
Thoughts about Andrew Ogg’s (Torsion) Conjecture

Barry Mazur

Andrew Ogg’s mathematical viewpoint has inspired an increasingly broad array
of results and conjectures. His results and conjectures have earmarked fruitful
turning points in our subject, and his influence has been such a gift to all of us1

Ogg’s celebrated Torsion Conjecture—as it relates to modular curves—can be
paraphrased as saying that rational points (on the modular curves that parametrize
torsion points on elliptic curves) exist if and only if there is a good geometric reason
for them to exist.

My talk will discuss this and recent related work2 .

1Here’s just one (tiny) instance of the many times I was indebted to Ogg’s guidance and
appreciated his jovial and joyful way of thinking: As Tate and I recorded in one of our papers

[29]:

“Ogg passed through our town” and mentioned that he had discovered a point of order 19 on

the jacobian of X1(13) allowing us to feel that that jacobian was

“not entitled to have”

more than 19 points.

2I want to thank the organizers of the conference (Talks Celebrating the Ogg Professorship in
Mathematics - October 13, 2022): these notes constitute background material for my lecture at

that conference. I also want to thank Barinder Banwait, Maarten Derickx, Filip Najman, Ken
Ribet and Preston Wake for their illuminating comments (and general conversation) that helped
me prepare for my talk.
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1. An overview

Let K be a number field, and denote by GK its absolute Galois group, i.e.

GK := Gal(K̄/K).

A basic question in the arithmetic of abelian varieties over number fields is to
classify (up to the natural notion of isomorphism) pairs

(A;C
α
↪→ A(K̄))

where

• A is a (polarized) abelian variety defined over K,
• C is a finite abelian group with a GK-action, and
• α is a GK-equivariant injection.

These are the three basic parameters in this general question, and you have your
choice of how you want to choose the range of each of them. For example, you can:

• allow the C’s to run through all cyclic finite groups with arbitrary GK-
action; and A to range through all abelian varieties with a specified type
of polarization. Equivalently, you are asking about K-rational cyclic
isogenies of abelian varieties, or

• restrict to finite C’s with trivial GK-action in which case you are asking
about K-rational torsion points on abelian varieties.

• You might also vary over a class of number fields K—e.g., number fields
that are of a fixed degree d over a given number field k,

• and, of course, fix the dimension of the abelian varieties you are consider-
ing.

2. ‘Geometrization’ of the Problem

If you organize your parameters appropriately you can “geometrize” your clas-
sification problem by recasting it as the problem of finding K-rational points on a
specific algebraic variety.

In more technical vocabulary: you’ve framed a representable moduli problem—
and the algebraic variety in question is called the moduli space representing that
moduli problem.

3. Some classical examples—modular curves

Fixing N a positive integer and sticking to elliptic curves, the moduli spaces for
rational torsion points or cyclic isogenies are smooth curves defined over Q:

torsion points of order N : Y1(N)
⊂ //

��

X1(N)

��
cyclic isogenies of degree N : Y0(N)

⊂ // X0(N)
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The elliptic curves defined over K possessing a K-rational point of order N are
classified by the K rational points of the affine curve Y1(N)—and X1(N) is the
projective smooth completion of Y1(N) given by the adjunction of a finite set of
’cusps’.

And similarly: the classification of elliptic curves defined over K possessing a
K-rational cyclic isogeny of degree N is given by the K-rational points of the affine
curve Y0(N)—with X0(N) being the corresponding smooth projective completion.

4. The geometric formulation comes with a number of side-benefits.

Here are two:

(i) If, say, the curve X0(N) is of genus 0—noting that one of the cusps (∞)
is defined over Q, it follows that there is a rational parametrization of
that curve over Q which gives us a systematic account (and parametriza-
tion); that is, a K-rational parametrization of cyclic N -isogenies of elliptic
curves—for any K.

(ii) If it is of genus > 0 one has a Q-rational embedding (sending the cusp ∞
to the origin)

X0(N) ↪→ J0(N)

of the curve in its jacobian, which allows us to relate questions about cyclic
N -isogenies to questions about the Mordell-Weil group (of K-rational
points of) the abelian variety J0(N).

(iii) Besides being able to apply all these resources of Diophantine techniques,
there are the simple constructions that are easy to take advantage of.

For example, if you have a ‘moduli space’ M whose K-rational points
for every number field K provides a classification of your problem over K,
then, say, for any prime p the set of K-rational points of the algebraic
variety that is the p-th symmetric power of M

—denoted Symmp(M)—

essentially classifies the same problem ranging over all extensions of K of
degree p.

As an illustration of this consider cyclic isogenies of degree N and noting
that the natural Q-rational mapping

Symmp(X0(N)) ↪→ J0(N)
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given by:

(x1, x2, . . . , xp) 7→ Divisor class of [
∑
i

xi − p · ∞]

is an embedding if N >> p , we get that the classification problem of all
cyclic N -isogenies of elliptic curves over all number fields of degree p is
geometrically related, again, to the Mordell-Weil group of J0(N) over Q
(when N >> p ).

5. Andrew Ogg’s Torsion Conjecture(s) (1973)

Andrew’s Torsion Conjectures taken in broad terms can be formulated in terms
of “the geometrization(s),” as just described—i.e., in terms of Q-rational points
of modular curves—and the Mordell-Weil groups of abelian varieties (i.e., of their
jacobians):

(i) Conjecture 1: An isomorphism class {C} of finite groups occurs
as the torsion subgroup of the Mordell-Weil group of some elliptic
curve (defined over Q) if and only if the modular curve that
classifies this problem is of genus zero3 .

Put in another way: an isomorphism class occurs if and only it is ex-
pected to occur; i.e., if it necessarily occurs, as a consequence of the ambi-
ent geometry—this view being a continuing guiding inspiration for number
theory.

By ‘geometry’ one means the (algebraic) geometry of the curve X0(N).
For example, Andrew’s article [33] discusses the curious case of X0(37)
which has two noncuspical Q-rational points, these being the images of
the hyperelliptic involution (a non-modular involution) applied to the two
cusps, both cusps being Q-rational. Andrew comments:

As Mazur and I are inclining to the opinion that Y0(N) has no Q-
rational points except for a finite number of values of N , we are
certainly interested in knowing when this sort of thing is going
on, and in putting a stop to it if at all possible.

(ii) Let J0(N) denote the jacobian of X0(N). Noting that the cusps of X0(N)
map to torsion points of J0(N), denote by C0(N) ⊂ J0(N)tors ⊂ J0(N)
the subgroup generated by those cusps.

3A form of this conjecture was made by Beppo Levi in his 1908 ICM address in Rome. See [43]

which gives a wonderful account of the story of Beppo Levi’s engagement with (and his important
results about) the arithmetic of elliptic curves—all this being even before Mordell proved that the

group of rational points of an elliptic curve over Q is finitely generated. Levi considers the tactic

of producing multiples of a rational point on an elliptic curves {n · P} n = 1, 2, 3, . . . a “failure”
if it loops finitely—i.e., if P is a torsion point; his aim is to classify such “failures.”
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Cusps in X0(N)

�� ''
C0(N)

��

X0(N)

��
J0(N)tors

⊂ // J0(N)

we have another, seemingly quite different type of conjecture:

Conjecture 2: Let N be a prime number. We have:

C0(N) = J0(N)tors(Q) ⊂ J0(N)(Q)

Put in another way: there are no ‘unexpected’ Q-rational torsion points in J0(N):
they all come from cusps.

That these two conjectures are interlinked is a long story (cf. [27], [28]).

A. Conjecture 1 is known. Specifically, letting Cn denote the cyclic group of
order n, the complete list of possible (isomorphism classes) of finite groups that
occur as torsion subgroups of the Mordell-Weil group of Q-rational points of elliptic
curves are:

• Cn with 1 ≤ n ≤ 10, and also C12, and
• the direct sum of C2 with C2m, for 1 ≤ m ≤ 4.

All these torsion groups occur infinitely often over Q, since the corresponding mod-
ular curves are all genus zero curves possessing a rational point 4.

Conjecture 1 having been completely resolved in the case of elliptic curves, has
inspired more general uniform boundedness expectations for rational points; e.g.,
for abelian varieties A over number fields K: conjectures that the order of the
torsion group of an abelian variety over a number field can be bounded in terms of
the dimension of the variety and the number field; and still stronger versions: that
the torsion is bounded in terms of the dimension of the variety and the degree of
the number field.

Moreover, it is striking how few additional isomorphism classes of K-rational
torsion subgroups of elliptic curves can occur in elliptic curves over quadratic and
cubic number fields K:

B. Torsion on elliptic curves over quadratic number fields.

Theorem 1. (Momose, Kenku, Kamienny) Let K range through all quadratic num-
ber fields, and E all elliptic curves over these fields. Then the torsion subgroup
E(K)tors of E(K) is isomorphic to one of the following 26 groups:

• Cn for 1 ≤ n ≤ 18, n 6= 17,
• the direct sum of C2 with C2m for 1 ≤ m ≤ 6,

4See [45] where it is proved that each of these groups appears as a possible torsion group over
any quadratic field.
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• the direct sum of C3 with C3m for m = 1, 2,
• C4 ⊕ C4.

C. Torsion on elliptic curves over cubic number fields.

Theorem 2. (Derickx, Ttropolski, Van Hoeij, Morrow, Zureick-Brown) Let K
range through all cubic number fields, and E all elliptic curves over these fields.
Then the torsion subgroup E(K)tors of E(K) is isomorphic to one of the following
26 groups:

• Cn for 1 ≤ n ≤ 18, n 6= 17,
• the direct sum of C2 with C2m for 1 ≤ m ≤ 7,
• C20, C21.

There exist infinitely many Q-isomorphism classes for each such torsion subgroup
except for C21. In this case, the base change of the elliptic curve 162b1 to Q(ζ9)+

is the unique elliptic curve over a cubic field K with K-rational torsion group
isomorphic to C21.

6. Conjecture 2 expanded

• The order of the C0(N) had been computed for square-free N thanks to
Kubert, Lang, and Takagi (see ref. 4 for an example). In this case (i.e., N
square-free) the set of cusps are Q-rational.

• Ohta ([38], [39])) has proved a generalization of Ogg’s conjecture in the
context of square-free N . That is, he proved that the p-primary parts of
J0(N)tors(Q) and of C0(N) are equal for p ≥ 5 and p = 3 if 3 doesn’t
divide N .

Related to this, see [26], [12], [38], [39], [46], and [40], [41]. And just
last week the PNAS article [42] (Another look at rational torsion of mod-
ular Jacobians) by Ken Ribet and Preston Wake appeared giving another
approach to this issue.

• In the more general context of N not squarefree, the cuspidal subgroup of
J0(N) may not consist entirely of rational points; nevertheless:

Conjecture 2’:

J0(N)tors(Q) = C0(N)(Q) ⊂ C0(N).

7. Conjecture 2 further expanded

Now let X (over Q) denote either X0(N) or X1(N) for some N ≥ 1. Let J be
the Jacobian of X , and

C ⊂ J
the finite étale subgroup scheme of J generated by the cusps. Let K//Q be the
field ‘cut out by the action of Galois on C. Thus there’s an exact sequence



7

0→ Gal(Q̄/K)→ Gal(Q̄/Q)→ Aut(C(Q̄)).

Define the cuspidal defect of X to be the cokernel of

(3) C(Q̄) = C(K) ↪→ J (K)tors.

Conjecture 2”: The ‘cuspidal defect’ of any X listed above is trivial.

8. Remarkable ‘Diophantine Stability’

Definition 4. Let L/K be an extension of (number) fields, and V an algebraic
variety defined over K. Denote by V (K) the set of K-rational points of V . Say
that V is diophantine stable for L/K, or L/K is diophantine stable for V , if
the inclusion V (K) ↪→ V (L) is an isomorphism, i.e.: if V acquires no new rational
points after passing from K to L.

Note that Theorem 1 tells us that:

Corollary 5. For all but finitely many positive numbers N , the curve X1(N) (over
Q) is Diophantine Stable for all quadratic extensions L/Q.

This is striking, and suggests that Diophantine Stability is a common feature.

Karl Rubin and I have a theorem:

Theorem 6 (Theorem 1.2 of [30]). Suppose A is a simple abelian variety over K
and all K̄-endomorphisms of A are defined over K. Then there is a set S of rational
primes with positive density such that for every ` ∈ S and every n ≥ 1, there are
infinitely many cyclic extensions L/K of degree `n such that A(L) = A(K).

If A is an elliptic curve without complex multiplication, then S can be taken to
contain all but finitely many rational primes.

which Karl and I think is hardly the last word regarding the extent of Diophantine
Stability, specifically if the base field K is Q and if A = E, an elliptic curve over
Q. We conjecture that any such E is Diophantine stable for all but finitely many
Galois extensions of prime degree > 5.

9. Q-rational cyclic isogenies

It has long been known, thanks to a tradition of work (cf. [28] and a sequence of
papers of M.A. Kenku ([21], [22], [23], [24]) that the Q-rational cyclic isogenies of
degree N of elliptic curves defined over Q only occur—and do occur—if 1 ≤ N ≤ 19
or if N = 21, 25, 27, 37, 43, 67, or 163.

Following in the spirit of Ogg’s original view of torsion points, all of these N -
isogenies can be given ‘geometric reasons’ for existing; e.g., the 37-isogenies ‘come
by’ applying the hyperelliptic involution (it is non-modular!) to the cusps of X0(37).
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So, what about uniformity results regarding cyclic N -isogenies of elliptic curves
ranging over all quadratic fields?

10. ‘Expected’ and ‘Unexpected’ L-rational cyclic isogenies for L ranging
through quadratic fields

A corollary of a theorem of Faltings5 is that:

Corollary 7. (Faltings) Let K be a number field and X a curve defined over K.
Then X is Diophantine Stable for all but finitely many quadratic extensions L/K
unless X is—of genus 0 or 1, or—hyperelliptic or bielliptic (over K).

And, for a hyperelliptic and/or bielliptic curve X defined over K, Faltings proves
that there are only finitely many quadratic points (relative to K) that are not
parametrized by an infinite system of quadratic points arising by X being the double
cover of a rational curve Y with a K-rational point; or an elliptic curve of Mordell-
Weil rank > 0 over K):

π−1(Y (K))

π

��

⊂ // X(K̄)

π

��
Y (K)

⊂ // Y (K̄).

5For a discussion of this in the context of generalization(s) of the classical Mordell Conjecture—
with references listing the people who also worked on this, see my talk Thoughts about Mordell

and uniformity of finiteness bounds: https://people.math.harvard.edu/~mazur/papers/M.pdf

https://people.math.harvard.edu/~mazur/papers/M.pdf
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A. Isolated quadratic points. Call the set of quadratic points of X that are not
among such (infinite) systems of parametrized quadratic points isolated points.
The infinite systems deserve to be called ‘expected quadratic points (over K) in X’
given the geometry of the situation.

But when X = X0(N) for some N and K = Q there may also be a few other

points of X0(N) over quadratic imaginary fields Q[
√
d] of class number 1; i.e.,

d = −1,−2,−3,−7,−11,−19,−43,−67,−163

that deserve the title: “expected.” Namely, if E is an elliptic curve over Q that
is CM with CM field K := Q[

√
d] (with d in the above list) then for any positive

integer N with the property that all of its prime divisors are (unramified) and
split in K, E has a K-rational cyclic isogeny of degree N ; hence is classified by a
K-rational point of X0(N). Such a point is therefore also ‘expected.” So:

B. Sporadic quadratic points.

Definition 8. Call a quadratic point of X0(N) sporadic (quadratic) if:

• it is not a cusp,
and

• is isolated; i.e.,

– is not the inverse image of a Q-rational point in P1 via a hyperelliptic
covering (i.e., a degree 2 mapping X0(N) → P1), in the case where
X0(N) is hyperelliptic,

and

– is not the inverse image of a Q-rational point in an elliptic curve E
via a bielliptic covering (i.e., a degree 2 mapping X0(N)→ E), in the
case where X0(N) is bielliptic,

and

• is not a point of X0(N) classifying a CM elliptic curve and cyclic isogeny
of degree N as described above.

Conjecture 9. Ranging over all X0(N)’s for N ∈ Z≥1 there are only finitely many
sporadic quadratic points.

Following the quotation I gave of Andrew’s view regarding ratio-
nal torsion, I’m guessing that both of us are certainly interested
“in knowing when this [sporadic quadratic points] sort of thing is
going on, and in putting a stop to it if at all possible.”

Thanks to the recent work of a number of people, the sporadic points of all of the
curves X0(N) that are hyperelliptic or bielliptic have been computed.
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Sheldon Kamienny, on reading these notes, made the following comment:

The existence of sporadic points always left me scratching my
head. Do they fit into a framework, or is it just nature being
unkind?

11. Hyperelliptic X0(N)

A classical theorem of Ogg [33] gives the nineteen values of N for which X0(N)
is hyperelliptic (we take hyperelliptic to require that the genus is > 1):

N : 22 23 26 28 29 30 31 33 35 37
genus : 2 2 2 2 2 3 2 3 3 2

N : 39 40 41 46 47 48 50 59 71
genus : 3 3 3 5 4 3 2 5 6

The levels N that appear in boldface above are those values of N such that
X0(N) is bielliptic as well as hyperelliptic. All sporadic quadratic points for any
of those modular curves X0(N) (except for X0(37)) have been computed by Peter
Bruin and Filip Najman in their article [9] (which has other interesting results
as well). The case of X0(37) is taken care of in Josha Box’s paper [8], in which
all sporadic quadratic points have also been computed for the curves X0(N) with
N = 43, 53, 61, 65, these being bielliptic curves covering elliptic curves of positive
Mordell-Weil rank.

Proposition 10. (Francesc Bar [7]) These are the values of N for which X0(N)
is of genus > 1 and bielliptic (over Q):

22 26 28 30 33 34 35 37 38
39 40 42 43 44 45 48 50 51
53 54 55 56 60 61 62 63 64
65 69 72 75 79 81 83 89 92
94 95 101 119 131

Until very recently there remained a dozen entries in the above table for which we
did not know the set of their isolated quadratic points. Thanks to Filip Najman and
Borna Vukorepa ([32]) we now have computation of the isolated quadratic points
for all bielliptic curves X0(N) (as we also do for all hyperelliptic X0(N)).

12. Exotic quadratic points

Let N be prime, and wN : X0(N) → X0(N) the Atkin-Lehner involution. This
involution is given by sending a pair (representing a point in X0(N))

(E,CN
α
↪→ E)

–consisting of an elliptic curve E and CN a cyclic subgroup of order N—

to the pair
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(E′, C ′N
α′

↪→ E′).

Here: E′ := E/CN and C ′N := E[N ]/CN (where E[N ] is the kernel of multi-
plicative by N in E).

Forming the quotient,

X0(N)+ := X0(N)/action of wN

we get the double cover

X0(N)
π−→ X0(N)+

Definition 11. For N prime such that X0(N)+ of genus > 1, call a quadratic
point P of X0(N) exotic (quadratic) if

• it is not a cusp,

• is not a point of X0(N) classifying a CM elliptic curve (and cyclic isogeny
of degree N)

and

• π(P ) is a Q-rational point of X0(N)+.

Exotic points deserve the adjective, since they have the intriguing structure of
a duo of N -isogenies:

E
N↔ E ′

and

E ′
N↔ E.

This structure can also be combined into a single abelian surface defined over Q:

A := E × E′

endowed with an endomorphism:

“
√
N” :

(
x, y
)
7→
(
α′(y), α(x)

)
.
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So, the exotic quadratic points of X0(N) correspond to some of the Q-rational
points of X+

0 (N). What tools do we have compute those Q-rational points?

The classical method of Chabauty-Coleman computes usable bounds for the
numbers of rational points on a curve X (of genus > 1) provided that the rank r
of the Mordell-Weil group of the jacobian of X is strictly less than to its genus g.

But the Birch and Swinnerton-Dyer conjecture predicts that (for N prime) the
rank r0(N)+ of the Mordell-Weil group of the jacobian of X+

0 (N) is greater than
or equal to g0(N)+, the genus of X0(N). So this classical method can’t be brought
to bear here.

Computationally, we have many examples where there’s actual equality:

r0(N)+ = g0(N)+.

Happily, for exactly such cases—i.e., for curves X of genus > 1 with r = g— we
have the more recent “Quadratic Chabauty-Coleman-Kim” method that offers a
powerful approach to compute the set of all Q-rational points6. And we have an
enormous amount of progress. For example see [2], [3], [4], and [5].

Elkies and Galbraith [14] found exceptional rational points on X+
0 (N) for N =

73, 91, 103, 191 (genus 2) and N = 137, 311 (genus 4). and in [3] Balakrishnan,
Dogra, Müller, Tuitman, and Vonk proved that the only prime values of N with
X+

0 (N) of genus 2 or 3 that have an exotic rational point are N = 73, 103, 191.
Moreover, for prime N , if X+

0 (N) is of genus 3, it has no exotic rational points.
The list of curves X0(N)+ of genus 2 or 3 with N prime is a result of Ogg: We
have:

Theorem (Ogg) For N prime, X0(N)+ is of genus 2 if and only if

N ∈ {67, 73, 103, 107, 167, 191}
and it has genus 3 if and only if

N ∈ {97, 109, 113, 127, 139, 149, 151, 179, 239}.

See also the survey article [16] (and [14], [15]) in which exotic points (found by
Elkies and Galbraith) are defined and studied in the context of Q-curves; and for
the list of the five known exotic N -isogenies (with N being prime), these being
rational over a quadratic field of discriminant ∆:

N ∆
73 −127
103 5 · 557
137 −31159
191 61 · 229 · 145757
311 11 · 17 · 9011 · 23629

6I think it is reasonable to conjecture that the average value of the ratios

r0(N)+

g0(N)+

is 1; e.g., as N ranges through prime values; are these ratios bounded?
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Are these the only exotic isogenies? There’s lots to be done.

Thanks Andrew for inspiring all of us; thanks to the organizers of the
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