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Part 1. What is it that unifies Mathematics?

Abstract. Is mathematics unified? Does it matter? And are
there useful ways to think about these questions?

Geometry as Algebra and Algebra as Geometry—these metaphors
have been with us since ancient times and and the sheer won-
der has never faded. Nowadays, mathematicians are attempting
to join great mathematical fields—each with their own distinct
brand of intuition—into grand syntheses enjoying intuitive power
not matched by any single field alone. The Langlands Program is
one on-going example of this. Model Theory offers a majestic and
unified overview of the fundamental syntax we use. Powerful com-
puting is now at the heart of many theoretical pursuits. There is a
resurgence of interest in what is called arithmetic statistics (which
I’ll describe in later lectures). And the range of our applications is
expanding. I’ll give an overview of these issues and the questions
they raise.

I imagine that if a biologist were asked for a single word that would
appropriately point to the essence and substance of biology, the word
would be Life. It stands for the essential unity of that subject despite
the enormous range of different interests of biologists—from proteins
to the behavior of elephants to medical applications.

Or for Economics, a single word that captures the unity of the en-
terprise might be Exchange.

Is there an analogous ’unifying anchor’ that signals the vast range
of mathematical sensibilities, accomplishments, emerging intuitions,
truths, and applications, of mathematics? Besides, of course, the word
mathematics itself, being given a somewhat circular definition.

One of the delights of Mathematics is that—despite the vastness of its
range, the depth of its ideas, and the multitude of temperaments that
engage in it—the subject is all bound together by an illuminating, and
often surprising, fabric of connections. One is constantly made aware
of new connections that increase our understanding, and capability for
further understanding1.

Distinct mathematical fields—each with their own distinct brand of
intuition—combine to form grand syntheses enjoying intuitive power
not matched by any single field alone: consider Combinatorial group
Theory, Algebraic Geometry, Arithmetic Algebraic Geometry, the yoke

1Just to cite one very recent example: in the solution of the sphere pack-
ing problem in dimension 8 by Maryna Viazovska, a certain mock-modular form
(such objects being the invention of Ramanujan) makes a very surprising—to me—
appearance, and plays a crucial role.
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between Algebraic Geometry and Symplectic Geometry offered by mir-
ror symmetry, etc.

There is simply an over-arching unity to our subject. In these Paul
Bernays Lectures—and contemplating the unifying spirit of Bernays-
Hilbert’s grand Grundlagen of Mathematics—I would like to examine
just a few of the many facets of this unity (despite the fact that ’many-
faceted unity’ already sounds like a contradiction in terms).

We’ll review how mathematics is unified by

• common and abiding interests ranging through centuries, through
millennia,

• common language, definitions, and modes of expression, and
common, coherent, ways of asking questions,

• common foundations, common ‘substrate,’

• analogies,

• parallel or surprisingly compatible structures,

• and, perhaps, common goal.

1. Unity through time: from Diophantus to today

Modern mathematicians can sometimes find themselves in close con-
versation with ancients. For example, take Problem VI.17 of (the third
Arabic book of) Diophantus2, this dating from the 3-rd century AD:

Find three squares which when added give a square,
and such that the first one is the side (i.e., the square-
root) of the second, and the second is the side of the
third.

If we interpret this as the quest for positive rational numbers that
have the above properties, Diophantus himself offers a solution, along
with a hint about how he arrived at it:

(
1

2
)2 + (

1

2
)4 + (

1

2
)8 =

64 + 16 + 1

256
= (

9

16
)2

2 For a discussion of the works of Diophantus and its reception, see
Norbert Schappacher’s marvelous Diophantus of Alexandria: a Text and its
History http://irma.math.unistra.fr/~schappa/NSch/Publications_files/

1998cBis_Dioph.pdf.

http://irma.math.unistra.fr/~schappa/NSch/Publications_files/1998cBis_Dioph.pdf
http://irma.math.unistra.fr/~schappa/NSch/Publications_files/1998cBis_Dioph.pdf
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The hint is—in effect—to notice that the square of a+ 1
2

is

a2 + a+ (
1

2
)2,

so if you take a to be (1
2
)4, you win. Of course, what Diophantine won

was this single solution. A more modern turn on such problems is often
to quantify goals more precisely. Eg., find all solutions (of the above
problem) in positive rational numbers.

This was achieved a mere 17 centuries later. That is: Diophantus’s
solution is the only solution3. The issue here is to find the rational
points on the curve:

(1.1) C : y2 = x6 + x2 + 1,

solvable thanks (only) to relatively recent extensions of what is known
as Chabauty’s method for dealing with such problems: the only positive
rational solution is given, as discussed above, by x = 1

2
. I’ll be returning

to this with some more discussion later.

That such cross-century conversations can be fruitful, and coherent,
attests to some stability in what one might call our shared sensibil-
ities regarding our subject, and also in—if not our precise language,
at least in—the general way we allude to the substances that interest
us. To help with this, Mathematics makes use of—I won’t call them
‘languages’ since they aren’t exactly languages, but rather—modes of
expression, or modes of operation that bring things together.

2. Modes of expression, modes of operation

Ancient organizational schemes of logic, such as the Organon of
Aristotle, have been vastly influential and have been—even if largely
implicit—the armature of the way in which we formulate assertions,
ask questions, and reach conclusions in mathematics as in everything
else. Aristotle begins his discussion in the Prior Analytics by pinning
down “deduction,” (syllogism) as being

3 See Joseph L. Wetherell’s 1998 Berkeley thesis: “Bounding the number of
rational points on certain curves of high rank, and Schappacher’s discussion of this
(page 24 of loc.cit.).
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discourse in which, certain things being stated, some-
thing other than what is stated follows of necessity
from their being so.

Defining things:

Since definition, defined by Aristotle as: an account which signifies
what it is to be for something4 plays such a vital role in mathemat-
ics, the notion deserves some thought. Mathematics seems to require
as strict lack-of-ambiguity in its assertions as possible, and therefore
maximal clarity in its definitions. But perhaps—since ambiguity is
sometimes unavoidable—it is better to say that any ambiguity should
be unambiguously labeled as such.

The nature, and role, of definition in mathematical usage has evolved
in remarkable ways. Consider the first few definitions in Book I of
Euclid’s Elements:5

(i) A point is that which has no part.
(ii) A line is breadthless length.
(iii) A straight line is a line which lies evenly with the points on

itself.

and their counterparts in Hilbert’s rewriting of Euclid’s Elements, which
begins with:

Let us consider three distinct systems of things. The
things composing the first system, we will call points
and designate them by the letters A, B, C,. . . ; those
of the second, we will call straight lines and designate
them by the letters a, b, c,. . . The points are called
the elements of linear geometry; the points and
straight lines, the elements of plane geometry. . .

4 a puzzling definition: logos ho to ti ên einai sêmainei

5 These ‘Elements’ have quite an impressive spread, starting with the proclama-
tion that a point is characterized by the property of ’having no part,’ and ending
with its last three books, deep into the geometry of solids, their volumes, and the
five Platonic solids. It is tempting to interpret this choice of ending for the Ele-
ments as something of a response to the curious interchange between Socrates and
Glaucon in Plato’s Republic (528a-d) where the issue was whether Solid Geometry
should precede Astronomy, and whether the mathematicians had messed things up.

It also would be great to know exactly how—in contrast—the Elements of Hip-
pocrates of Chios ended. (It was written over a century before Euclid’s Elements
but, unfortunately, has been lost.)
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One might call Euclid’s and Hilbert’s formulations primordial def-
initions since they spring ab ovo–i.e., from nothing. Or at least from
‘things’ not in the formalized arena of mathematics, such as Hilbert’s
“system of things”. Euclid’s definitions of point and line seem to be
whittling these concepts into their pure form from some more materi-
ally graspable context (e.g., where lines have breadth)6 while for Hilbert
the essence of point and line is their relationship one to the other.

Once one allows the bedrock of—say—Set Theory, definitions are
often ’delineations of structure,’ cut out by means of quantifiers and
predicates but making use of set theoretic, or at least priorly defined
objects. E.g. An abelian group is a group such that . . .

But if one uses Set Theory as a ‘substrate’ on which to build the
structures of mathematics, as in the classical Grundlagen der Mathe-
matik of Bernays and Hilbert, one must tangle with all the definitional
questions that are faced by Set Theory (starting with: what is a set?
and continuing with the discussion generated by the work of Frege,
Russell, etc.). For example, go back to Dedekind’s marvelous idea of
capturing the notion of infinite by discussing self-maps (this notion
popularized by people checking into Hilbert’s hotel). You might for-
mulate Dedekind’s idea this way: a set S is infinite if it admits an
injective but non-surjective self-map. . . and then confuse yourself by
trying to figure out how this compares with the property that S admits
a surjective but non-injective self-map.

And then compare all this with the discussion about the existence of
infinite sets in Bernays-Hilbert’s Grundlagen der Mathematik, Vol. I:

. . . reference to non-mathematical objects can not set-
tle the question whether an infinite manifold exists;
the question must be solved within mathematics itself.
But how should one make a start with such a solution?
At first glance it seems that something impossible is
being demanded here: to present infinitely many indi-
viduals is impossible in principle; therefore an infinite
domain of individuals as such can only be indicated
through its structure, i. e., through relations holding
among its elements. In other words: a proof must be
given that for this domain certain formal relations can
be satisfied. The existence of an infinite domain of in-
dividuals can not be represented in any other way than
through the satisfiability of certain logical formulas. . .

6 I want to thank Eva Brann for pointing this out.
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The essential roles that ‘definition’ play for us are: to delineate the
objects of interest to be studied; to encapsulate; to abbreviate; and to
focus.

As for focus consider the difference between definition and charac-
terization. These are almost synonyms, but—of course—not quite. For
example, here are two assertions about an integer N > 1.

A. N cannot be expressed as the product of two numbers, each of
which is > 1.

B. If N divides the product of two numbers, then N divides one of
them.

Now, an integer N > 1 satisfies (B) if and only if it satisfies (A);
i.e., if and only if it is a prime number:

2, 3, 5, 7, 11, 13, 17, . . .

We have three (logically equivalent) choices here. We can proclaim
(A) to be the definition of prime number and (B) a logically equivalent
‘characterization’ of primeness; we can go the other way taking (B) as
definition and (A) as characterization; or we might simply say that
these are two equivalent definitions of prime number.

Our choice determines our focus, but a change in this choice will
have no effect in any argument. Given how (A) is surely the standard
choice, it may be surprising, though, that for structural reasons, in
broader contexts, algebraists use (B) as their choice for the definition
of the concept “prime” rather than (A)—and the latter often goes
under the name irreducible.

Asking Questions:

Often, when one finds the answer to a question that one has been
struggling with, one gains the experience to ask a deeper or broader or
more fundamental question, or at least to re-ask the original question
in a better way. Aristotle tried to classify formats of question-asking
(i.e., of answer-seeking) in Book II of the Physics or Book V of the
Metaphysics.

But let’s take a more relaxed view and just consider the list:
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What?, How?, Where?, When?, By what means?, For what purpose?, etc.

We have the tendency, in Mathematics, to ask What? questions.
E.g., what are all the rational solutions to the equation 4.1 we pre-
viously discussed? These can be wonderful questions, and they serve
us well, but they mostly have an unstated further mission—to increase
our ‘understanding’ (that dangling gerund!).

In fact, all of the types of questions listed above invite some kind of
subtle ’reductionism’ to enter into their answers. . . and even after all
of them are answered, there (sometimes) remains a ’final why?’—-i.e.,
a desire for more understanding.

The mathematician Bernard Teissier once pointed out that mathe-
matical language is designed to be adequate for expressing the answers
to any of the questions in the above list. But the eureka moments—
the moments when you feel you understand—when you suddenly “see”
something—i.e., the answer to the “why” questions—are not experi-
ences that seem to be faithfully translatable by any utterances at all.
Rather, they are inner felt experiences that elude our so carefully con-
structed language. Nevertheless:

3. Mathematics unified by language

Unifying ‘Foundations’ and ‘Substrate’:

Foundational systems for any subject have as aim the establishment
of the modus operandi and a language that demarks and unifies the
subject. The Grundlagen der Mathematik of Bernays and Hilbert cer-
tainly had that as purpose and succeeded in its goal. Axiomatic sys-
tems with their (related) issues of consistency, and models, are now
standard for the setting up of any mathematical discussion: and Set
Theory—despite its complexities—has long played the role as the sub-
strate on which our various structures are built.

These side-questions arise:

• To what extent are such ‘Foundations’ meant to be explicitly
referred to in mathematical practices, and explicit architec-
tural guides for the way we construct our theories?
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• To what extent are they meant to be merely in the background,
to assure us of the coherence of the structures we develop if
and when such assurance is needed?

• To what extent must they even be known by mathematicians
as they do their work?

Unifying profiles:

What could be a more basic assertion about the profile of Language
(meaning: the language we use every day) than to proclaim that there
are nouns and there are verbs; and there are some rules about their
interaction.

Category Theory, in the same spirit, offers something of a natural
over-view of mathematical theories; or more broadly of any assortment
of mathematical objects and their natural interactions.

From the perspective of Category Theory, the profile of a mathemat-
ical theory consists of its ‘objects’ X, Y, . . . and its ‘morphisms,’ (i.e.,
the transformations that it allows between its objects) and the (associa-
tive) rule that stipulates the composition of morphisms X → Y → Z
as a morphism X → Z. With the vocabulary of Category Theory, one
can then compare different profiles. That is, we can discuss mappings
from one category to another (that respect the structures involved)
technically: functors.

An elementary, but influential, early example displaying the virtue
of the category-theoretic vocabulary of functors for describing things
succinctly is the proof that there is no continuous mapping of the disc
D to its boundary S that is the identity mapping when restricted to S.
This follows immediately from the classical construction of a functor
H from the category of topological spaces-and-continuous maps to the
category of (abelian) groups-and-homomorphisms 7 that sends D to
the trivial group and S to a nontrivial group. If there were continuous
maps S → D → S such that their composition is the identity S

=→S,
the functor H would provide a diagram in the category of groups giving
homomorphisms

nontrivial group→ trivial group→ nontrivial group

such that their composition is the identity—which is not possible.

7 E.g., H : X −− → H1(X,Z)
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Model Theory begins by offering a format for doing mathemat-
ics within an explicitly shaped ‘Language’ (in the style of ‘universal
algebra’)—where again the substrate is meant to be Set Theory—and
where its sentences interpreted in any ‘model’ have truth-values that
conform to the rules of first-order logic.

The ‘opening move’ of Model Theory is a powerful and revealing
disarticulation of semantics from substance. Here’s what I mean: if
you are not model-theoretic and want to formulate, say, graph theory,
you might—for example—just define a graph to be given by a set V of
vertices and a set E of edges, each edge attaching two distinct vertices
and you might also insist that no two vertices are attached by more
than one edge. Or you might give a more topological account of this

structure.

9/11/2018 1-s2.0-S0166218X12002831-gr1.jpg (242×230)

https://ars.els-cdn.com/content/image/1-s2.0-S0166218X12002831-gr1.jpg 1/1

In any event, your formulation begins with a set and then some
structure is imposed on it.

Model Theory, reverses this. It begins by offering an explicitly
shaped language in which first-order logic is incorporated. In the case
of our example of graph theory, the language would have a symbol E
labeled as a binary relation (symmetric, but not reflexive) in connec-
tion with which we label as true sentences: ∀x, y(xEy ↔ yEx) and
xEy =⇒ x 6= y. An ’interpretation’ of this language—or synony-
mously, a ’model’ for this would be a ‘representation’ of this language
in (some version of) Set Theory. That is, it would give us a set V en-
dowed with a binary relation E for which the labeled-as-true sentences
are. . . in fact true; i.e., such a model is simply a graph, where the set of
vertices is the set V and the set of edges is given by the binary relation
E.

It is interesting—in thinking about how tightly integrated mathe-
matics is—that there even is a clear and consensually agreed upon
format of the above sort that can embrace so many aspects of our
subject.
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4. Mathematics unified by a specific goal

That the equation

(4.1) C : y2 = x6 + x2 + 1

we discussed in Section 1 has only one solution in positive rational
numbers has been known since 1998. But that it has only finite many
rational solutions had been already known at least a decade earlier for it
follows from Faltings’ Finiteness Theorem—alias: Mordell’s Conjecture
(that the number ofK-rational points on any curve of genus> 1 defined
over a number field K is finite). Without going into any discussion of
any of the ideas 8, but just to give an overall sense of the number
of different concepts that are required for, and are united into, the
strategy of one of Faltings’ proofs of Mordell’s Conjecture, take a look
at this elegant flow-chart9 diagramming that proof:

8 We will return to this later.

9 created by Spencer Bloch for his article The Proof of the Mordell Conjecture
that appeared in THE MATHEMATICAL INTELLIGENCER 6 1984 (41-47)
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THE MATHEMATICAL INTELLIGENCER VOL. 6, NO, 2, 1984 45 The striking quality of this flowchart is that it shows how such an
intertwined filigree of different mathematical ideas come together to
achieve a common mathematical goal. Needless to say, this isn’t a
unique occurrence, and is, perhaps, more just a normal feature in the
history of mathematical progress.
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5. Mathematics unified by analogies, and
metaphoric connections

. . .man is an analogist and studies relations in all objects.

Emerson; Nature, Ch IV on ‘Language’

Much has been written about how (or if) the agents metaphor and
analogy—being continually at work on the extension and refinement of
meaning—are therefore responsible for the broad reach that language
enjoys10.

Somewhat unsettling comments have also been made about analogies—
e.g., in their role in mathematics—as in this quotation of André Weil:

Nothing is more fruitful—all mathematicians know it—
than those obscure analogies, those disturbing reflec-
tions of one theory in another; those furtive caresses,
those inexplicable discords; nothing also gives more
pleasure to the researcher. The day comes when the
illusion dissolves; the yoked theories reveal their com-
mon source before disappearing. As the Gita teaches,
one achieves knowledge and indifference at the same
time.

Indifference? There are metaphorical bridges, begun in ancient math-
ematics, that connect subjects and viewpoints cajoling us to view one
field from the perspective of another—for example: geometry as alge-
bra and algebra as geometry. René Descartes, commenting about his
merger of algebra and Euclidean geometry, said:

I would borrow the best of geometry and of algebra
and correct all the faults of the one by the other.

This synthesis that mathematicians have created by yoking geometry
(with its vibrant visual intuition) with algebra (with its more verbal,
symbolic, combinatorial intuition) is, perhaps one of the most vener-
able, but hardly the only grand unification of subjects, converting an
elusive analogy to an illuminating unity. Mathematics is rife with these.
Mathematicians have welded great fields—each with their own distinct

10 An elaborate discussion of this is in Owen Barfield’s Poetic Diction, Wesleyan
University Press.
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brand of intuition—into grand syntheses where there is a combined
intuitive power not matched by either alone.

It is very easy to find connectors between seemingly disparate areas of
research. For example, I once gave a lecture on how such a clean simple
notion as Bernoulli numbers ties together a constellation of different
mathematical subjects—and does it in a way that one actually can
experience the profound kinship of these subjects— ’Bernoulli numbers’
being the keystone:

Monstrous Moonshine:

An astounding example of a ‘connector’ between different theories
having quite different spirits is what has come to be known as mon-
strous moonshine. It involves a single computation, one that any of us
can do:

(5.1) 196884 = 1 + 196883.

In the early seventies, the mathematician John McKay made that
simple computation, but coupled it with a very important observation.
What is peculiar about this formula is that the left-hand-side of the
equation, i.e., the number 196884, is well-known to most practitioners
of a certain branch of mathematics (complex analysis, and the theory
of modular forms):

• 196884 is the first interesting coefficient of a basic function in
that branch of mathematics: the elliptic modular function:



THE UNITY AND BREADTH OF MATHEMATICS 15

j(τ) =
1

q
+744+

∑
n≥1

cnq
n =

1

q
+744+196884q+21493760q2+864299970q3+20245856256q4+. . .

while

• 196883 which appears on the right of Equation 5.1 is well-
known to most practitioners of (what was in the 1970s) quite
a different branch of mathematics (The theory of finite simple
groups): 196883 is the smallest dimension of a Euclidean space
that has the largest sporadic simple group M = (the Monster
group) as a subgroup of its symmetries: The dimensions n for
which M acts irreducibly on an n-dimensional complex vec-
tor space–including the 1-dimensional space on which M acts
trivially—comprise a finite list of numbers:

(5.2) 1, 196883, 21296876, 842609326, 18538750076, . . . .

John McKay went on to make the following puzzling and
somewhat amazing observation about a bunch of similar nu-
merical coincidences: the first few Fourier coefficients of the
elliptic modular function j can be expressed as sums—with
very few summands!—of the dimensions n that appear in the
list 5.2. For example:

196884 = 1 + 196883,
21493760 = 1 + 196883 + 21296876, and
864299970 = 2× 1 + 2× 196883 + 21296876 + 842609326,
20245856256 = 3×1+3×196883+21296876+2×842609326+
18538750076.

This extremely arresting purely numerical observation sug-
gested a world of new structure: it led to the conjecture that
there lurked an infinite sequence of ‘natural in some sense’
complex representation spaces of the Monster group,

V1, V2, V3, . . . , Vn, . . .

where, for n = 1, 2, 3, . . . the Fourier coefficient cn of the el-
liptic modular function is equal to the dimension of Vn. This
seemed, perhaps, so startling at the time that the conjecture
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was labeled monstrous moonshine. When eventually proved11

it has given birth to another profound field in mathematics,
and intimate links with physics.

The Langlands Program:

In number theory, one of the great analogies that ties together ini-
tially very different fields (each with different fundamental guiding in-
tuitions) is called the Langlands Program.

The format of the Langlands Program beautifully clarifies the inter-
twined relationship between the ’local’ and the ’global’ in arithmetic12

and representation theory; and proclaims—among other things—a (still
largely conjectural) correspondence between two quite different math-
ematical objects:

Algebraic Number Theory

i.e., the study of (certain) homomorphisms13 of the Galois group of a
number field K to:

An algebraic group G

“and this corresponds to”

11 This involved work of John Conway, Simon P. Norton, Igor Frenkel, James
Lepowsky, Arne Meurman and Richard Borcherds.

12 ‘Global’ refers to questions about global number fields while ’local’ refers to
related questions over the finite residue fields coming as quotients of the rings of in-
tegers in number fields modulo nonzero prime ideals P , or over P -adic completions.
That there is a strong relation between local and global can be seen by considering
the classical theorem saying that a positive integer is a square if and only if if is
a square mod p for all primes p. That there is some tension between the global
and local can be seen by the classical homogenous cubic example due to Selmer:
3x3 + 4y3 + 5z3 = 0, which has no nontrivial rational integer solutions but does
have nontrivial p-adic solutions for all primes p.

13more explicitly: certain irreducible Representations ρ (unramified at all but
finitely many places) of the Galois group of a number field K into the group of
complex, or `-adic, points of GLn (or more generally of some reductive algebraic
group G)
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Analysis; Automorphic Representations

i.e., the study of (certain usually infinite dimensional) (‘automorphic’)
representations of:

An algebraic group G

In the correspondence alluded to above, the ’blue’ group and the
’red’ group are specifically related: the ‘blue’ group is the Langlands
dual of the ’red’ group.

What ties things together is the theory of L-functions. The L-
functions that enter into this story are Dirichlet series belonging to
what is called the Selberg class of L-functions: these satisfy axioms
that guarantee that they—as Dirichlet series—are absolutely conver-
gent in some right half-plane; they have an infinite product expansion
indexed over prime numbers; they extend by analytic continuation to
a function on the entire plane—analytic, or meromorphic with only
a simple pole at s = 1; and they satisfy a functional equation of a
prescribed type.

A diagram in the style of the “Bernoulli number diagram” in Sec-
tion 5 above that gives a visual sense of the position of those fields as
conjoined by the Langlands program would be:
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Note: Arithmetic Algebraic Geometry enters in this story signifi-
cantly insofar as the major way of getting compatible families ρ of
Galois representations is by considering the Galois action on the étale
cohomology of algebraic varieties defined over number fields.

The classical theory of modular forms enters the story in that they
give rise to ‘automorphic representations’ π.

To see the tiniest hint of the flavor of this correspondence, see the
Appendix, Section 10 below.

6. Many proofs of the ‘same’ result

The Pythagorean Theorem can be thought of as a theme that unifies
the multitude of its different proofs. Each of these proofs verify the
same statement (a2 + b2 = c2) about a right-angle triangle ∆ but they
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may explain or perhaps just illustrate ever-so-slightly different aspects
of it. E.g., Euclid’s Book I Prop. 47 cuts the square built on the
hypotenuse of ∆ to construct two rectangles each equal in area to
the square built on the two sides; while Euclid’s Proposition VI.31
decomposes ∆ in the appropriate proportions. Or, there is the proof
starting with a square with sides of length a + b, and removing four
pieces isomorphic to ∆ to get the square built on the hypotenuse:

(a+ b)2 − 2ab = c2.

This proof seems to go back to the 12th century Hindu mathemati-
cian Bhaskara. (It may also have an—independent?— early Chinese
origin.) The special case when a = b (showing that a square—call it
B—with sides of length equal to the the diagonal of another square—
call it A– is twice the area of A) is the mathematical exercise in Plato’s
Meno.

I wonder whether anyone has dealt with the full gamut—i.e., the
hundreds—of proofs of the Pythagorean Theorem to see if–taken all
together—they form some sort of integral, and graspable, structure.

. . . and is there a similar integral, graspable structure for the different
ways of showing finiteness of K-rational points?

7. Different strategies to prove finiteness of K-rational
points

It may be instructive to think similarly about the different ways of
achieving the finiteness statements that the different proofs of Mordell’s
Conjecture offer us 14.

14 For a marvelous exposition of various approaches to Diophantine finiteness
results (focusing more on issues related to Roth’s Theorem, Thue-Siegel Roth, and
Vojta’s approach—and a bit on Faltings’ approach) see Michael Nakamaye, Roth’s
theorem: an introduction to diophantine approximation. Rational points, rational
curves, and entire holomorphic curves on projective varieties Contemp. Math., 654,
Centre Rech. Math. Proc., Amer. Math. Soc., Providence, RI, (2015) 75-108.
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Given that this is a lecture about the unity of mathematics, and
given that there are (at present) three strikingly different approaches
to proving finiteness of K-rational points, it might seem as if I had
the obligation to at least try—in some way or other—to unify these
approaches. Success in this has—so far—eluded me. The three different
approaches prove three very different finiteness results each of which
has, as corollary finiteness of K-rational points.

The curious list:

(i) Gerd Faltings’ first proof:-establishing finiteness of the num-
ber of isomorphism classes of abelian varieties over a number
field of fixed dimension and of good reduction outside a fixed
finite set of primes of that number field.

(ii) Paul Vojta’s proof:-(with Elaborations and some simplifica-
tions by Faltings, Bombieri, McQuillan) where if given a vast
number m of rational points on a given curve one manages
to find a line bundle on the m-th power of C and a section
that doesn’t vanish on the m-tuple formed by those m ratio-
nal points but does vanish on such a nearby divisor that. . .
leads to a contradiction. This directly follows the format of
the classical proof of Roth’s Theorem.

(iii) The p-adic methods of Chabauty:–available only under
some hypotheses—made more explicit by Robert Coleman, and
most recently extended significantly by Kim and others. Here
is what is obtained by this method, when the hypotheses are
met: For some primes v of the number field one constructs a
v-adic (locally) analytic function φ on the curve C over the
completion, Kv, of K at v which has two properties:

(a) The (locally) analytic function φ has only finitely many
zeroes on C(Kv).

(b) φ vanishes on every K-valued point of C.

In effect, this approach, when C and K meet its hypotheses,
offers what one might call an effective ‘v-adically enhanced’
upper bound on the number of rational points, since it comes
with some kind of v-adic extra information: the v-adic function
φ is often obtainable effectively—i.e., its power series at residue
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discs are computable modulo pN for any N—so one can effec-
tively determine an upper bound for the number of zeroes—
and a finite set of discs of however small radius one wishes
which contain whatever K-rational points the curve has. It is
an interesting question, I think, to capture the exact nature of
‘effectiveness’ in this method.

The appendix contains some more commentary about these three—
significantly different—methods of achieving finiteness.

8. Unity

So what is it that unifies a subject?
An articulable goal? This might not apply to mathematics, a subject

that is constantly expanding its terrain and ambition.
A common language? In the story of Diophantus’s Problem, as we’ve

seen, a precise response is given to a precise issue raised ∼1700 years
ago, and the statements of both issue and response—if not the vo-
cabulary of the methods used—are expressed essentially in the same
language.

A common origin? But this neither addresses, nor predicts, the
powerful forces that keep the subject tightly coherent as it progresses.

A few of these forces we’ve reviewed in this essay, but how could we
even begin to give an adequate account of the vast number of surprise
inner connections our subject has15?

I think, though, that the main overarching ’unifier’—and I know I
might have to defend this!—is that we all happily share a general sense
of what constitutes mathematical demonstration. By this I don’t mean
that we have fixed a precise language, and foundations for our subject
that regulates what stands for mathematical proof. I mean that, even
before doing that, we already have a general sense and conviction of
what should count as mathematical demonstration, and it is this inner
sense that is the bedrock of our subject, and that induces us to go
about trying to fix such a language and foundation.

Some years ago, Noah Feldman and I ran a seminar course—The Na-
ture of Evidence—in the Harvard Law School, where we asked experts
in different fields (Art History, Economics, Physics, Biology, Mathe-
matics, Law) to offer us reading lists and presentations to allow us to

15 Some of these connections are not only surprises but quite difficult to classify
such as the wonderful way in which Charles Fefferman used the solution to the
Kakeya Problem to establish an important feature of L2-norm that distinguishes is
from Lp-norm for p 6= 2.
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learn what constituted evidence in their field. What does one have to
provide to guarantee general agreement among the experts in—say—
Economics that some new result has been established in their field? It
is natural—but still it was striking to me— that each field demands
a markedly distinct structure for what it accepts as evidence. And
if there are internal disagreements, (or let us say, ’discussions’) these
discussions reinforce the sense that the precise nature of admissible
evidence in the field uniquely pinpoints the field.

We have been contemplating a few of the many features that help
unify Mathematics—help establish it as a coherent project. But it
seems to me that—despite my falling into a clear vortex of circu-
lar reasoning—it is the unique nature of—a universally available—
mathematical sensibility that ‘holds it together.’

9. Appendix: Further commentary on the three methods
of obtaining finiteness of the number of K-rational
points in a curve of genus > 1 over a number field K

A. Faltings’ First Proof. The rough frame for the string of finite-
ness assertions in the diagram in Section 4 (that charts Faltings’ initial
proof that a curve C of genus> 1 over a number fieldK has only finitely
many K-rational points) is quite complex, but consists of three basic
elements (working up from the bottom in Spencer Bloch’s diagram we
discussed).

(i) The construction by Parshin of a certain sufficiently varying
family16 of curves C ′x (of a certain fixed genus depending only
on C) parametrized by the points x of the original curve C.
(The family is defined over a finite extension K ′/K, and there
is a finite set S ′ of primes of K ′ outside of which C ′x has good
reduction where x ranges over all K ′-valued points of C.) So
we have the basic association:

x 7→ Cx

16 See also the recent result regarding finiteness of K-rational points on a
curve C—Diophantine Problems and the p-adic Torelli Map due to Lawrence and
Venkatesh—where the starting construction is of a family of algebraic varieties over
C, and the major issue is that it be sufficiently varying.
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of K ′ rational points x of C to curves Cx (over K ′) of a fixed
genus of good reduction outside a fixed finite set of primes of
K ′. Moreover, this mapping is finite-to-one.

(ii) The fact that the natural association

C 7→ Jac(C) 7→ J̃ac(C)
that sends the set of isomorphism classes of curves C of fixed
genus defined over a number field K ′ and having good reduc-
tion outside a finite set S ′ of primes of K ′ to Jac(C), the iso-
morphism class of their jacobian, and thence to J̃ac(C), the
corresponding isogeny class, is finite-to-one.

(iii) The clincher then being that for a given number field K ′ and
finite set S ′ of primes of K ′ and for a fixed dimension g′ there
are only finitely many isomorphism classes (or isogeny classes
)over K ′ of abelian varieties of dimension g′ with good reduc-
tion outside S ′.

B. Paul Vojta’s method. Guided by analogies that the arithmetic
features that the problem of bounding numbers of rational points have
with two other arenas of problems—hyperbolic geometry and approx-
imation of algebraic numbers by rational numbers—Vojta established
finiteness by a very beautiful route. (Elaborations and some simplifica-
tions were also subsequently given by Faltings, Bombieri, McQuillan.)
One way to get a feel for Vojta’s strategy is to think of the shape of
the proof of the classical Roth’s Theorem. Roth’s Theorem guarantees
that for a given algebraic irrational (real) number α, and for any ε > 0,
there are only finite many rational numbers p/q such that

|α− p/q| < 1

|q|2+ε
.

The strategy is to pass to high dimension: if, say, for a given such
α and ε, there were infinitely many such rational numbers p/q, then
for any number m there would be m such rational numbers pi/qi and
we could choose them so that the denominators qi are growing very
rapidly (as rapidly as necessary for this ensuing strategy to work!). So
choose such a collection of m rational numbers. We want to view the
m-tuple (p1/q1, p2/q2, . . . , pmqm) as a pretty good approximation to the
diagonal m-tuple (α, α, . . . , α) ∈ Rm.
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Now one starts looking for what is called an auxiliary polynomial
(although, as you’ll see, auxiliary may be a bit too demeaning a term).
Look among polynomials f(x1, x2, . . . , xm) with coefficients in Z (and
multi-degree (d1, d2, . . . , dm); here di is the degree of xi in f(x1, x2, . . . , xm)
) where the multidegrees are required to have some relation to the de-
nominators qi; namely di · log qi should be roughly constant. Moreover,
f(x1, x2, . . . , xm) is also required to have two properties:

(i) The polynomial f(x1, x2, . . . , xm) doesn’t vanish at
(p1/q1, p2/q2, . . . , pm/qm) .

(ii) The polynomial f(x1, x2, . . . , xm) does ’vanish sufficiently’ at
the point (α, α, . . . , α).

I haven’t said what “roughly constant” means in the above paragraph,
nor ’vanish sufficiently’ in (b). But the key to the method is to get
contradictory upper and lower bounds for |f(p1/q1, p2/q2, . . . , pm/qm)|
if m is sufficiently large. Condition (a) immediately implies that

|f(p1/q1, p2/q2, . . . , pm/qm)| ≥ 1∏
i q
di
i

,

which gets us a lower bound, and condition (b)—together with the
fact that (p1/q1, p2/q2, . . . , pm/qm) is a pretty good approximation to
(α, α, . . . , α) gets us an upper bound—and these bounds, taken to-
gether form a contradiction if m is sufficiently large17

The beauty of Vojta’s method is that it transforms this strategy
to an analogous strategy establishing finiteness of rational points over
number fields for curves of genus ≥ 2. The judicious choice of the
sequence of m approximants pi/qi in the proof of Roth’s Theorem is
replaced—by Vojta—by a judicious choice of of m rational points on
the curve C that is being studied, leading us to focus on certain line
bundles on the m-th power of C. The choice of auxiliary function in
Roth’s Theorem is replace by a judicious choice of a section of those
line bundles, leading to two contradictory bounds, as above.

17 One even has a constructive upper bound due to Davenport and Roth: See
their Rational approximations to algebraic numbers online: https://doi.org/10.
1112/S0025579300000814. See also the related:

• Joseph Silverman’s A quantitative version of Siegel’s theorem: Integral
points on elliptic curves and Catalan curves J. Reine Angew. Math. 378
(1987), 60-100, and

• J.-H. Evertse and H. P. Schlickewei, A quantitative version of the absolute
subspace theorem J. Reine Angew. Math. 548 (2002), 21-127.

https://doi.org/10.1112/S0025579300000814
https://doi.org/10.1112/S0025579300000814
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C. Claude Chabauty’s method. The method of Chabauty proves
finiteness under a somewhat restrictive assumption, namely that the
rank of the Mordell-Weil group over K of J is strictly less than the
dimension of the J—i.e., of the genus of C. Choosing an appropriate
prime v of K lying above a rational prime p, note that because of
elementary consideration of rank—given our hypothesis—J(K) must
lie in a p-adic Lie group L of codimension ≥ 1 in the p-adic Lie group
J(Kv) — and yet the p-adic curve C(Kv) cannot be entirely contained
in such a p-adic Lie group L. One shows, then, that the intersection
of p-adic analytic manifolds C(Kv)∩L is finite. Since this intersection
contains C(K) one concludes the finiteness one has sought.

C.1. Robert Coleman’s version of Chabauty’s method. Robert Cole-
man revisited Chabauty’s method by capturing the intersection C(Kv)∩
L as the zero-locus of a constructed p-adic differential on C, thereby
giving, apparently, relatively good bounds of finiteness allowing one—
in certain instances—to actually determine the set of rational points
of the curve (granted: Coleman’s method also works only in case the
rank of Mordell-Weil of the jacobian is strictly less than the genus of
the curve).

C.2. Minhyong Kim’s extension of Coleman-Chabauty. More recently,
though, Minhyong Kim revisited Chabauty-Coleman’s method by re-
placing the mapping of a curve to its jacobian by an elegant refine-
ment mapping to spaces of torsors for appropriate unipotent groups.
The result is a powerful extension of the effective nature of Chabauty-
Coleman’s method that led to—among many other things— an effec-
tive determination18 of the number of Q-rational points on any curve
C that has the property that its jacobian J is isogenous to a product
of two (positive dimensional) abelian varieties over Q and the Mordell-
Weil rank of J is equal to the genus of C. These conditions are indeed
fulfilled by the equation 4.1 with which this essay began19.

18Theorem 1.1 of An effective Chabauty-Kim theorem by Jennifer Balakrishnan,
Netan Dogra arxiv.org/abs/1803.10102v2

19The curve C, being of genus 2, has only finitely many rational points, by
Faltings’ classical theorem, but as for the actual determination of that finite set
of points, the classical Chabauty-Coleman method for determination of rational
solutions does not apply since the Mordell-Weil rank of its jacobian is equal to (not
strictly less than) the genus of C: the quotient of C by the involution (x, y) 7→
(−x, y) is the elliptic curve 496a1 in Cremona’s table; the quotient by (x, y) 7→
(−x,−y) is 248a1. Both these elliptic curves have Mordell-Weil rank 1 so the
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C.3. Summary. To return to the question of different ways of achiev-
ing the finiteness statements that the different proofs of Mordell’s Con-
jecture offer us:

The last three listed methods achieve their finiteness conclusion in
the following general way. If C denotes the curve over K for which the
method applies, then for some prime v of K one constructs a certain
(locally) v-analytic mapping ω : C(Kv)→ V (Kv) where V is a certain
v-analytic variety (e.g., ω might be the Abel-Jacobi mapping to the
jacobian of C, or it might be a section of some line bundle) such that
there is a specified v-analytic subvariety Vo ⊂ V such that the pullback
ω−1(Vo(Kv)) ⊂ C(Kv) is (a) finite and (b) contains C(K). This gen-
erally gives a constructed upper bound for the number of K-rational
points, as well as v-adic information about them20.

And although there is hint of a resonance between the method of
Faltings’ first proof and the method of these last three, it would be
interesting—it seems to me—if one could give a single convincing de-
scription of a ‘way of achieving finiteness’ that encompasses them. Even
more challenging would be to describe the method of Vojta (or its elab-
orations by Faltings, Bombieri, MicQuillen, and Nakamaye) in terms
that illuminates its relationship to the other methods.

10. Appendix: A hint of the flavor of the Langlands
Correspondence

One sees a speck of this grand correspondence already in the classical
set-up regarding the Galois group (over K = Q) of the cyclotomic field
Ln := Q[e2πi/n]. This is the number field obtained by adjoining the
‘primitive’ n-th root of unity ζn := e2πi/n to the field Q. Putting

Γn := Gal(Ln/Q)

Jacobian of C, which is isogenous to the product of those two elliptic curves, has
Mordell-Weil rank 2. Nevertheless, and happily, recent extensions of Chabauty-
Coleman’s method are available—e.g., the Theorem 1.1 referred to in the previous
footnote—and such methods are used in Wetherell’s thesis to establish that x = 1

2
is the unique positive rational solution to 4.1.

20 The very recent preprint of Brian Lawrence and Akshay Venkatesh Diophan-
tine Problems and the p-adic Torelli Map proves (in certain cases) finiteness of
rational points on curves by a somewhat different method which nevertheless fits
the above general description. The non-archimedean places v play the major role
in all these cases. In contrast, is there some context where one learns finiteness of
K-rational points by finding those K-rational points as (for example) a subset of
the zeroes of some constructed complex analytic function, or section of some line
bundle over C (over C)?
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one has the fundamental canonical isomorphism (due, essentially—and
in different language) to Gauss:

(10.1) GL1(Z/nZ) = (Z/nZ)∗
σ−→ Γn.

Here (Z/nZ)∗ is the group of units in the ring of integers Z/nZ in the
Galois group, which we could also think of as the group of Z/nZ-valued
points of the algebraic group GL1. The isomorphism σ is given by the
rule: a 7→ σ(a) : Ln → Ln where for an integer a prime to n, σ(a) is the
(unique) field-automorphism of Ln that sends e2πi/n to e2πia/n—and in
fact raises every n-th root of unity in Ln to the a-th power.

The groups in Equation 10.1 being abelian, their irreducible (say
complex) representations are just multiplicative C∗-valued characters,
and the isomorphisms in 10.1 then can be viewed as ’correspondence’
that identifies characters ρ : Γn → C∗ with classical Dirichlet characters

χ : (Z/nZ)∗ → C∗

or equivalently, (even though it may be too pedantic to view it this
way) with characters on the Z/nZ-valued points of the algebraic group
GL1.

The connection between χ and ρ in Equation 10.1 is mirrored by
the equality of their relevant L-functions, the Dirichlet L-function
L(χ, s) and the Artin L-function L(ρ, s):

(10.2) L(χ, s) = L(ρ, s),

where the Dirichlet L-function is:

(10.3) L(χ, s) :=
∑
k

χ(k)k−s =
∏
p 6| n

(1− χ(p)

ps
)−1

(where χ(k) = 0 if gcd(k, n) > 1 )
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and the Artin L-function is:

(10.4) L(ρ, s) :=
∏
p 6| n

(1− ρ(Frobp)

ps
)−1

(where Frobp ∈ Γn is the “Frobenius element at p.”)

The formulation of the L-functions in Equations 10.3 and 10.4 as
infinite products of ‘local factors’ associated to (all but finitely many)
primes p points to the task that L-functions have: to tie local and
global properties together.

The equality 10.2 follows since Frobp(ζn) = ζpn so the correspondence
10.1 identifies Frobp with the image of p in (Z/nZ)∗ for primes p 6 |n.
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