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Mordell



Concrete questions

One striking aspect of Mordell’s mathematics is how he is
known both for the concrete questions posed in simple English
sentences that he considered, such as:

Which products of two consecutive integers

are also products of three consecutive

integers?

The answer: 0,6, and 210



Or

Given an integer n, in how many ways can it

be expressed as the difference between a

square and a cube? (And the same question

given a rational number.)



And, in contrast: Mordell’s general theorem

that the group of rational points of an

elliptic curve over Q is finitely generated

—a theorem generalized by André Weil to

cover abelian varieties over number fields.



And his broad conjecture that curves of genus

> 1 over Q have only finitely many points

—proved four decades ago by Faltings over

general number fields,

with further proofs coming from different

angles,

by Vojta, Bombieri, and Faltings again; and
a very recent proof (2020) by Lawrence, and
Venkatesh.



Related work, extending Mordell’s Conjecture:

There is a long list of fundamental results extending his
Conjecture1 and, e.g., bounding division points on subvarieties
of semi-abelian varieties2.

. . . comment about footnotes. . .

1See my survey article Abelian Varieties and the Mordell-Lang
Conjecture in Model Theory Algebra and Geometry, MSRI Publications
39 (2000) 199-227.

2e.g., McQuillan, Michael (1995). “Division points on semi-abelian
varieties”. Invent. Math. 120 (1): 143-159



The hundredth anniversary of Mordell’s

foundational paper, proving his famous theorem

and posing his famous conjecture

is a good moment to review some basic

questions it opened up: questions of

finiteness and uniformity in arithmetic.



Uniformity of Mordell-Weil rank

To begin, consider this fairly recent (striking!) conjecture3

suggested by computations that depend on the random matrix
heuristic. It is striking in its precision, and in how close it is to
the data accumulated so far.

3A heuristic for boundedness of ranks of elliptic curves, Jennifer Park,
Bjorn Poonen, John Voight, Melanie Matchett Wood
https://arxiv.org/abs/1602.01431

https://arxiv.org/abs/1602.01431


Conjecture
(Park, Poonen, Voight, Wood) There are only finitely many
elliptic curves over K = Q of Mordell-Weil rank greater than
21.

We know, in fact, very few examples of Mordell-Weil rank
greater than 21. Here’s one:



Noam Elkies’ elliptic curve “E28”

of rank ≥ 28 :

Y 2 + XY + Y = X 3 − X 2−

−20067762415575526585033208 ∼

∼ 209338542750930230312178956502X+

+344816117950305564670329856903907203748559 ∼

∼ 44359319180361266008296291939448732243429.

and it is of rank exactly 28 subject to GRH4.

4Klagsbrun, Sherman, and Weigandt
https://arxiv.org/pdf/1606.07178.pdf

https://arxiv.org/pdf/1606.07178.pdf


An impressive amount of recent and current

work—within the past two pandemic years!

has been devoted to uniformity issues
regarding numbers of points having various
interesting properties on curves (and on
higher dimensional varieties).

Work, for example, of:

De Marco-Krieger-Ye,
Dimitrov-Gao-Habegger,
Gao-Ge-Kühne,
and very recent work of Kühne,
and others. . . .



Although I won’t have time to do justice to even

any one of these exciting developments,

I will at least hint at their existence, giving me the opportunity
to ask yet more uniformity questions.

The thrust of Mordell’s classical conjecture is that it suggests
(i.e., it conjectures) that a purely diophantine consequence
follows from a purely (algebraic) geometric hypothesis.

Later, and in a broader context, Serge Lang adopted this
attitude toward the relationship between arithmetic and
geometry, to frame his more general conjectures.



Abuse of Language

Below I’ll be dealing with abelian varieties over fields K and
abelian schemes over base schemes S . But I will abuse the
terminology a bit by calling an

“abelian variety”

any variety (of positive dimension) that becomes an abelian
variety over some finite degree extension field L of K after the
choice of a rational point as ‘origin.’

And, in the case where the base scheme is S I’ll call it an
abelian scheme over S if it becomes an abelian scheme over T
after some finite flat base change T/S and the choice of a
T -section, as ’section of the origin.’



(Following Serge Lang)

An algebraic variety (say: smooth, projective, geometrically
irreducible) over a finitely generated field K is called

Mordellian

if V has only finitely many L-rational points over any
extension L/K of finite degree.



I’m using the neologism Mordellian

because Lang’s concept of

Mordellic

requires that V have only finitely many rational points over
any finitely generated extension of K whereas my definition
requires that it have only finitely many points over any
extension of K of finite degree.

Since I haven’t checked yet that these boil down to the same
thing, I need a different term.



We have a classical theorem and a classical

conjecture regarding this Lang-like notion

First, the Theorem (Faltings): If V/K is

(1) a subvariety of an abelian variety over a
number field K

(2) that doesn’t contain any subvariety that
is an abelian variety,

then V is Mordellian.



For curves V , this reduces to. . . the classical

Mordell Conjecture:

A curve V over a number field K satisfying the first condition
is not of genus 0 and satisfying the second is not of genus 1,
so the theorem establishes an equivalence:

A curve (smooth, projective, geometrically
irreducible) is Mordellian if and only if it
satisfies (1) and (2) above.



Second, the conjecture

perhaps due to—but in any event, in the style of—Serge
Lang):

A variety V as above is Mordellian if and only if it doesn’t
contain a nontrivial image of

1. a rational curve, or

2. an abelian variety,



A related conjecture also attributed to Lang:

Conjecture ( “The Strong Lang Conjecture” (SLC))
For X a variety of general type, defined over a number field K

there is a proper subvariety

Z ⊂ X

whose complement X \ Z is Mordellian.



Mordellian schemes

It is natural to broaden the definition of ‘Mordellian’ over any
base scheme S—but, to focus the mind a bit:

let S be a regular connected scheme of finite type and the
structure morphism

f : V → S

a smooth faithfully flat extension, with V also connected.

Definition
The S-scheme V/S is Mordellian if for every finite flat

morphism T
ι−→ S the base changed scheme

V/T := V/S ×S T

has only finitely many T -sections.



A classical example

Theorem
Let S := Spec(OK ) where K is a number field and

V/S = P1
/S \ D

where D is a divisor on P1
/S given by the support of the zeroes

of a homogeneous polynomial

f (x , y) ∈ Ok [x , y ]

of degree ≥ 3, with the gcd of its coefficients equal to 1, and
having no multiple roots. Then V/S is Mordellian.



The very classical example is:

f (x , y) = xy(x − y)

where the S-sections are given by pairs of units of OK that
sum to 1. There are only finite many such, by Siegel’s
Theorem.



Uniformity—useful, and less useful—of finiteness

bounds

For a useful definition of height we can fix on any positive real
valued function of the coordinates that has the property that
for any fixed number field K the number of coordinates
(x1, x2, . . . , xν) of height bounded by a real number X is finite.



If you have a proof that the set of solution of a system of
polynomial equations is finite and the algorithm provided by
the proof offers an upper bound for the heights of the
solutions,

in principle (if not in practice) just setting a computer going—

to systematically climb coordinates with greater and greater
heights up to the upper bound

—gives you all the solutions.



If your proof only offers an upper bound for the number of
solutions, this is far less helpful, because the upper bound
provided by the proof (for the number of solutions) is often
strictly larger—usually astronomically larger—than

the actual number of solutions5.

So—just by having such an inexact upper bound for the
number of solutions— even if you systematically search, you
may never know whether you have a complete set.

5A few years ago I learned that Model Theory provided a proof of
finiteness of the number of points with a certain property that interested
me. I asked Tom Scanlon and James Freitag for the upper bound that
the Model Theoretic proof provided. It was striking that this bound can
be computed; it was 366. I’m guessing, though, that the actual number
is something like 3 or 4.



All known proofs of Mordell’s Conjecture

do provide upper bounds for the number. . .
but not for the height of rational points on
curves of genus > 1.



Classical questions regarding finiteness and

uniformity of upper bounds

At least three “named problems” have been
the subject of recent results regarding
uniformity6:

I The “second part of Hilbert’s 16th Problem

I The Uniform Mordell-Lang Conjecture over C
I The Manin-Mumford Conjecture

6I want to thank Dana Schlomiuk, Umberto Zannier and Ziyang Gao
for conversations we had about different aspects of this, as I was
preparing my slides.



The “second part of Hilbert’s 16th Problem”

The problem, as posed by Hilbert at the International Congress
of Mathematicians in 1900, is, in effect, to show that the
number of limit cycles for any planar vector field defined by

∂x

∂t
= P(x , y);

∂y

∂t
= Q(x , y)

where P(x , y),Q(x , y) ∈ R[x , y ] are polynomials of degree n

is finite. . . and is less than a bound that only depends on the
degree n—possibly a polynomial in n.



(The status of Hilbert’s 16th Problem problem at

the moment is interesting!)

Steve Smale’s comment: about this problem: “Except for the
Riemann Hypothesis, it seems to be the most elusive of
Hilbert’s problems.”



The Uniform Mordell-Lang Conjecture
For a discussion of this and related problems, see

I Marc Hindry’s (1997) Introduction to abelian varieties
and the Mordell-Lang Conjecture https://webusers.

imj-prg.fr/~marc.hindry/abvarmodel.pdf over C

and

I two wonderfully extensive reviews by Ziyang Gao (2021),
including very recent work by
Dimitrov, Habegger, Gao, Ge, and Kühne on Uniform
Mordell-Lang—

I A proof of the Uniform Mordell-Lang Conjecture
https://webusers.imj-prg.fr/~anna.cadoret/

uml_complete.pdf
I Recent developments of the Uniform Mordell-Lang

Conjecture. arXiv:2104.03431, April 2021

https://webusers.imj-prg.fr/~marc.hindry/abvarmodel.pdf
https://webusers.imj-prg.fr/~marc.hindry/abvarmodel.pdf
https://webusers.imj-prg.fr/~anna.cadoret/uml_complete.pdf
https://webusers.imj-prg.fr/~anna.cadoret/uml_complete.pdf


The Uniform Mordell-Lang Conjecture

The classical Mordell Conjecture is, of course, arithmetic: it is
about K -rational points when K is a number field.

But the most general form of the Uniform Mordell-Lang
Conjecture is over C—it is, in effect, complex analytic: it is a
question about algebraic varieties over C.



Uniform Mordell-Lang Conjecture(s)

Uniform Mordell-Lang Conjectures mean (‘uniform’ versions
of) Mordell’s classical conjecture with uniformity bound
dependent on various things and especially that interesting
extra variable:

ρ := the Mordell-Weil rank of the jacobian.

(ρ being appropriately interpreted)



The uniformity being:

an upper bound for the number of K -rational points of a

curve C of genus g > 1 with jacobian having Mordell-Weil

rank ρ over K , the upper bound having the form:

B1+ρ,



and where one can take the constant B to be only

dependent on:

I g , [K : Q], and the Falting height of the jacobian of C .

(∼ 1995) Vojta, Faltings, Bombieri, de Diego,
David-Philippon, and Rémond.

I g and [K : Q]

(2021)V. Dimitrov, Z. Gao, and P. Habegger

I g alone! (which ‘allows for’ a generalization entirely in
the vocabulary of complex analytic varieties)

(2021) L. Kühne7

7Equidistribution in Families of Abelian Varieties and Uniformity,
arXiv:2101.10272

 arXiv:2101.10272


With corresponding uniformity properties proved

about subvarieties of abelian varieties not

containing abelian varieties. . . rather than just

curves.

As in recent work of Z. Gao, T. Ge and L

Kühne establishing:

The Uniform Mordell-Lang Conjecture

(and the Uniform Bogomolov Conjecture)

for subvarieties of abelian varieties.

But, back to curves:



Moving the Problem from Diophantine vocabulary

to complex analytic vocabulary

Say that a group Γ is of (finite) rank ρ if

Γ⊗Z Q

is a Q-vector space of dimension ρ.

Question
Given an algebraic curve over C of genus g > 1 embedded in
its jacobian J and a subgroup Γ ⊂ J(C) of rank ρ is there a
uniform upper bound—B(g , ρ) (dependent only on g and ρ)
for the number of points in the intersection of the curve and Γ?



Note that if one proves that there is such a

bound, B(g , ρ), for finitely generated subgroups

Γ ⊂ J(C),

this same bound B(g , ρ) works, bounding |Γ ∩ C | for all
subgroups Γ ⊂ J(C) of rank ρ.

Proof.
Any such group Γ is a union of a nested sequence

Γ1 ⊂ Γ2 ⊂ . . . Γn ⊂ Γ = ∪∞n=1Γn

each Γn a finitely generated subgroup, each of rank ρ, and
hence each of these contain at most B(g , ρ) points of
C (C).



The Uniform Mordell-Lang conjecture is that the

answer to this question is YES.

A proof of this conjecture has very recently been submitted to

Archiv by Lars Kühne. And the bound can (again!) be taken

to be

B(g , ρ) = B(g)1+ρ (1)

for B(g) a function of the genus alone.



The Uniform Mordell-Lang Conjecture over C
includes both:

1. The classical Mordell Conjecture

and

2. The Manin-Mumford Conjecture.

We will return soon to these uniformity issues regarding
rational points on curves of genus > 1, but now:



The Manin-Mumford Conjecture

Yuri Manin and David Mumford posed (independently) the
following question:

Does any curve of genus > 1 when viewed as a subvariety of
its jacobian contain only finitely many torsion points?

This question—answered affirmatively by Raynaud in 1983
—has many variants; e.g.,

Conjecture
(Manin-Mumford) Any injective morphism of a curve of
genus > 1 into an abelian variety has only finitely many
torsion points of the abelian variety in its image.



or more general formulations due to Bogomolov;

Bogomolov conjectured that for any ε > 0 such a curve has
only finitely many algebraic points that are (as the curve sits
in its Jacobean) within ε of a torsion point—as measured by
Néron-Tate height.

These questions have been answered by results of Ullmo (using
work of Szpiro and Zhang).

And further general statements about subvarieties of abelian
varieties have been proved by Zhang.



Uniform Manin-Mumford

In recent years we have begun to see striking uniformity results
regarding this Manin-Mumford question (and the
corresponding Bogomolov question).

For example In 2020 De Marco, Kreiger, and Ye proved
uniformity of bounds for bielliptic curves.

Lars Kühne (last year) established the Uniform Mordell-Lang
Conjecture over C and this includes the full Uniform
Manin-Mumford Conjecture;

i.e., the existence of a uniform upper bound B(g) for the
number of torsion points of the jacobian that lies on a curve
(of genus > 1 ) embedded in it.



And this morning, Ziyang Gao gave a sketch of a

proof of his recent work with Habegger on the

relative uniform Manin-Mumford problem.

This is the Manin-Mumford version of the the Relative
Bogomolov Conjecture 8.

This new result uses the Pila-Zannier method, with many of
the techniques having appeared in Dimitrov-Gao-Habegger’s
proof of their version of uniform Mordell-Lang.

8(Conjecture 10.1 of Gao’s survey https://webusers.imj-prg.fr/

~ziyang.gao/articles/SurveyUnifML.pdf

https://webusers.imj-prg.fr/~ziyang.gao/articles/SurveyUnifML.pdf
https://webusers.imj-prg.fr/~ziyang.gao/articles/SurveyUnifML.pdf


Other types of uniformity of upper bounds for the

number of rational points on curves of genus g

Here are three other uniformity formats that are qualitatively
different uniform upper bounds for the number of rational
points of curves of genus g with jacobians of rank ρ over
number fields of degree d .



I (1) A Chabauty-Kim bound: These bounds are in the
format of Minhyong Kim’s extension of Robert Coleman’s
way of extending the classical method of Chabauty.
Chabauty’s method requires that ρ < g .

Adopting the Chabauty-Kim framework, Jennifer
Balakrishnan in various publications e.g., with A. Besser,
and J. S. Müller 9 and with Netan Dogra 10(and others)
provide “Quadratic Chabauty” bounds when ρ = g .

9Quadratic Chabauty: p-adic height pairings and integral points on
hyperelliptic curves. J. Reine Angew. Math., 720:51- 79, 2016

10An Effective Chabauty-Kim Theorem arXiv:1803.10102v2

arXiv:1803.10102v2


These bounds are (usually) only over the field Q but they are
given with explicit (usable) constants and where the rational
points are among the zeroes of a specified analytic function.

Regarding uniformity, see forthcoming work (Towards Uniform
Chabauty-Kim) by L.A. Betts, D. Corwin, and M. Leonhardt
giving explicit bounds for the number of rational points on
curves of genus g over Q where the bounds are in terms of g ,
ρ, and and certain numbers related to the reduction type of
the curve at primes of bad reduction.



I (2) Statistical bounds:

Enormous progress has been made in recent years in
establishing average bounds.

E.g., as in the work of Manjul Bhargava and Benedict H.
Gross, Bjorn Poonen and Michael Stoll, Arul Shankar and
Xiaoheng Wang, and Levent Alpoge.



I (3) A (conjectured) bound independent of the

number field, or ρ!

. . . except for finitely many “exception curves”—the number
of these exceptions being dependent of the number field.



Lucia Caporaso, Joe Harris and I conjecture that for any genus
g > 1 there is a finite upper bound N(g) such that:

for any number field K there are only finitely many
(isomorphism classes over K ) of curves of genus g defined
over K with more than N(g) K -rational points.

This may seem a bit extreme, however we’ve proved that the
above conjecture follows from the Strong Lang Conjecture.

. . . Comment about the published proof (1997)!. . .

But see:

L. Caporaso, J. Harris and B. Mazur, Uniformity of rational
points: an up-date and corrections, Tunisian Journal of
Mathematics 4 (2022), No. 1, 183-201



Behavior of N(g) as g tends to ∞

Given g , for n = 2g + 2 consider the hyperelliptic curves

C : Y 2 = (X − a1)(X − a2) · · · · · (X − an)

with ai ∈ Q ( for i = 1, 2, . . . , n with ai 6= aj if i 6= j).



Such a curve C is of genus g and since

{(0, ai) |i = 1, 2, . . . , n}

is a subset of its Q-rational points, we have

|C (Q| ≥ n.

Moreover by varying the ai we get infinitely many such curves
defined over Q—and non-isomorphic, even over C.

So,

N(g) ≥ 2g + 2.



Automorphism orbits of rational points

For C a smooth projective, irreducible curve of genus g > 1
defined over a number field K let AutK (C ) be the group of
automorphisms of C defined over K .
The group AutK (C ) acts naturally on the set C (K ) of
K -rational points of C .

Let ν(C ;K ) denote the number of AutK (C )-orbits in C (K )
under that natural action.
So, of course,

ν(C ;K ) ≤ |C (K )|

and therefore any uniform upper bound established for |C (K )|
is valid for ν(C ;K ) as well.



Define ν(g) to be the smallest integer that has the property
that for each number field K there are only finitely many
curves C of genus g defined over K with the property that
ν(C ;K ) is strictly greater than ν(g).

So:

SLC =⇒ {ν(g) < +∞}



If one feels that there is a fair chance for SLC to be true, and
hence for ν(g) to be finite, one might wonder about the
asymptotic behavior of ν(g) as g tends to infinity.

Needless to say, we have no real evidence to make any
conjectures, or precise predictions, but:

Question

Is

ν(g) = 3g + o(g)?

. . . discuss. . .



Uniformity of dimension of the ’Diophantine span’

of moduli spaces

Here is yet another type of diophantine uniformity:

Definition

For V a variety over K a number field, the

K -Diophantine span of V is the

dimension of the Zariski-closure in V of the

set V (K ) of K -rational points of V .

. . . also for stacks. . .



Consider the moduli stack Mg ,n

of curves of genus g with an ordered system of n designated
points.

Let

M∗g ,n ⊂ Mg ,n,

be the substack of curves of genus g with an ordered system
of n distinct! points



And let dg ,n(K ) denote the K -diophantine span of

M∗g ,n

Now ‘quantify over all number fields” and define:

dg ,n := maxK dg ,n(K ).



Uniformity in n?

Fix g > 1.

The trivial upper bound:

dg ,n ≤ 3g − 3 + n

SLC =⇒ If n�g 0—then dg ,n = 0.



What else can one say (or conjecture) about these

dg ,n?

Query
Can one find an example where dg ,m > dg ,n with g > 1 and
m > n?

E.g., consider d2,n for varying n?

Is d2,n = 3 for n ≤ 7.

Query
What can be said about the asymptotic of dg ,0 for varying g?

Lots to be thought about. . . following the spirit of Mordell!


	Two types of upper bounds offering finiteness of rational points: bounds on cardinality versus bounds on height

