic to 17a4, and
therefore has exactly four rational points. These four points break up into two orbits under
the action of the ’diamond operators’ ∆ contributing to two Q-similarity classes represented
by the functions “y” and “z” of our theorem.

• The curve W1 is a curve of genus 7, but is also directly related to 17a4 and neatly mimics the
sequence displayed in the previous bullet as follows. Consider the diamond operators acting
on W1 which can be computed to produce the sequence of double covers:

W1
//W1/(〈3〉4) //

=

��

W1/(〈3〉2) //

≈
��

W1/(〈3〉) //

≈
��

X0(17)

=

��
V1

// 17a4 // 17a2 // X0(17)

The curve V1 has exactly four Q-rational points: (1,±1,±1) and the eight points in W1 comprising
the inverse image of those four points are all Q-rational, and therefore give the full set of Q-rational

17 We use Cremona’s classification to refer to some of the elliptic curves that occur in these computations.
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points of W1. These eight point comprise a single ∆-orbit. Therefore they give rise to a unique
Q-similarity class of rational parametrizations of X1(17), for which the function “x” of the theorem
is a representative.

6.2 Via Fine Siegel Units

As is clear from the account already given, to compute the rational points on the Basic Brill–Noether
curve WX1(17) is not greatly difficult since each of its connected components is a perfectly specified
finite cover of an elliptic curve possessing only four rational points. Section 4 above offers an utterly
independent way of making this computation: by Proposition 3 the only very sporadic points on
X1(17) are the eight rational cusps, and therefore any Q-rational function φ of degree 4 on X1(17)
has the curious property, as discussed in section 4 that

• any of its fibers that contain even a single rational cusp must consist entirely of rational
cusps—call such a fiber a rational cuspidal fiber and

• there are at least two such rational cuspidal fibers.

It follows that by composing φ with an appropriate Q-automorphism of P1 one gets a fine Siegel
unit. It follows that the problem of computing the Q-rational points on WX1(17) is essentially
equivalent to that of computing fine Siegel units of degree four. As mentioned in Section 4, this is
a finite computation.

We will be giving the collection of all fine Siegel units f of geometric degree 4—up to composition
by appropriate Q-automorphisms b : P1 → P1. This we do by listing the divisors that describe
the cuspidal-fibers for each f and organizing these cuspidal-fiber matrices in ∆-orbits. Each such
∆-orbit describes one class of Q-parametrizations of X1(17) (of geometric degree 4); there are three
of them.

Each divisor with support on these rational cusps is encoded by 8 integers, where the i-th integer
is the multiplicity of the i-th cusp in the ordering:

{2/17, 3/17, 4/17, 5/17, 6/17, 7/17, 8/17,∞}.

We display this data for a given f as a matrix, with exactly 8 columns, and as many rows as there
are cuspidal-fibers for f . This is the cuspidal-fiber matrix of f as discussed in section 4 above.

The first two classes factor through the quotient of X1(17) under the action of the involution 〈13〉.
That is, they factor through the double cover

X1(17)
π−→ X1(17)/〈13〉.
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The quotient curve X1(17)/〈13〉 is isomorphic over Q to the elliptic curve E := 17A4 in Cremona’s
classification. The Mordell–Weil group of 17A4 (over Q), is cyclic of order four. Make one (of the
four possible) identifications—rational over Q:

X1(17)/〈13〉
ι∼= E

The determination of the cuspidal-fiber matrix for each of these two classes uses a minimum of
computation; i.e., we work essentially by ’pure thought,’ given the fact that E(Q) is cyclic of
order four. Since there are eight rational cusps on X1(17) and ι · π is of degree two, these eight
rational cusps are unramified for the mapping ι · π, and the set of them map surjectively—by a
two-to-one mapping—to E(Q). Now E itself has precisely four Q-rational involutions υa such that
E/〈υa〉 ∼= P1. These are given by the formulae x 7→ a− x for a ∈ E(Q). Note that

• |E(Q)/〈υa〉| = 3 if a is trivial or of order two, while

• |E(Q)/〈υa〉| = 2 if a is one of the two generators of E(Q).

Denote
fa : E → E/〈υa〉 ≈ P1

the double cover associated to the involution υa. Now if tb is translation by b with b a point of
order 4 and if a′ − a is in E(Q)[2] \ {0} then va = tb ◦ va′ ◦ t−1

b , implying that fa and fa′ are in the
same parameterization class. So we have (at most) two Q-rational classes of parametrizations of E
of degree two coming from the four maps fa.That these are in fact different equivalence classes can
be seen from the bullets above. For more specificity, choose an identification (“≈”) of E/〈υa〉 with
P1 so that in the first case above E(Q)/〈υa〉 is identified with the set {0, 1,∞} (any order will do)
and in the second case it is identified with {0,∞}. Fixing such an identification, but composing
with ι · π for the four possible choices of ι gives two ∆-orbits of fine Siegel units of degree four on
X1(17).

The cuspidal-fiber matrices for the two Q-parametrizations of X1(17) (of geometric degree 4) that
factor through X1(17)/〈13〉 are immediately computable from this discussion. In particular they
each consist of a single ∆-orbit of order two. We’ll call them “Q-similarity classes (A) and (B).”

• Q-similarity class of parametrizations (A):

M1 :=

 0 0 2 0 0 0 0 2
0 1 0 1 1 1 0 0
2 0 0 0 0 0 2 0



M2 :=

 1 0 1 0 0 0 1 1
0 2 0 2 0 0 0 0
0 0 0 0 2 2 0 0
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• Q-similarity class of parametrizations (B):

M3 :=

(
1 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1

)

M4 :=

(
1 1 0 1 0 0 1 0
0 0 1 0 1 1 0 1

)
Far less evident is the third (and last) class of Q-parametrization of X1(17) of degree four.
This class (“(C)”) is given (as shown in the discussion below) by a single ∆-orbit of order
eight, described by eight cuspidal-fiber matrices M5,M6, . . . ,M12 permuted by the action of
∆. These 8 matrices correspond to the 8 rational points of W1.

• Q-similarity class of parametrizations (C):

M5 :=

 1 0 0 1 0 0 0 2
0 2 0 0 0 1 1 0
0 0 3 0 1 0 0 0


M6 := 〈3〉M5 · · · M12 := 〈3〉7M5

Depending on how you decide which of the three rational cuspidal fibers will be zeroes of your
function and which poles you get different Q-linear parameterizations of X1(17) and different fine
Siegel units. For example E1E3/E5E6 has the first row of M5 as zero-divisor and the second row as
polar-divisor, while E3E4E8/E2E6E7 has the third row of M5 as zero-divisor and the second row
as polar-divisor.

We can summarize as follows. Let
Γ ⊂ X1(17)(Q̄)

denote the set of non-cuspidal algebraic points of X1(17) defined over number fields of degree four.
If γ ∈ Γ let Q(γ) denote the number field (of degree four) over which γ is defined. Say that γ is
of type (A), (B) respectively (C) if the projection of γ under one of the Q-parametrization in the
equivalence class (A), (B) respectively (C) is a Q-rational point of P1. Let Γ(A) ⊂ Γ denote the
subset of points of type (A); and similarly for Γ(B) and Γ(C).

Theorem 6. The set Γ (of non-cuspidal algebraic points of X1(17) defined over number fields of
degree four) is the disjoint union

Γ = Γ(A)

⊔
Γ(B)

⊔
Γ(C).

Proof. The above discussion gives us the full list of Q-similar classes of Q-parametrized points of
degree 4 on X1(17). The fact that W 2

4X1(17) is empty (because X1(17) has no functions of degree
3) shows that the union above is a disjoint union. It remains to show that X1(17) has no very
sporadic, or sporadic points that are not cusps. For this, see section 6.3 below.

Proposition 5. Let x, y, z be the functions from theorem 5, then the Galois groups of Q(x) ⊂
Q(X1(17)), Q(y) ⊂ Q(X1(17)) and Q(z) ⊂ Q(X1(17)) are S4, D4 and D4 respectively.
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Proof. Let Kx denote the Galois closure of Q(x) ⊂ Q(X1(17)), then by looking at matrix M5 one
sees that [Kx : Q(X1(17))] has to be divisible by 6, implying that 24 divides [Kx : Q(x)] hence the
Galois group has to be S4.

For the proof that the other two Galois groups are D4, one can use the following observation:
Suppose that M ⊂ L ⊂ K is a tower of field extensions with [L : M ] = [K : L] = 2 and
K/M is not Galois, then K/M has Galois group D4. One can then apply this observation
to Q(y) ⊂ Q(X1(17)/〈34〉) ⊂ Q(X1(17)) and Q(z) ⊂ Q(X1(17)/〈34〉) ⊂ Q(X1(17)). Now
Q(X1(17))/Q(y) and Q(X1(17))/Q(z) are not Galois follows from the fact that there is no subgroup
H ⊂ AutQ(X1(17)) = (Z/17Z)∗/±1 of order 4 such that X1(17)/H ∼= P1.

6.3 Sporadic and very sporadic points on X1(17)

The computations in the previous section show that the number of g1
4’s on X1(17) that are defined

over Q is exactly 12. This is actually proved twice, once by proving 12 = 4+8 = #W0(Q)+#W1(Q),
and once by using proposition 4 and computing that there are exactly 12 cuspidal fiber matrices
corresponding to fine Siegel units of degree 4. The main goal of this section is to prove the following
theorem:

Theorem 7. Every point on X1(17) of degree 4 over Q is in one of the 12 g1
4’s.

For the proof of this theorem we will use a slight modification of a theorem due to Michael Stoll in
[8].

Let C/Q be a curve with jacobian J , and let d ≥ 1 be an integer. Let Cd be the dth power, and
Cd := Symmd(C) the dth symmetric power of C. Let

C
{1}
d := Cd ×J W 1

d (C).

So C
{1}
d ⊂ Cd is the closed subvariety parametrizing those divisors D of degree d such that

dimH0(OC(D), C)− 1 = dim |D| ≥ 1.

Denote by s : Cd → Cd the natural quotient map.

Theorem 8. Let ` be a prime of good reduction for C. Let P0 ∈ C(Q) be chosen as base-point for
an embedding ι : C → J . This also induces morphisms Cd → Cd → J . If the following assumptions
hold:

1. ` > 2 or J(Q)[2] injects into J(F`) (for example, #J(Q) is odd).

2. J(Q) is finite.

3. The reduction map C(Q)→ C(F`) is surjective.
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4. The intersection of the image of Cd(F`) in J(F`) with the image of J(Q) under reduction
mod ` is contained in the image of Cd(F`).

Then Cd(Q) \ C{1}d (Q) is contained in the image of Cd(Q)→ Cd(Q).

Proof. Let ρX denote the reduction map X(Q)→ X(F`), where X is a smooth projective variety
over Q with good reduction at `.

From assumptions (2) and (1) we can deduce that ρJ : J(Q)→ J(F`) is injective. By the definition

of C
{1}
d it is also clear that Cd(Q) \ C{1}d (Q)→ J(Q) is injective.

Finally (3) shows that ρdC : Cd(Q)→ Cd(F`) is surjective.

Cd(Q) \ C{1}d (Q)
� _

��

t�
ι

''
Cd(Q)

s //

ρ
Cd (3)
����

Cd(Q)

ρCd
��

ι // J(Q)� _
ρJ(2,1)

��
Cd(F`)

s // Cd(F`)
ι // J(F`).

Now let P ∈ Cd(Q) \ C{1}d (Q) → J(Q). We want to show that there is a Q ∈ Cd(Q) such that
s(Q) = P . Now ρJ ◦ ι(P ) = ι ◦ ρCd(P ) ∈ J(F`) so from assumption (4) it follows that there is a
Q ∈ Cd(F`) such that ι ◦ s(Q) = ρJ ◦ ι(P ). Let Q ∈ Cd(Q) be such that ρCd(Q) = Q then

ρJ ◦ ι ◦ s(Q) = ι ◦ s(Q) = ρJ ◦ ι(P ).

The injectivity of ρJ implies ι ◦ s(Q) = ι(P ) and because P /∈ C1
d(Q) we know that s(Q) = P .

Corollary 9. If the above hypotheses hold for d = γC(C) then all sporadic points of C are Q-
rational.

Proposition 6. There are no sporadic non-cuspidal points on X1(17).

Proof. We apply Theorem 8 taking C := X = X1(17). We take ` = 3, so (1) holds. Since J1(17)(Q)
is of finite order18, condition (2) holds. The Hasse-Weil bound implies that for an elliptic curve E
over F3 we have #E(F3) ≤ 3 + 1 + 2

√
3 < 8 so this E cannot have an F3-rational point of order 17

showing that X = X1(17)(F3) consists entirely of cusps, which gives (3). Finally we verified with
a computation in magma that assumption (4) is also satisfied.

18 J1(17)(Q) is of order 584 = 8 · 73 ([18] for the prime-to-2 part; and for the 2-torsion: [34]). Regarding values of
N for which J1(N)(Q) is finite, consult Prop. 6.2.1 in [10].
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7 Appendix: Gonality

If X is a curve over k the k-gonality of X is the smallest positive integer γ = γk(X) for which
there is a degree γ mapping f : X → P1 defined over k, or–equivalently–a k-parametrization of X
of degree γ.

Lemma 1. Let k be algebraically closed. The k-gonality γ = γk(X) is the smallest integer d for
which equivalently:

• there exists a positive dimensional linear system of effective divisors of degree d on X defined
over k;

• W 1
d (X) is nonempty. (Here W r

d (X) denotes the Brill–Noether variety that classifies grd’s on
X.)

Proof. The equivalence of the two bullets above follows from the definition of W 1
d (X) and the

assumption that k is algebraically closed. Suppose given a positive dimensional linear system of
effective divisors of degree d on X defined over k, and suppose that d is the smallest degree for
which there exists such a linear system. Let D ⊂ X ×P1 be the (effective) Cartier divisor—which
we may assume to be a reduced and irreducible curve in X × P1—representing the linear system
so that if πP1 and πX denote projection to the indicated factors, then

• πP1 : D → P1 is finite flat of degree d, and

• πX ◦ π−1
P1 : t 7→ Dt gives the linear system, with t a parameter of P1.

Clearly d ≤ γ. Our task is to find a degree d mapping f : X → P1 defined over k, proving that
γ ≤ d. We will show that for t1 6= t2 ∈ P1(k) the support of Dt1 is disjoint from that of Dt2 .
Suppose it was not. Then write Dti = ∆ + ∆i for i = 1, 2, where ∆ consists of an effective divisor
of positive degree common to both Dt1 and Dt2 . We have that ∆i are effective divisors, ∆1 6= ∆2

and yet ∆1 ≡ ∆2. But this would give us a positive dimensional linear system of degree strictly
less than d, contrary to assumption.

Therefore: (*): the support of the divisors Dt are disjoint for distinct values of t.

Now view D as an algebraic system of divisors on P1 parametrized by X. That is, form the
correspondence Dx := πP1 ◦ π−1

X (x) for x ∈ X. By (*) the support of each fiber Dx consists
of a single point. Since D is reduced, the projection πX : D → X is an isomorphism. Define
f := πP1 ◦ π−1

X : X → P1.
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