
VERY ROUGH NOTES TO ACCOMPANY THE TALKS
ABOUT THE METHOD OF CHABAUTY, COLEMAN,

KIM

BARRY MAZUR

Part 1. Around Selmer

For a very short and neat intro to Selmer groups of abelian varieties
in classical vocabulary, see Karl Rubin’s Introduction to Selmer Groups
https://www.math.uci.edu/~krubin/lectures/msri1.pdf

1. The basic mapping

To begin simply, consider Γ = Γ/K an (étale) finite group scheme over
a local or global number field K. In effect, this is just a finite group
(but not necessarily abelian) together with an action of GK . And now,
working over K, consider a finite flat étale cover of a connected curve1

Y → X with ‘Galois group’ Γ—i.e., there is a principal action of the
group scheme Γ on Y with quotient scheme X. If x ∈ X(K), the
fiber Yx is then a K-torsor for Γ, and so gives us a class—in the usual
way2—in the pointed set H1(GK ; Γ).

This gives us a natural (and fundamental) mapping:

(1.1) X(K)
αX/Y,Γ−→ H1(GK ; Γ).

defined by the rule: x 7→ α(x) := the class in H1(GK ; Γ) that repre-
sents the Γ-torsor Yx.

1or, for that matter, one could work with more general connected schemes

2 If T is a K-torsor for Γ, let t ∈ T (K̄) be a K̄-valued point of T , and the class
‘classifying’ the K-torsor T is represented y the 1-cocycle [g 7→ γg] where γg ∈ Γ(K̄)
is the unique element such that γg · t = g(t). Here, the ‘dot’ in the LHS indicates
the natural action of Γ on T and the parenthesis in the RHS indicates the action
of Galois.

1

https://www.math.uci.edu/~krubin/lectures/msri1.pdf


2 BARRY MAZUR

Moreover, we may take Y → X to be pro-finite étale—and, cor-
respondingly, we may take Γ too to be pro-finite—and get the same
mapping 1.1.

• This mapping 1.1 is the basis for the Kummer map when X
is a connected abelian group scheme (e.g., an abelian variety)
taking Y → X to be

(1.2) X
N−→ X,

i.e., multiplication by a positive integer N so that Γ := X[N ]
and (since 1.2 is a faithfully flat morphism) we have the short
exact sequence

(1.3) 0→ X[N ]→ X
N−→ X → 0.

The mapping 1.1 is the classical Kummer map; i.e., the
(first) coboundary homomorphism attached to 1.33

• It is also the basis of the natural mapping in the anabelian
context related to the K-scheme X (where Γ is some chosen
quotient of the étale pro-finite fundamental group (scheme) of
X). For this, let the K-scheme X be given with a K-rational
base point xo = Spec(K) in X.

Let
– K̄/K be an algebraic closure,
– X̄ := X ×Spec(K) Spec(K̄),
– x̄o = Spec(K̄) which we view as a ‘geometric point’ of both
X and xo leading to the exact sequence (and diagram):

(1.5) 1 // π1(X̄, x̄o)
geom // π1(X, x̄o) // Gal(K̄/K) //

'
��

0

π1(x0, x̄o)

←↩

gg

3 This is a straightforward exercise: consider the long exact sequence attached
to the short exact sequence 1.3.

(1.4) . . .→ X(K)
N−→ X(K) −→ H1(GK ; Γ)→ . . .

For a K-rational point x in X(K) find y ∈ X(K̄) such that N · y = x. The
coboundary ∂x is just given by the class represented by the cocycle [g 7→ g(y)− y]
which also classifies the fiber of x (with respect to the morphism 1.2) when viewed
as X[N ]-torsor.
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The basic features of Galois Theory hold here: any con-
nected finite (or profinite) étale cover of X is given (is ‘classi-
fied’), up to isomorphism, by a closed subgroup of π1(X, x̄o),
and the converse is also true.

Examples:

– Let Y → X be the profinite étale cover of X ‘classified’ by
the image of π1(x0, x̄o) in π1(X, x̄o) under the upper left
morphism of diagram 1.5. Alternatively, Y → X can be
viewed as the maximal (connected) profinite étale cover
that has a K-rational point mapping to xo. This cover
Y/X is not Galois, but its base change Ȳ /X̄ is Galois
with Galois group equal to π1(X̄, x̄o)

geom.

So Γ := π1(X̄, x̄o)
geom is an étale pro-finite group with its

naturalGK-action. We can view this Γ as a profinite group
scheme over K that admits a K-action on Y such that
the quotient is X. The corresponding mapping 1.1 is the
natural map that plays a principal role in the anabelian
theory.

– Taking Γ to be the pro-unipotent, the pro-p -unipotent,
or the abelian, or pro-p abelian quotient of the previous
bullet, we get corresponding examples of 1.1.

– More specifically, Put U{0} := π1(X, xo), and consider,
inductively, the lower central series U{n+1} := [U{0}, U{n}],
and the corresponding quotients,

U(n) := π1(X̄, xo)/U
{n}.

Now take, as our Γ, Γ := U(n) for some positive integer
n. For n = 1, we have that

U(1) = π1(X̄, xo)
ab = H1(X̄, Ẑ)

and we are in the abelian situation, so the mapping 1.1
is closely related to the Kummer mapping composed with
the natural mapping of X to its Albanese variety. Tak-
ing n = 2 we find ourselves in the context of Chabauty-
Coleman-Kim, as we shall see.
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– More to the point, one can fix some prime p and work

with U
{0}
p := the pro-p-completion of π1(X, xo). One then

defines U
{n}
p and Up(n) in the analogous way.

– In the literature one finds that people like to go even
further, taking the Qp-Malcev extensions of these groups
Up(n).

2. Imposing local conditions

The mapping

(2.1) X(K)
α−→ H1(GK ; Γ).

is not necessarily an injection. Nevertheless it may help in our un-
derstanding of X(K) if one could put constraints on its image. The
constraints we have in mind are obtained by local considerations and
there are, at least, two possible ways of imposing them:

• By considering a priori local cohomological properties that the
image of X(K) must have.
• By ‘push-out;’ i.e., by considering the relation between local

and global rational points.

Both are reasonable procedures, the former more naturally when Γ
is abelian, but we will be discussing the latter here.

Let K be a global number field, v a place of K and Kv the completion
of K at v.

For X/K , and xo ∈ X(K) we have the commutative diagram

X(K)

α
��

// X(Kv)

αv

��
H1(GK , π1(X, xo)

geom) // H1(GKv , π1(X, xo)
geom)

where the vertical arrows α and αv are given by 1.1. Taking Γ as one
of the groups above, we have the induced diagram

(2.2) X(K)

α
��

ιv // X(Kv)

αv

��
H1(GK ,Γ)

ιv // H1(GKv ,Γ).
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Definition 1. With X/K , xo, and Γ as above, the Γ-Selmer space of
(X, xo) is the (pro-finite) subset:

Σ(X,Γ) ⊂ H1(GK ,Γ)

defined to be:

Σ(X,Γ) :=
⋂
v

ιv
−1 · αv

(
X(Kv)

)
⊂ H1(GK ,Γ),

where the intersection is over all places v of K.
Since ιv

−1 ·αv
(
X(Kv)

)
for any v—and therefore since Σ(X,Γ) also—

contains the image of X(K) in H1(GK ,Γ), Diagram 2.2 can be shaved
down to:

(2.3) X(K)

��

// X(Kv)

α
��

Σ(X,Γ) // H1(GKv ,Γ),

for any place v.

3. Further structure on the Selmer space

In the case where our Γ is Up(n) for some n (as above), it is a pro-p
group.

Proposition 3.1. Let Γ := Up(n) for some n. The profinite space
H1(GKv ,Γ) has the (natural) structure of p-adic (locally) analytic man-
ifold, and for any place v dividing p, the mapping X(Kv)→ H1(GKv ,Γ)
is p-adic (locally) analytic4.

Proof: ???

4 In practice, our “locally analytic” functions on X(Kv) will be expressible as
power series on each residue disc of X(Kv).
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4. A strategy: Chabauty-Coleman-Kim

Letting, as above, Γ := Up(n) for some n, fixing a place v, return to
the diagram:

(4.1) X(K)

��

// X(Kv)

α
��

Σ(X,Γ) // H1(GKv ,Γ),

Can one find a p-adic (locally) analytic function φ on H1(GKv ,Γ)
that has the following two properties?

• The analytic function φ vanishes on the image of Σ(X,Γ) in
H1(GKv ,Γ).

• The composite function Φ := φ · α on X(Kv) is expressible as
a nonvanishing power series on every residue disc of X(Kv).

A simple observation: If X is a curve, and the answer to the above
question is yes, then the set of zeroes in X(Kv) of the function Φ is
finite, and this set contains the set of rational points X(K).

5. The abelian case

Here let Γ := U [1] = [U{0}, U{0}] = π1(X̄, xo)
ab (using the notation

introduced in Section 1 ). So,

Γ ' H1(X̄; Ẑ).

For any prime p, we might then pass to the p-component:

Γp := Γ⊗Ẑ Zp =' H1(X̄;Zp)
giving us the fundamental mapping:

(5.1) X(K) → Σ(X,H1(X̄;Zp)) ⊂ H1(GK ;H1(X̄;Zp)).

When X is a smooth projective curve , we have a canonical GK-
equivarient isomorphism H1(X̄;Zp) ' TpJ , where J is the jacobian of
X and TpJ is its corresponding p-adic Tate module. We assume that
there is a K-rational point xo of X that we use to embed X in J in the
usual way: x 7→ [x− [xo]. If S is a finite set of primes of K containing
those of bad reduction for X as well as those dividing p, let GK,S be
the maximal quotient of GK unramified outside S. For a prime v of K



NOTES ON CHABAUTY, COLEMAN, KIM 7

(especially a prime dividing p), Equation 5.1 can be written as the top
line of :

(5.2)

X(K)

��

⊂ // J(K)

��

// Σ(X,TpJ)

��

⊂ // H1(GK,S;TpJ)

X(Kv)

&&

⊂ // J(Kv) //

logv
��

H1(GKv , TpJ)

H0(JKv ,Ω
1)∗

' // H0(XKv ,Ω
1)∗

Notes:

(i) Only for simplicity of notation, assume that v divides p and is
of degree 1, so that Kv = Qp.

(ii) So J(Kv) = J(Qp) is an abelian p-adic analytic group of di-
mension g := the genus of X with its tangent space at the
origin canonically equal to

H1(X/Kv ,OX) ' H0(XKv ,Ω
1)∗ ' H0(JKv ,Ω

1)∗,

the left isomorphism coming from duality.
(iii) Recall the definition of “logv.”:

(5.3) J(Kv) −→ J(Kv)/torsion
logv
↪→ H0(XKv ,Ω

1)∗.

Here, J(Kv)/torsion is an open p-adic analytic subgroup of
H0(XKv ,Ω

1)∗, which is itself a locally compact p-adic analytic
group of dimension g. The mapping 5.3 comes from the map-
ping:

(5.4) J(Kv)×H0(XKv ,Ω
1)→ Kv

given by the “integral”

(z, ω) 7→
∫ z

0

ω,

for z ∈ J(Kv) and ω ∈ H0(XKv ,Ω
1). The scare-quotes around

the word iintegral is to remind us that it is defined as a coher-
ent anti-derivative. Also, snce the differential ω is translation
invariant on J , this is indeed a bilinear (bi-analytic) pairing.

(iv) (Intro to the Chabauty-Coleman Method) Consider:
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(5.5) X(K)
↪→ //

��

X(Kv)

��

logv

((
J(K)/torsion

'
��

↪→ // J(Kv)/torsion

'
��

↪→ // H0(XKv ,Ω
1)∗

'
��

Zr φ // Zg
p

ψ // Qg
p

In the case where r < g the topological closure of the image
of the mapping φ : Zr → Zg

p is a Zp-submodule of Zg
p of smaller

rank, so there is a nontrivial differential η ∈ H0(XKv ,Ω
1) such

that the image of J(K) in J(Kv) lies in the kernel of the com-
posite mapping:

J(Kv)→ H0(XKv ,Ω
1)∗

η−→Kv.

Restricting, now to X(Kv) we have the nontrivial analytic
function Φ given by x 7→ Φ(x) :=

∫ x
xo
η (expressible as a coher-

ent anti-derivative on X(Kv)) or, equivalently, by the compo-
sition

X(Kv)→ J(Kv)
logv−→ H0(XKv ,Ω

1)∗
η−→Kv.

Visibly, the zeroes of Φ (are finite in number, and) contain
the K-rational points of X. The advantage of this formula-
tion (due to Coleman) is that it can lead to fairly effective
procedures on occasions.
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