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Abstract

This essay was written for the University of Utah Symposium in Science and Lit-
erature (November, 2009) and in anticipation of a panel discussion on Mathematics,
Language, and Imagination with Alice Fulton and Fred Lerdahl.

The arts and sciences and everything else we humans do depend
upon our intuitions and sensibilities. They also depend upon one
grand public resource: language, which—taken broadly—is more
than a medium: it is both a primal soup whose nutrients contain all
that is needed to guarantee the emergence and smooth continuation
of our culture, and it is also the repository of that culture. The lan-
guages of music, mathematics, and poetry are completely different,
just as the sensibilities developed by them are different. But if we
reflect on each other’s language we may learn things. For this hour
I’ll try to do a bit of this type of reflection, contrasting some aspects
of the language of poetry to that of mathematics.

1 Languages and Beauty

How strange it is that our various languages—initially in the service
of understanding and communicating—contrive, strive, to be beau-
tiful; even if they are dealing with grim and tragic things1. So many

1

Since brass, nor stone, nor earth, nor boundless sea,
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sad yet wonderful human utterances reveal this to us that we needn’t
go to poetry to see this. But to take an example, how disturbingly
beautiful is King Lear’s

Howl, howl, howl, howl! O, you are men of stones:

where Howl is an exhortation and a cry2. How fully we enjoy—if
that’s the right word—the strange consonance of despair-and-beauty
as the trochaic pentameter line

Never, never, never, never, never!

abruptly everts the iambic pentameter of

Why should a dog, a horse, a rat, have life,
And thou no breath at all? Thou’lt come no more,
Never, never, never, never, never!

It is strange to think how beauty lurks amidst tragedy—or, at least,
amidst the tragedy of others.

I’ve long been puzzled by the question of why there is so much
beauty in mathematics? Aesthetics is simply front-and-center in the
intended goals of the languages of music and poetry. But beauty
of intellectual constructions often is achieved in mathematical work
as a happy by-product, it would seem, of its intended aim. This
certainly needs to be examined, and is one of the issues I hope will
come up in discussions.

The language of mathematics, has as its primary mission to ex-
plain things—it is a tool of understanding. It is natural, of course,

But sad mortality o’er-sways their power,
How with this rage shall beauty hold a plea,
. . .

2Or take Alan Ginsberg’s agonizing evocation where he used same word as both label of a cry, and a cry.
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that this language feeds back on our intellect, enriching the very
underpinnings of our imagination by sharpening our intuitions, and
extending the reach of our thinking in breath-taking directions—for
example, so that we can almost comprehend infinity. How wonder-
ful that the language of mathematics helps us conjure up, and talk
about ideas, concepts, structures, that happen to be of great beauty,
even if the first intended use of that language is to help us measure
wheat-fields or build bridges, or do whatever the early reckoners had
in mind to do.

Perhaps beauty is a universal of language: we’re beasts who wish
to communicate beautifully and that’s all that there’s to it. All
languages I’ve ever had any contact with, even the small-gauge lan-
guages thrown together for a particular purpose, or setting (I’m
thinking, e.g., of the Morse code I tried to tap out when I was a
teenage radio ham or, some dock jargon when I worked as a steve-
dore on a pier in NYC etc.) cajole their speakers towards beauty of
expression. Let’s call it the ubiquity of the poetic drive.

2 Resonances and Definitions

We’re all introduced to the culture of our native language by being
thrown screaming into the middle of things and somehow we pick up
the intentions and meanings of words well enough. Actual definitions
of new words (and perhaps of those old words we already use) are
taught to us only much later.

Nevertheless we usually think that mathematical languages come
to us differently—that is, definition-first so that everything else in
the discourse of mathematics gets built up logically from those first
definitions and first principles. But even a cursory look at “begin-
nings” (in ancient mathematics, as well as modern mathematics)
makes us scratch our heads wondering exactly what people are ac-
tually getting from those “first definitions.”

The famous Definition 1 of Book I of Euclid’s Elements3:
3that ancient mathematical sourcebook from which high school geometry is—or used to be—fashioned.
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A point is that which has no part,

or Definition 2:

A line is breadthless length.

are hardly logically usable. Nevertheless, these definitions do ex-
tremely important work, and later writers (Proclus, Hilbert) made
them more logical for us, but in Euclid’s formulation they seem more
like guides helping us focus on the kind of thing points and lines are,
rather than definitions that can be worked with.

In fact, much of our primary mathematical intuition seems to
come to us just as definition-less as anything else—meanings are
picked up, and transmitted by common practice (I once heard a
child toting things up on the chant

. . . , 10, 11, 12, dig ′n ′delve, 13, . . . ,

where dig’n’delve has wedged itself—for this child—as an ordinal
number between 12 and 13. Only later in school is all this type of
common practice sorted out—we hope).

In music and poetry—and I suspect that this is in slight contrast
to what happens in mathematics—a resonance that certain words,
or musical themes have developed—depending on their use in the
musical and poetic tradition—unfolds and enriches meaning. Here
is one–perhaps too simple—example:

Recalling that swallows are among the first birds to migrate south
for the winter, it is not surprising to find mention of a gathering of
swallows in these lines of the A.R. Ammons poem Corson’s Inlet

the news to my left over the dunes and
reeds and bayberry clumps was

fall: thousands of tree swallows
gathering for flight:

But poems being poems, I don’t think it is farfetched to say that
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Ammons’ swallows resonate with the “gathering” image in the last
line of the Ode to Autumn of Keats:

And gathering swallows twitter in the skies.

the wrench, here, being that the Autumn that Keats was writing
about was to be his last, and he knew it; whereas, in contrast,
Ammons ends Corson’s Inlet with the expectation

that tomorrow a new walk is a new walk.

Everything we tell each other has resonances, where much “shared
past” echoes in the telling. Even brittle dictionary-definitions con-
cede this, and offer us archaic usages that may still be faintly flavor-
ing the modern use of the word. That, as Webster’s tells us, trust is
somehow related to tree sharpens our sensitivity to some otherwise
unheard bourdon that comes along with each of these words.

But sometimes a definition throws our way a brand new word,
a brand new phrase, or illuminates things, focusses our viewpoint.
Everyone, I’m sure, has their favorite example where, say, a single
perspicuous definition, or explanation of usage, clarifies things in a
startling way4.

People acquainted with mathematics have lists of them too. The
nineteenth century mathematician Dedekind had an elegant way of
characterizing sets that are infinite—elegant, stark, and enlighten-
ing. To appreciate Dedekind’s definition, you should know that the
word set refers to a collection of objects, a subset of a given set S is
a collection of objects taken from S; and a subset T of S is called

4There are also times when a definition of usage—meant to clarify—goes in the other direction, i.e., mystifies. In
a letter to Robert Bridges, Gerard Manley Hopkins tries to explain the intention of the first word Have in his poem
Henry Purcell describing it as 3rd person, imperative, in the past tense. Hopkins notes that it would be no problem
to imagine an imperative format for the word have in various tenses if used, say, in the 2nd person, as in the sentence
“Have eaten” (e.g., before you come to the theater). This 3rd person, imperative, in the past tense format for have,
however, is certainly a startling usage, and if I only understood it better I’d discuss it more . . .
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proper if T is NOT all of S (not equal to the entire set S) so that
there is at least one element of the collection S that is not in T .
Finally, a one:one correspondence between two sets A and B is a
rule that associates to every element of A an element of B so that
every element of B is associated to a unique element of A. For ex-
ample, the set of positive whole numbers {1, 2, 3, . . .} is in one:one
correspondence with the set of even numbers {2, 4, 6, . . .} by the rule
that simply doubles each number.

Now we’re ready for Dedekind’s definition:

A set is infinite if it can be put in one:one correspondence
with a proper subset of itself.

(In the figure below the dots signify an infinite sequence of objects
and the one:one correspondence sends the nth object of this set to
the (n + 1)st. This is a one:one correspondence between the set of
all these objects and the proper subset consisting in all but the first
object.)
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3 Explicit versus Implicit Definitions

Consider the words convex, limit, continuous, connected, smooth.
These have their standard ordinary meanings, but they have also
all been given—by mathematicians—precise technical meanings re-
ferring to concepts within the formal vocabulary of mathematics.
Their formal mathematical definitions capture, in a pleasing and
pragmatic way, some essence of our prior worldly intuitions regard-
ing these concepts. Now, each of these mathematical concepts have
straightforward formal definitions expressed in terms of explicit cri-
teria that—at least in favorable situations—can be checked. For
example, a region R in the plane is convex if for any two points P
and Q in that region the entire straight line segment between P and
Q also lies in the region.

But this format (Something is an X if and only if Y holds) is
only one of many formats for a “definition of X.” Also pleasing are
indirect or implicit definitions, such as definitions via a collection
of “postulates,” where the whole collection taken together happens
to pinpoint a concept unequivocally. My current favorite for that
sort of implicit-definition-by–a-collection-of-postulates comes from
ancient mathematics and occurs in the treatise Archimedes where
he discusses his “law of the lever.” This is in the opening of Book
I On the equilibrium of planes. Archimedes defines equilibrium and
center of mass by beaming in on those concepts—cornering them,
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so to speak—by a series of seven postulates, the first and fourth of
these postulates being:

• Equal weights at equal distances are in equilibrium, and
equal weights at unequal distances are not in equilibrium
but incline toward the weight at the greater distance.

• When equal and similar plane figures coincide if applied
to one another, their centers of gravity similarly coincide.

A curiosity here is that any Calculus student, nowadays, could come
up with straight definitions of equilibrium and center of mass. But—
given the vocabulary of the time— only an implicit definition was
readily available to Archimedes5 who used them to establish his
astounding discoveries of the ratios of areas (of segments) and of
volumes (of spheres, cones, and prisms).

Perhaps the most famous ancient implicit definition is the defini-
tion of Euclidean plane geometry is given by the collection of “com-
mon notions” (the axioms of this geometry) set down by Euclid.

4 Characterizations and Definitions

I said above that Dedekind’s elegant way of characterizing infinite
sets offers a definition (an “alternate definition” if you wish) of the
notion of infinite sets. There are, though, subtle differences between
a property that merely characterizes a concept, and a property that
you actually want to put forward as a reasonable basic definition of
the concept. This difference I’m referring to is like the difference
that philosophers make between between definitions via intention
and definitions via extension, a distinction that is elegantly illus-
trated by the tale told by Diogenes Laertius about one of the hi-
jinks played by Diogenes of Sinope (alias: “Diogenes the Cynic”)
in Plato’s academy6 (pucking the feathers of a chicken to produce a

5There is no stigma to implicit definition, though!
6
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“man,” i.e., a creature that fits Plato’s characterization of man as
featherless biped).

But here are two examples in mathematics. In the first, the “char-
acterization” would be ludicrous if viewed as a primary definition.
In the second, the situation is much more complicated. In this dis-
cussion, by the term number I will mean positive whole number.

1. By a perfect power I mean a number that is a square, or a cube,
or a higher power of a number. The numbers 8 and 9 are the
only two consecutive perfect powers:

8 = 23 and 9 = 32.

This fact, very difficult to establish, was known as the Catalan
Problem (posed in 1844) and was only recently proved (by Preda
Mihailescu in 2002). So the property of being consecutive perfect
powers characterizes the pair of numbers {8, 9} but it would be a
bit of a stretch to hope to view this property as a useful definition
of that pair of numbers.

2. Contrast the above example with the following definition and
characterization of a single concept, each developing into gen-
uinely usable primary definitions, although of different concepts
in the more general context. In (a) below you’ll see a “standard
definition” of prime numbers, and (in (b) below you’ll see a
“famous characterization” of prime numbers. Something funny
happens in the history of the subject, related to these two ways
of defining prime numbers.

(a) The usual definition of prime number:

A prime number p is a number > 1 that is not the
product of two smaller numbers.

(b) A characterization of prime number:

Plato had defined Man as an animal, biped and featherless, and was applauded. Diogenes plucked a fowl
and brought it into the lecture-room with the words, “Here is Plato’s man.”

(from Diogenes Laertius. Lives of Eminent Philosophers. Vol. 2. Trans. R. D. Hicks. London, William Heinemann,
1925)
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A number n > 1 is prime if and only if it has the
following property: whenever n divides a product of
two numbers a · b then n either divides a, or n divides
b.

Now, as is shown in Euclid’s Elements, the definition (a) and
the characterization (b) describe exactly the same (infinite) col-
lection of numbers—the usual primes

2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

Since the tradition in mathematics is to always try to find the
appropriate general formulation of any concept so as to make
the most use of the concept, and to achieve the best comprehen-
sion of it, it should not be a surprise that both definition (a) and
characterization (b) have been extended to broader and broader
contexts. In these larger arenas they diverge significantly: defi-
nition (a) gives rise to the general notion called irreducibility
while characterization (b) becomes the forerunner of the fun-
damental notion that is known in the trade as prime ideal, a
concept equally fundamental, but different7.

5 How it looks on the page

The visual aspect of a poem, as in the spacing between words, the
indentations, the line breaks, the squeeze of text between two large
margins, and—simply– the look of it, is sometimes an important part
of our experience of the poem. I don’t only mean those marvelous
visual poems8 such as

7The question of whether—in a given number system—these two concepts coincide—i.e., whether every prime
ideal is generated by a single irreducible element or are distinct, is one of the subtle questions in arithmetic about
which even today there remain unresolved questions, one such conjecture due to Karl Friedrich Gauss (1777-1855).

8For a thrilling compendium of ancient and medieval visual poems, see (*)
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But the visual aspect is important for almost any written poem,
for example, the poem we have just discussed, Corson’s Inlet, which
crags visually on the page just as the coastline along which the poet
is walking is fractally crenellated. Here I quote a longer swath of
that poem (containing the lines given earlier):

the news to my left over the dunes and
reeds and bayberry clumps was

fall: thousands of tree swallows
gathering for flight:
an order held
in constant change: a congregation

rich with entropy: nevertheless, separable, noticeable
as one event,

not chaos: preparations for
flight from winter,
cheet, cheet, cheet, cheet, wings rifling the green clumps
beaks
at the bayberries
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Punctuation is sometimes exquisitely exact in a poem. Sometimes
it is fashioned by the poet into an idiolect, a private sign language
so to speak, as in Emily Dickinson’s work (discussed in Heather
McHugh’s essay What Emily Dickinson makes a dash for9). And
sometimes—like the chain of colons cascading down the portion of
Corson’s Inlet we’ve just quoted—it plays the dual role of logical
connective and visual effect, illustrating, perhaps, what T.S. Eliot
meant when he said that poetry is a form of punctuation.

The way in which mathematics is displayed on the page is hugely
important for clear communication of meaning. Mathematicians
have devised manners of representation of information that elegantly
do the job—and sometimes this requires a departure from the stan-
dard word-after-word approach of ordinary language. Graphs and
histograms abound. As do matrices, which are rectangular arrays of
data, such as





a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

. . .
am1 am2 am3 . . . amn



 .

But my favorite pieces of mathematical terminology that are won-
derfully visually self-explanatory were dreamt up by Leibniz and
have to do, respectively, with the differential and integral Calculus;
namely, the compact and elegant notation:

df

dt
and

∫ b

a
f(x)dx.

If you have never taken Calculus, here is a crash course in these
two examples of brilliant notation.

9

[Emily Dickinson’s] richest work is precisely what critics since Higginson have called “elusive,” and its
signature is the sign of the dash—that suspense of punctuation, that undecidability, which is not an
indecision.

(from Heather McHugh, Broken English: poetry and partiality, Wesleyan University Press (1993))
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df

dt

Let t be a variable that represents time (so, let us say that t = 0 is
Yogi Berra’s now and that t = 1 is one hour in the future). Imagine
that we start, now, from home, and that we’re driving (say, along a
straight road) in a car. For each moment of time t, let f(t) be the to-
tal distance we have driven from home up to that time. So f(0) = 0
since we’ve started from home. If, say, we decide (in advance) that
we want to compute a rough approximation to “how fast” we are
going at time t = 1 (i.e., one hour into our journey) we might natu-
rally do something like this: fix a time “just before” t = 1 and a time
“just after” t = 1 and call the difference between those two times
∆t ( you should think of the symbol ∆ as standing for “increment”
so ∆t is the increment of time between the before and the after).
Your task is then to measure the distance you’ve traveled between
the “before moment” and the “after moment.” Call that distance
∆f (which you can think of as the “increment of distance” trav-
elled during the chosen incremental time interval). Then, a rough
approximation to the speed that you were traveling around the time
t = 1 is the ratio ∆f

∆t . (See the figure below)

But this is a mere approximation to the infinitesimal speed at
t = 1 and to get an “exact reading” (perhaps something closer to
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the reading of the speedometer at time t = 1) we would have had to
do something that is humanly impossible: to make a succession of
finer and finer readings, choosing our “before” and “after” moments
closer and closer to t = 1 and pass to the limit of these approximate

∆f

∆t

readings10. Leibniz’s notation for this limit is elegantly

df

dt

or—since we’re dealing only with time t = 1 and we might be looking
ahead to deal with more general times, we might call it df

dt(1). This

symbol which has the “look” of a fraction df
dt is not to be thought of

as a fraction, but rather as a single symbol: you’re not allowed—at
least in the context that Leibniz was working—to separate the nu-
merator from the denominator; nevertheless this symbol, faithfully
mimicking the notation for the approximations as it does, provides
a mnemonic for the structure of this concept and also the symbol
offers us a guide for many of the formal manipulations that can be
legitimately done with the concept (in certain senses it does behave
like a fraction).

10This limit seems to be something that our speedometer’s reading is close enough to, for any practical consideration
we might have.
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∫ b

a
f (x)dx

(See the figure below)

If you want to compute the area under the graph along the x-axis
from a to b, which is the shaded area in the figure above, you first
might think of approximating it by taking the sums of the areas
of a bunch of rectangles that form the roller-coaster scaffold of the
above figure. This area–in the figure as drawn—is the sum of four
rectangles all of the same width—which I will call ∆x (going from
rectangle to rectangle with left-bottom vertices a = x1, x2, x3, x4,
respectively, you are creeping by “increments” ∆x along the x-axis)
and heights f(x1), f(x2), f(x3), f(x4).

The total area, then, is

f(x1)∆x + f(x2)∆x + f(x3)∆x + f(x4)∆x

which in mathematical shorthand is
4∑

i=1

f(xi)∆x.

Since this sum of four rectangular areas is only a crude approxima-
tion to the area under the graph of f , happily—in good cases—one
can get closer and closer to the area by refining the scaffolding (mak-
ing ∆x smaller, and using more, but thinner, rectangles). If you do
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this and pass to the limit you no longer are dealing with a ratchety
finite sum

∑n
i=1 f(xi)∆x.

So, how then should we denote this limit, which at least in our
figure will be approximating more and more accurately areas related
to a smooth curve? Leibniz’s great idea is to keep a strong hint of the
shorthand notation displayed above by “sandpapering” the angular
edges of the

∑
to turn it into a smooth

∫
and replacing, again, the

∆x by dx, and finally recording that we are going from a to b; and
voilá:

∫ b
a f(x)dx. The brilliance of this notation is that many of its

formal properties of it can be guessed—or if not quite guessed, at
least easily remembered—given the fact that this symbol is visually
analogous to the finite sum

∑n
i=1 f(xi)∆x.

In both of these symbols, df
dt and

∫ b
a f(x)dx, we witness the mar-

velously compact expression of much mathematical insight, rather
like what I’m told happens in some Chinese and Japanese poems
where the visual characters themselves tell a story that enhances
the story they tell as (can I say?) “textual characters.” In math-
ematics, certain ideas are best understood when expressed in com-
pactly abbreviated form, just as in poetry certain emotions are most
powerfully evoked by means of a startling economy-of-expression.

6 Unequivocal and Metaphorical Language

Before we get started here let me say that unequivocal and metaphor-
ical, strange as it may seem, are not in enmity.

The language of mathematics requires unequivocality of the most
uncompromising level. A concept given—say—by a symbol must
have a crystal clear unambiguous meaning. This is not to say that
the symbol need refer to only one “thing.” To take a random ex-
ample, consider the sentence “Let X be a (whole) number between
1 and 10.” This is a completely unequivocal definition of the sym-
bol X even though we don’t have a “value” that we can assign to
it: the symbol X has been appropriately labelled and has a clear
meaning. Truth and precision in labeling is key to the conscience of
a mathematician.
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But mathematics also thrives on metaphor11. Since metaphor is
quite a loaded word and–I think—amorphous, I find it more helpful
just to cut off a few bite-size portions of the concept and view each
of them separately. Without being specific about what metaphor
means, I’ll list below—in order of complexity— some metaphorical
or meaning-stretching activities:

• choosing just the right resonant vocabulary that calls to
mind—by means of metaphorical resonances—the concepts be-
ing discussed,

• noun-ification,

• extension of the domain of a concept guided by the urge
to find an appropriately general setting,

• unification of two or more concepts, guided by their “sim-
ilarities” and bridging their differences.

Just the right words. The first of these items, choosing resonant
vocabulary, is evidently a good thing, and is so often well-practiced—
and so noticed when badly practiced—that we may lose sight of the
psychological importance it has. When an innovator “chooses” a
word or phrase to be given a technical definition there are these
possibilities to choose from: either the word has a common everyday
use and is being deputized as a technical term; or it is derived from
the prior technical vocabulary of the field; or it is purely made-up
word; or it is constructed out of a proper noun, or nouns.

We all can produce examples of each of these four categories; for
me the following four terms from physics go neatly in order through
these categories: work, electro-magnetic, gas, and Planck’s constant.
The stroke of real genius among these four labels seems to be gas,
which—as I understand it—was consciously made up from nothing
to be a general serviceable term used exactly as widely and as effec-
tively as the word gas is used today.

In mathematics it is useful to have fully resonant words to label
concepts that attempt to capture basically intuitive concepts, so the

11and this theme is developed in various essays and books; cf. Yuri Manin’s wonderful collection of essays Mathe-
matics as Metaphor A.M.S. (2007) or the work of George Lakoff and Rafael Nuñez (e.g., Where Mathematics Comes
from published by Basic Books).
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list of words given above, limit, continuous, connected, smooth, all
come to mathematics resounding with the music of their real-world
resonances; this is psychologically very helpful insofar as their math-
ematical definitions are meant to give precise mathematical meaning
to these intuitive notions. But there is no lack of importation of
evocative words to mathematics as labels of precise technical terms.
Sheaves, fiber bundles, cross-section come immediately to my mind,
as does the French word étale which, in my field, is used as noun or
adjective and has international significance as a technical term. In
French its adjectival meaning is:

1. without movement, immobile (une mer étale)

2. without agitation (une journée étale)

and its nominal use is, for example, to denote the moment of slack
tide.
Noun-ification: Surely the first human use of the concept five,
for example, must have been in some adjectival setting, such as five
cows or five fingers. The act of realization that there is a “thing” to
be reflected on, about the similarity between those various uses, and
that one could focus on these reflections better if one re-ified, so to
speak, the adjective by forming the noun five must have been one of
the great leaps of early mathematical thought. I find that a lot of
writing about metaphor in mathematics devotes too much attention
on leaps of thought in more technical domains (e.g. about complex
numbers, or in even more specific areas of mathematics) that are not
as universally shared (i.e., by people not in math or the sciences).
I also feel that focusing on the simplest concepts concentrates the
discussion better, invites more people into that discussion, and—at
bottom—may end up dealing with richer metaphorical content than
any discussion having to do with specific technical metaphors.
Extension of the domain of a concept: One quite instructive
example of this is the extension of the operation of multiplication
to all the integers, I.e., the metaphorical act I have in mind here
is the act of settling on an appropriate meaning for the operation
of multiplication of whole numbers, be they positive or negative or
zero— a meaning that faithfully and usefully extends the “old” sense
of the term, that multiplication is just repeated addition of positive
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numbers. The act of extending this operation to a larger collection
of “numbers” begs for our judgment regarding the suitability of this
extension. If you wish to start thinking about this, you might ask
yourself why we believe12 that −1 times −1 equal to +1?
Unification of concepts, guided by their “similarities” and
bridging their differences A metaphorical bridge, begun in an-
cient mathematics and going on—in more and more profound ways—
in modern mathematics is to view geometry as algebra and algebra
as geometry. Mathematicians have welded these great fields—each
with their own distinct brand of intuition—into a grand synthesis
where there is a combined intuitive power not matched by either
alone. René Descartes, commenting about his merger of algebra
and Euclidean geometry, said:

I would borrow the best of geometry and of algebra and
correct all the faults of the one by the other.

This synthesis that mathematicians have created by yoking geom-
etry (with its vibrant visual intuition) with algebra (with its more
verbal, symbolic, combinatorial intuition) is, perhaps one of the most
venerable, but hardly the only grand unification of subjects, convert-
ing an elusive analogy to an illuminating unity. Mathematics is rife
with these. In number theory, one of the great analogies that ties to-
gether two different fields (each with different fundamental guiding
intuitions) is called the Langlands Program which would yoke alge-
braic number theory (which in the old days at times went under the
name of “the higher arithmetic”) with group representation theory
(and specifically the part of that subject that combines analysis of
continuous groups with algebraic geometry).

To pass to a more mundane example, I think that the way we all
treat time as distance has lots to teach us.

7 Language restrained

Here is a dumb question. As I typed this section of my talk I
watched through my study window the leafy tree waving in the
breeze and partly obscuring the vertical fire escape ladder hugging

12and we do
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the tan stucco side of my neighbor’s house. If I didn’t have lan-
guage, how much of this scene could I have experienced? (I don’t
mean described, I mean experienced.) Probably not much.

I find this a tantalizing question, and feel, for example, that had
I no word to express the concept of tree my experience of the scene
would be significantly different. I certainly don’t believe, with the
Laputans in Jonathan Swift’s Gulliver’s Travels, that “in reality
all things imaginable are but nouns,” but I do believe that certain
things that we deem imaginable would not be so if there were no
nouns to pin them down. (And other parts of speech or forms of
syntax!)

There is, of course, a hefty meta-literature of experiments in fic-
tion and poetry that deprive language of certain strategies, allowing
us to contemplate what might just happen to the imagination as a
result. There are, for example, the resourceful Laputans alluded to
above who felt that

since words are only names for things, it would be more
convenient for all men to carry about them such things as
were necessary to express the particular business they are to
discourse on.

Or there is the cry for a banishment of metaphor utterly, in the
Wallace Stevens poem The man on the dump, which begins:

Day creeps down. The moon is creeping up.
The sun is a corbeil of flowers the moon Blanche
Places there, a bouquet. Ho-ho ... The dump is full
Of images.. . .

but things change in the course of the poem:

Everything is shed; and the moon comes up as the moon
(All its images are in the dump) and you see
As a man (not like an image of a man),
You see the moon rise in the empty sky.
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and the poem ends starkly:

Where was it one first heard of the truth? The the.

Something perplexing, and significant, is going on in this and other
poems by Wallace Stevens. Why would you discard images? The
simpleminded answer to this is that images, metaphors are getting in
the way of achieving some level of direct experience, unimpeded by—
as Wallace Stevens puts it in another poem— the “vital I.” Another
possibility is that depriving ourselves of metaphor somehow makes
those things-in-themselves unfamiliar to us, but in a useful way.

However we conceive it, this seems not to be a call for language
to bring experience more vitally to us but rather, for language to get
out of the way so that we can go about our business of “being,” less
encumbered.

A phenomenon, in some ways similar and in some ways not, hap-
pens in ordinary language all the time. Some words—maybe all
words— can play the role of protector for us when it is efficacious
for us not to think rather than to think. Euphemisms such as col-
lateral damage do their job, sometimes frighteningly well. But more
commonly there is the process dubbed by Victor Shklovsky13 alge-
brization. Here is Charles Baxter’s description of Shklovsky’s idea14:

Algebrization is the process of turning an event or familiar
object into an automatic symbol. It’s like saying Oh, she’s
having another one of her crazy tantrums or Yeah, it’s an-
other goddamn Freeway gridlock. We protect ourselves from
the force of her tantrum by turning it into an algebraic equiv-
alent: let x be the tantrum. Well, she’s having another x.
It’s just one of those things she does.

Here’s how Shklovsky describes it:
13in an essay entitled Art as Technique written in 1917
14Charles Baxter, Burning Down the House: Essays on Fiction Graywolf Press (1997)
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We see the object as though it were enveloped in a sack.
We know what it is by its configuration, but we only see its
silhouette.

Shklovsky’s ‘algebraic’ method of thought derives from—and there-
fore has its counterpart in—the language of mathematics. But it oc-
curs in mathematics with a special “extra”: we can actually engage
effectively with the symbolic avatars of the mathematical objects
that are algebrized, and work with them, calculate them and calcu-
late fluently with them, and combine them in larger constellations.
There are simply times when the best thing that mathematical lan-
guage can do for us is to allow us not to think rather than the reverse.
It would take yet another hour to give you a catalogue—not of the
examples of this, but just—of the types of examples of this. Some-
times certain mathematical theories have the virtue of putting some
aspects of the content in the shadows so that one can focus on form
unencumbered by content. Sometimes, on top of that, the theory
will package content into symbols that compactly hide a complexity
of content that would otherwise “get in the way” so that we can get
to work with these symbols following the appropriate (pre-thought
out) rules.

Here, then, is one example of this algebrization in mathematics
that has always seemed striking to me: many historical accounts of
mathematics have been devoted to delving into aspects of Georg
Cantor’s magnificent Theory of Sets and for good reason: there
are wonderful things to relate about the profundity, the complex-
ity, the strangeness, of the theory itself, and of the life stories of the
mathematicians involved. Well before Cantor, mathematicians and
philosophers15 thought about ’collections of objects.’ People also
considered diagrams to depict sets and their inter-relations. For
example, Euler in the eighteenth century and Venn in the late nine-
teenth century used diagrams like:

15Aristotle included
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but given Cantor’s aims it was very natural for him to turn to the
algebra of symbols, rather than the geometry of diagrams—in short,
to “algebrize” his theory—which required him, among other things,
to actually assign letters to denote sets. Merely saying “Let S be a
set” puts one in the frame of mind to deal with sets as manipulable
objects with a salient structure of their own and amenable to a kind
of algebra. This simple act of “algebrization” (“Let S be a set with
such-and-such properties”) is something that is second-nature to any
modern practicing mathematician; we do this without thinking and
it is a source of considerable power. It is so natural a strategy that,
at times, I forget that it is a strategy: there were epochs during
which much great mathematics was done, but no mathematician
had thought of symbolizing sets in order to work with them the
more fluently.

In summary:

• poets may–in certain cases— choose to constrain image-making-
language in order to allow for either a more direct confrontation
with things-in-themselves or a more telling slant confrontation,
thereby intensifying feeling, and

• mathematicians may choose to encapsulate the content of their
language in symbols so that—instead of being enmeshed in the
particularity of content one can all the more naturally work with,
and all the more intensely understand, the shape of things.

Here, then, are ways in which language is controlled exquisitely
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to pilot our imagination in the directions we choose: in poetry it is
often to intensify feeling, and in mathematics it is often to intensify
understanding.

8 Intuitions, sensibilities

At the beginning of this talk I mentioned two constituent elements
of our imaginative apparatus. Namely:

• our intuitions, by which I mean the various resources available
to us that allow us to “see” things— either in the literal sense of
picturing things or comprehending them by means of some type
of visualization; or in the metaphorical sense of grasping ideas
and being “at home” with them.

And

• our sensibilities by which I mean the various resources available
to us that allow us to “feel” things.

I don’t know what these useful angels (intuitions and sensibilities)
really are; but, at least in my personal experience, they are con-
stantly wrestling with language, and are alternately trammeled and
nurtured by language. This internal tug-of-. . . if not war, then art,
must be quite a common experience and I very much look forward
to our discussion about it.
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