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1 Introduction

Mathematicians can hardly avoid making use of stories of various kinds, to say nothing of
images, sketches, and diagrams, to help convey the meaning of their accomplishments, and
of their aims. As Peter Galison has pointed out, we mathematicians often are nevertheless
silent—or perhaps even uneasy—about the role that stories and images play in our work.

If someone asks us What is X? where X is some mathematical concept, we boldly
answer, for we have been well trained in the art of definitions. All the fine articulations of
logical structure are at our fingertips. If, however, someone asks us What does X mean?
we respond as any human must respond when explaining the meaning of something: we are
thrust into the whirlwind of interpretations, intentions, aims, expectations, desires, and
shades of significance that, in effect, depend largely upon the story we have woven around
the concept. Consider, for example, the innocuous question:

What does it mean to find X in the polynomial equation X2 = 2?

We frame a narrative the minute we open our mouths to answer this question.

If we say “X = ±
√

2” without realizing that all we’ve done is just to give a cipher-like
name “

√
2” to whatever is a solution of the problem, and have done hardly more than

register that there are two solutions, we will have—in essence—reenacted the following
joke posted by some high school student on the internet:
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Figure 1:

If we say exactly the same thing, “X = ±
√

2,” but fully realizing that we’ve just given
a cipher-like name “

√
2” to whatever is the solution of the problem, thereby christening

an entity about which all we know, and possibly, all we need to know is that it behaves
like any other number and that its square is two, then we will have—in essence—reenacted
one of the great advances in early modern algebra that gives us extraordinary power in
our dealings with algebraic numbers. This is a viewpoint to which the name Leopoldt
Kronecker is often attached.

If we say X = ±1.414 . . . we will be thrusting our problem into yet another context,
with its own interpretations, and narrative.

Our story will be about Kronecker’s desire—his dream, I will sometimes call it—-to find
solutions of a large and interesting collection of polynomial equations. But, as we have
just seen, what it means to find solutions—even for a single equation—requires framing. In
fact, I will be less interested in Kronecker, and more in the disembodied desire, the dream,
the frame, and especially how it changes as it is shaped by generations of mathematicians:
I want to think about the voyage, if I can use that language, of the dream.

2 Voyages

The hero sets out. . . And then, if the story is like most good ones, the tale will make us
passionately concerned about the hero’s moments of elation and disappointment; love and
death. For the voyager setting out with ambitious dreams, yes,

L’univers est égal à son vaste appétit.
Ah! que le monde est grand à la clarté des lampes!

But things—happily—don’t always end up with the tragic disillusionment of Baudelaire’s
line:
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Aux yeux du souvenir que le monde est petit!

A philosopher, and friend of mine, David Lachterman—who wrote a surprising book,
The Ethics of Geometry—once said, with a hint of superiority, as I tried to explain some
mathematics to him:

in dark contrast to philosophy, there is no tragedy in mathematics . . .

He meant, of course, no tragic ideas—no tragedy treated in the substance of the
“ideas”—that form the staple of mathematics1.

Real voyages, or fictional ones, are often resonant with impending loss, and accounts of
them need only give the barest clues for us to detect a tragic timbre, as when a depressed
schoolteacher opens his narrative asking to be referred to as Ishmael, or even as in the
seemingly liberating opening lines of Kawabata’s Snow Country

The train came out of the long tunnel into the snow country.

Mathematics also has its voyages, of a sort2, that begin with some idea, a vision of some
mathematician who—because of the energy and urgency of the idea— is goaded on to try
to achieve some grand project—a prophetic dream of some future theory to be developed.
A Dream in short3.

Some years ago, a certain mathematician—call him or her X—in commenting on the
huge talent displayed by another mathematician Y —made a trenchant after-remark: “Y
is an extraordinary mathematician, but he has no dreams.” The expectation, then, is that
good mathematicians have them. What does it mean to have—in the sense implied by
that remark—-dreams? The old Delmore Schwartz short story In Dreams Begin Respon-
sibilities4 gets its energy from the urgency of a different genre of dream. But all dreams of
vision—be it Martin Luther King’s where it is a call to action—or Kronecker’s, the partic-
ular focus of this essay, where it is a call to contemplation—come with responsibilities.

There are many examples where the artist, the scientist, or the mathematician has a
vision of some way—as yet unformed—of thinking. And I don’t mean merely of some thing

1He couldn’t possibly have meant that there is none in the lives of the practitioners, on whom the fates
have proportioned almost as much misfortune as on the rest of humanity.

2See Apostolos Doxiadis’s essay Euclid’s Poetics: An examination of the similarity between narrative
and proof, where—among other things—construction of a narrative is compared with construction of a
proof and where both are metaphorically voyages from one place to another, and the places “visited” can
be laid out as on a map

3a wide-awake dream therefore; as distinct from sleeping dreams that contain mathematical ideas that
can be transported to our waking life, such as is one of the themes of Michael Harris’s great essay in this
volume

4The protagonist is dreaming about watching a movie of his parents’ courtship, and screams things at
the screen. The responsibility for the character in that story, is to break away from his parents, to become
an artist.
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never before thought but rather, more wrenchingly, of some entire way of thinking never
before thought. The responsibility is then clear: to follow it where it leads.

There is one striking difference between a straight story of a voyage5 and any voyage of
ideas in mathematics or in any of the sciences. Although the initial “traveller” is a person,
a lone mathematician perhaps, if the arc of mathematical discovery and enlightenment
provided by the dream is large enough, it is the disembodied dream that takes over; it is
the idea that (or who) is the protagonist6 and who continues the voyage.

The “story” aspect of this article is a prophetic vision of Kronecker—where I will take
the vision itself (rather than the man Kronecker) as the only protagonist—to muse about
its birth, its development, and the ingredients of its character. I don’t mean to be taking a
German Romantic stance and insisting on “idea” as “character,” with a life of its own; just
a storyteller’s stance, with the view that this may be the best organization of a narrative
that vividly brings home the manner in which Kronecker’s ideas arose, unfolded, and even
now envelope the goals of current mathematicians. I learned in conversation with some of
the contributors to this volume how problematic it is to employ the word character in this
somewhat disembodied setting, but I feel that it should be harmless if, instead of character,
I view Kronecker’s vision as something of an agent in the tale that I will recount.

3 Biographies of ideas

People sometimes say “that idea X took on a life of its own” and this brand of anthro-
pomorphization often signals that it is the type of idea that can be most fully understood
only by a narrative where the idea itself, X,—rather than the multitude of personalities
who gave birth to it, developed it, extended it—occupies center stage. A quarter of a
century ago, I.R. Shavarevich expressed a related thought, musing about a—fictional, to
be sure—single nonhuman protagonist orchestrating mathematics as a whole.

Viewed superficially, mathematics is the result of centuries of effort by many
thousands of largely unconnected individuals scattered across continents, cen-
turies and millennia. However the internal logic of its development much more
resembles the work of a single intellect developing its thought in a continu-
ous and systematic way, and only using as a means a multiplicity of human

5such as Rory Stewart’s illuminating The Places in Between where the narrative trajectory has an
elegant simplicity: walking in a straight line across Afghanistan, while the telling of it has an obsessive
vivacity

6A (quite short) story of Chekhov has this type of arc, where the ostensible protagonist Gusev somehow,
only once dead and summarily buried at sea, “covered with foam and for a moment [he] looked as though
he were wrapped in lace,”—only then—does some non-living sense of Gusev soar, suffused into the water
below and sky above.
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individualities—much as in an orchestra playing a symphony written by some
composer the theme moves from one instrument to another, so that as soon as
one performer is forced to cut short his part, it is taken up by another player,
who continues it with due attention to the score7.

An idea may begin as the passionate and precise goal of a single person, and then
diffuse into something less tangible and more persuasive and pervasive, taken up by many.
The felt experience (by people contemplating mathematics) that some of these multiply-
shared ideas seem to have an uncanny unity—as if orchestrated by a single intelligence,
as Shafarevich put it—-deserves, I believe, to be discussed along with the more common
discussions regarding the felt experience of (what is often called) platonism in mathematics,
i.e., that mathematical concepts are getting close to Plato’s eidoi, those joists and pinions
in the architecture of the cosmos; or more briefly—and in the standard peculiar way of
saying it—that mathematical concepts are “out there.”)

Contemporary mathematics is rich in its broad horizon—with magnificent programs
pointing to future large understandings. But one doesn’t have to go too far into the
subject to get a sense of traces of mighty illuminations that must have sparked visions.

Was there, for example, some ancient, somewhere, who realized that five cows, five
days, and five fingers have something in common, and that if one—by a strange twist of
thought, and by fiat—expresses that something as a noun, i.e., as the concept five, one will
be setting off on a worthwhile path of thought?

Some more modern path-setters are quite conscious of the “setting out on a new path of
thought,” and at the same time humble in reflecting on the hardship their predecessors may
have encountered pursuing the early visions in the subject. Here is Alexander Grothendieck
(in the introduction of his masterpiece le Langage des Schémas) reflecting on the difficulty
of grasping his new vision—and on the difficulty that future mathematicians will have to
appreciate this “difficulty of grasping”:

Il sera sans doute difficule au mathématicien, dans l’avenir, de se dérober à ce
nouvel effort d’abstraction, peut-être assez minime, somme toute, en comparai-
sion de celui fourni par nos péres, se familarisant avec la Théorie des Ensembles.

The mathematical visions that I am currently fascinated by are those that begin with
the mission of explaining something precise, and then—because of their extreme success—
expand as a template refashioned and reshaped to explain, and to unify, larger and larger
constellations of mathematical or scientific issues—this refashioning done by whole gener-
ations of mathematicians or scientists, as if a single orchestra. Things become particularly
interesting, not when these templates fit perfectly, but rather when they don’t quite fit,
and yet despite this, their explanatory force, their unifying force, is so intense that we are
impelled to reorganize the very constellation they are supposed to explain, so as to make
them fit. A clean example of such a vision is conservation of energy in Physics, where

7I.R. Shafarevich: On Certain Tendencies in the Development of Mathematics Poetics Today 3 No. 1.
(Winter 1982) pp 5-9. Transl.: A. Shenitzer
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the clarity of such a principle is so unifying a template that one perfectly happily has the
instinct of preservation of conservation laws by simply expecting, and possibly positing,
new, as yet unconsidered, agents—if it comes to that—to balance the books, and thereby
retain the principle of conservation of energy. Such visions become organizing principles,
so useful in determining the phenomena to be explained, and at the same time in shaping
what it means to explain the phenomena. There is a curious non-falsifiable element to such
principles, for they get to organize our thoughts-about-explanation on a level higher than
the notion of falsifiability can reach.

I will be telling—actually, just talking about—the story of one such vision, which has a
much much smaller imprint that conservation laws in physics; nevertheless I love it for many
reasons not the least of which is that it begins, as I will tell it, with one of the sparks that set
off Greek mathematics, namely the formula for the length of the diagonal of a square whose
sides have unit length (in the story this will have an algebraic disguise). Transformed and
extended, the vision—initially referred to as Kronecker’s liebster Jugendtraum—continues
to shape the hopes of a certain branch of mathematics, today. I’ll describe a piece of this
in elementary terms and discuss the role it has played, and is continuing to play, and its
potency as it has suffused into the broad goals of modern number theorists.

4 What are our aims when we tell stories about math-

ematics?

We should be clear about whether the stories we will be considering are ends or means. In
fiction, telling the story is the ultimate goal, and everything else is a means toward that
goal. I suspect that even Sheherezade, despite her dangerous situation, and the immediate
mortal purpose for her storytelling, would agree to this. In mathematical expositions most
story elements are usually intended to serve the mathematical ideas: story is a means, the
ideas are the end.

If, then, stories in mathematical exposition are a means, and not an end, to what
are they a means: what do they accomplish? Let us try to throw together a provisional
taxonomy of “kinds of storytelling” in mathematics, by the various possible answers to this
question. I feel that there are three standard forms, and also a fourth form—the one I am
interested in—that has to do with the arc of a mathematical vision, the character being
the vision itself. My names for the standard ones are

• Origin-stories explaining some original motivation for studying the mathematics be-
ing described, this motivation being external to the development of mathematical
ideas themselves,

• Purpose-stories describing some purpose to the mathematical narrative, a purpose
external to the context of mathematics itself, and
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• Raisins in the pudding which are ornamental bits of story meant to provide anecdotal
digressions or perhaps a certain amount of relief from the toils of the exposition.
At the least they are intended to add extra color. But the primary relationship
of the stories or story-fragments in this category to the mathematical subject is
ornament: they are not required to help in furthering–in any direct way–the reader’s
comprehension of the material, nor do they fit in as a part of the structure of the
argument presented.

5 Kronecker’s Dream

No matter how one tells the story, to my mind, the seed for Kronecker’s dream is in Gauss’s
expression for square roots of integers as trigonometric sums, i.e., as linear combinations
of roots of unity. A root of unity is an algebraic number with the property that a power
of it is equal to 1; so i =

√
−1 is a fourth root of unity, and e

2πi
n is an n-th root of unity.

The ur-example of an expression of a square root of an integer as a trigonometric sum is
√

2 = |1 + i|

(more generally, see this footnote8). From gazing at this formula to envisioning Kronecker’s
grand hope is a giant step, and we will proceed slowly. (For one thing, we need wrestle
with the question: what does the right-hand side of the formula gain for you in dealing
with the left hand-side, and more generally: why is it a good thing to express square roots
explicitly as weighted sums of roots of unity?)

Kronecker’s Jugendtraum was cryptically expressed as “Hilbert’s 12th Problem,” and
people who wish to follow the narrative of Kronecker’s dream with the Hilbert Problems
as a backdrop, should consult Norbert Schappacher’s On the History of Hilbert’s Twelfth
Problem: A Comedy of Errors which offers both a majestic view of the mathematical
climate of the times, and a sensitive close reading of the textual evidence available to us;
remnants of this climate. For people with a more technical background who wish to have a
full exposition of the mathematics involved, there is the treatise Kronecker’s Jugendtraum
and Modular Functions by S.G. Vladut (Gordon and Breach, New York, 1991).

There are many ways of telling the tale, and in recent epochs Kronecker’s Jugendtraum
has been folded into one of the grand goals of modern number theory. I will try—at the
very end of this essay—to give the briefest indication of what is involved.

8If p is an odd prime number, we can—following Gauss—express
√

p (decorated by a sign and a power
of i) as a linear combination of powers of e

2πi
p as follows:

±i
p−1
2
√

p = e2πi/p +
(

2
p

)
e4πi/p +

(
3
p

)
e6πi/p + · · ·+

(
−2
p

)
e−4πi/p +

(
−1
p

)
e−2πi/p,

where the coefficients in this linear combination are ±1 and more specifically:
(
a
p

)
is +1 if a is a quadratic

residue modulo p; that is, if a is congruent to the square of an integer modulo p and −1 if not; and even
the ambiguous ± in the formula can be pinned down in a closed form.
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6 Boiling it down

But for now, let me successively peel away more and more of the technical context of
Kronecker’s idea so as to get to what may be thought of as its heart. The first thing to
say about it (in slightly more modern vocabulary than Kronecker himself might express
himself) is that:

Kronecker’s Jugendtraum is the vision that certain structures in Algebraic Ge-
ometry and/or Analytic Geometry 9 can be put to great service: to provide
explicit and elegantly comprehensible expressions—in a uniform language—for
an important large class of algebraic numbers.

Stripping away some of the particular technical language of the above description we
get that Kronecker’s Jugendtraum is of the very broad class of visions of the following
kind:

One mathematical field can be a source of explanation by providing explicit
solutions to problems posed in another mathematical field.

Now, mathematicians who know the technical aspects of this development will, I hope,
agree with me that the source of explanatory power in Kronecker’s dream is the uniform
explicitness of the solution that he sought, as well as the economy of the vocabulary.

Let us strip some more, to note that we are dealing here with the interplay of three
notions:

• explicit,

• explanation,

• economy.

These notions will form the backbone of our story.

The word explicit is an exceedingly loaded (but informally used) word in mathematical
literature. What is curious is how quintessentially inexplicit is its definition, for its meaning
is very dependent upon context; it’s an “I know it when I see it” sort of thing10. Often,
but not always, to say “X is an explicit solution to Y ” is meant to elicit a favorable affect
on the part of the reader. On the whole, “explicit” is good. Except, of course, when it is
not.

9The algebraic and/or Analytic Geometry enters into the story via commutative algebraic groups and
structures related to these. For a further comment, see footnote 12.

10although Potter Stewart, the Supreme Court Justice who was just quoted, was describing pornography,
a concept that only a decade later would be commonly referred to by the adjective explicit
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To my knowledge, no one has agonized, in print, about the usage—in mathematical
literature—of this word explicit11 or asked questions about its evolution. So, one aim of
this essay is to make a start here. A companion word to explicit is constructive with its
own vast history, and perhaps a more expressive description of Kronecker’s hope is that
one might explicitly construct algebraic number fields12 by making heavy use of certain
specific, well-understood, algebraic geometric or analytic objects the virtue of this being
that the construction would be

• transparently clear,

• uniform (in the sense that it constructs all the fields we want to construct in the
same manner, and therefore is)

• strikingly economical,

• allowing us to directly see many of the important properties of the constructed fields,
and finally would be:

• definitive in the sense that the construction constructs all the fields we want to
construct and none other than them.

The word explain is perhaps even more important, but does have an immense literature
surrounding it. Nevertheless, I will try out a homegrown discussion of it. And we shall
see, I hope, how the notion economical plays into both of the other ones.

Let us begin with the mere words.

The word explicit is from the Latin explicitus related to the verb explicare meaning to
“unfold, unravel, explain, explicate” (plicare means “to fold;” think of the English noun
“ply”).

The word explanation is from the Latin and is related to the verb explanare meaning
“to make plain or clear, explain,” or more literally “to make level, flatten,” (planus means
“flat” as in the English “plane.”) It was originally spelled explane with its spelling altered
by the influence of the word “plain.” The marriage of these two spellings proclaim the
“clarity of seeing” that a plane, such as Euclid’s, provides us with. This being so, it is no
wonder that Matthew Arnold’s phrase “a darkling plain” is so trenchant.

A flat plane lets us “see things all in one shot,” and the desirability for this “all-in-one-
shot-ness” in our explanations is already hidden in the English word explain.

11But see footnote 15
12For a discussion of algebraic number fields see Section 8.
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7 Three Truths about Explanation

I’m thankful that no one has ever put me up before a blackboard and asked me to explain
what I mean when I use the word explain. I’m also puzzled that this tends not to happen
to me, or to anyone else: we are courteous, and adapt ourselves to an impressionistic sense
of each other’s general usage of extremely important words—like explain,—happy enough
that formal and semi-formal words like prove, demonstrate, show seem, at least, to have a
clearer significance.

The first major truth about explanation as opposed to proof is that the supreme judge
of what does not constitute an explanation is the subject, i.e., the person to whom things
are being explained; in other words, you and me. If you or I feel that X does not explain Y
to us, there is no appeal; it just doesn’t. The explainer might try to rephrase things better,
go slower, or even just start again from scratch; but the X didn’t work. In a word, there
are no “false negatives’ in terms of the judgment of the person to whom the explanation
is aimed; there are, however, “false positives:” we all have had occasions where we judged
something as adequately explained to us, at the time, and later thought differently about
the matter.

Things are quite different when it comes to proof. The general effect of formal systems,
the natural language of proofs, is to de-subjectivize aspects of our science. What exactly
constitutes a proof is generally thought to be—hoped to be—a pretty objective question.
Tim Gowers wrote an absorbing essay entitled “Rough structure and classification,13”—
which is partly an offering of a collection of open problems that itself paints a vivid personal
portrait of one mathematician’s approach to his art, and partly an exploratory futuristic
vision of an imagined dialogue between mathematician-of the-future and machine-of the-
future both conjoined in pursuit of the demonstration of mathematical problems. Apostolos
Doxiadis refers to Gowers’ description of proof in terms of the “equation”

PROOF = EXPLANATION + GUARANTEE

and this puts its finger on the basic question: what are the units here? I.e., how much
weight are each of these two ingredients, explanation and guarantee given?14. For, the
summand “guarantee” on the righthand side of this equation must have the imprimateur
of objectivity (i.e., independence from the whims of any subject) before it can play the roll of
anything like a guarantee; while the summand “explanation” is—as I have tried to argue—
inseparable from the subject to whom the explanation is meant to explain (whatever it

13it can be found on-line on Tim Gowers’ homepage
14That related “equations” have been speculated about for a long time can be seen from the summary

written by Felix Klein of a report given on February 16, 1910 in his Göttingen seminar (On the Psychological
Foundations of Mathematics) by one of the speakers (Bernstein) who distinguished between thinkers of a
constructive nature and those of an observing-combining nature. In mathematicians of the first kind, the
lecturer claimed there is perhaps 3/4 logic and 1/4 imagination and with those of the second kind 1/4 logic
and 3/4 imagination. Klein discusses this a bit and then abruptly concludes with the comment: “Only
when we see clearly here can one hope to write real biographies of mathematicians.” (For this text and
other insights I am thankful to Eugene Chislenko who will be publishing a full translation and commentary
on this seminar.)
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is that it is meant to explain). In the future the machine will (as Apostolos would prefer
to see it, in his discussion of Tim’s essay) do the boring bits of mathematics, and the
mathematicians will then be freer to provide “the more intuitive, imaginary (’ghost-like’)
leaps of creativity.”

But a theme represented in a lively manner in our conference is that some day “proof”
may boil down largely to a question of “guarantee,” with “explanation” occurring only
in trace amounts; some day there may come about computer-generated proofs where the
supreme judge might–in fact–not be you or me, but rather an android in Michael Harris’s
sense, an android who graciously provides the argumentation, and simultaneously provides
the ironclad “check” of the validity of this argumentation.

As I read Tim’s essay, the fun there is to distinguish the Android from the Andr in the
conversation between those two individuals in Tim’s chimerical dialogue designed produce
a man/machine co-authored theorem. But, of course, there is really no difficulty in distin-
guishing between those two conversationalists. To argue that there always will be no such
difficulty, let me introduce you to Chloe. Chloe is what my wife Gretchen and I call the
voice that comes out of the Global Positioning System (GPS) device of our car. Chloe,
judging by her chats with us, is gentle, almost alluring, always encouraging, and whenever
she wants us to make a right or left turn she gives us two-tenths of a mile warning. If we
disobey her instructions she exhibits just the tiniest bit of impatience as she says (after
taking a breath—perhaps a stifled sigh) ”Recalculating!”

Now despite this apparent partnership, there is a great partition between Chloe and
us in our communal enterprise: it is we—and not Chloe—who actually have the desire to
get from one place to another; it is (often) Chloe who possesses the information of how
to get from one place to another. This brings me to the second point I want to make,
an obvious one: desire pure and simple is often the main motivator for explanation (“I
want to know how this works, and why”) and until we direct our various studies to things
that mathematical androids desire to know, the relationship between mathematician and
computer will be essentially equivalent to the relationship I have to Chloe; and nothing
more.

A third major truth (“truism,” in fact) about explanation is that it is a relative notion.
We only explain things in terms of other things. As a result, at any given time it pays to
have at hand a good stock of “already understood things” or, at least, of things that we
take provisionally as understood to which the explanation we are currently being given can
then be linked. This type of structure—somewhat like the concept of stipulation in the
law—is formally branded onto our mathematical syntax in terms of the common notions
and postulates of Euclid, and the axioms of more modern mathematics. This being true, we
are often exhorted to (in effect) take things as understood, even when they aren’t, so as to
provide convenient posts on which to later hang further explanations. When we accept this
we are dealing in explanation-futures as in a sort of stock-market of the mind. This is more
and more curious the closer one examines it, and it is amazing that we feel as satisfied as
we sometimes do, in playing this game. Often these posts—utterly un-understood at the
time of their installation in our thoughts—eventually grow roots, and become confusedly
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tagged as “things we understand,” out of mere familiarity and nothing more; though—of
course, they explain nothing to us. The success of this seems to suggest that the quip

“Shut-up,” he explained.

occurring in a Ring Lardner novel signals a more common—and perhaps a better—explanation
than one might at first think. One very common kind of “explanation-future” is experi-
enced when we learn a new word. Consider, for example, what has been explained to us,
and what has not, if we participate (as patient) in the following mini-dialogue:

“Doctor, why do all my muscles ache?”
“You have myalgia!”
“Oh!”

For one thing, that our disease has a name is already information; knowing this alone,
we know that we are not alone —that there is some recognition of it as an actual disease —
that our doctor might possibly have some experience in treating it —that health insurance
might pay, etc. But despite the usefulness of all this new information, the response the
doctor gave to the patient’s question is not an explanation in any reasonable sense; it is,
however, a peg on which to hang future real explanations if they ever appear: I can go off,
for example, and GOOGLE “myalgia.”

It is ridiculously unfair to liken such an “explanation-future” (as X learning that a
particular disease—known to X only by its symptoms—has a standard technical Latin
name with Greek roots) to a mathematical formula—e.g., such as Gauss’s formula, the one
cited in the footnote above that expresses a square root as a linear combination of roots of
unity. It is unfair because, except for formulas that we label tautologies, any mathematical
formula that equates one thing with some other thing is (if correct) valuable and is prima
facie explanatory on some level or other. A key to understanding Kronecker’s vision is
to ask—given, of course, the hindsight won by over a century of further mathematical
development—on precisely what level is Gauss’s formula explanatory?

8 The relative nature of “Explicit”

Just as Gauss’s formula offers an explicit expression of square roots in terms of roots of
unity, Kronecker’s dream is to provide us with some way of explicitly understanding fields of
algebraic numbers that are abelian over a given number field. As for the italicized technical
terms in the previous sentence, let us take them as promissory notes, for I’ll discuss them
later. For now, it suffices to know that algebraic numbers are solutions to polynomial
equations of one variable (say X) with coefficients that are ordinary whole numbers or
fractions, i.e., are rational numbers. So, for example, the (two) solutions to

X2 + X − 1 = 0

are both algebraic numbers (the positive one being none other than the “golden mean”).
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Thus, the general issue in question here is to discuss solutions to certain classes of
polynomial equations and to somehow express these solutions explicitly.

Now high school algebra prides itself (or at least once did) in offering the famous
quadratic formula to its students, so that given any quadratic equation with essentially
arbitrary coefficients a, b, c:

aX2 + bX + c = 0

high school students can produce explicit solutions to this equation, following the rule:

X =
−b±

√
b2 − 4ac

2a
.

These solutions are then “explicit” in terms of the initial coefficients a, b, c and the operation
of extracting a square root. With explicit, then, we again have a relative notion: to
understand what is meant when someone says that A is an explicit solution of equation
B, we must ask explicit in terms of what? We must understand the vocabulary that is
allowed. To convince oneself that this is not a trivial point, imagine that you were a
traveling judge, trudging through the centuries, judging a contest for the best explicit
determination of roots of cubic polynomials in one variable X, and specifically for those
polynomial equations that have three real roots15. In the 16th century treatise of Bombelli
a precise compact little formula is given for “the roots” and it was readily checkable that if
you substituted this precise formula for X, it worked; even though the formula could—at
least in that century—not lead to even the grossest approximation of its three roots. Would
you have awarded Bombelli with his precise formula the prize for producing an “explicit
solution” or not? In the subsequent century imagine that Newton entered the contest,
sporting Newton’s method, which indeed provides usable approximations to the roots, as
finely accurate as desired. Would you have awarded Newton the prize? My point, here, is
that until you, the judge, decide upon the format and the vocabulary that you will count
as explicit, you have no way of gauging who is the victor16.

15Such equations will be discussed by Federica La Nave in this conference.
16The wonder of the internet is that the question of what explicit means, related to issues such as the

one we have raised above has been discussed and even voted on in a site called “Yahoo! Answers.” The
best answer to the questions what is an explicit solution? as chosen by voters is the following:

Numerical solution schemes are often referred to as being explicit or implicit. When a direct
computation of the dependent variables can be made in terms of known quantities, the
computation is said to be explicit. In contrast, when the dependent variables are defined by
coupled sets of equations, and either a matrix or iterative technique is needed to obtain the
solution, the numerical method is said to be implicit.

I find some problems and ambiguities in this definition (e.g., the phrase “in terms of” and the gratuitous
insistence on “coupled sets of equations”) but am intrigued that voters judged that iterative solutions
should be classed among the implicit. E.g., is

X = 1 +
1

1 + 1
1+...

an explicit or implicit solution to the problem of finding a root of the quadratic polynomial cited at the
beginning of this section?
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Of course, there are mathematical situations when the usage of explicit has a perfectly
clear interpretation as in an article by Nikos Tzanakis from the University of Crete in
Heraklion entitled Explicit solution of a class of quartic Thue equations17 in which, for
example it is shown that the equation

x4 − 4x3y − 3x2y2 + 14xy3 − 4y4 = −4

has only four solutions, these being given explicitly: (0,±1), (2, 1), and (−2,−1).
To seek an explicit solution of some equation is, first, to have a vocabulary in mind in

terms of which you wish to phrase your solution explicitly, and only then, to manage to
do it. So, if we say that Gauss’s equation described in footnote 8 above offers an explicit
representation of square roots, we have (implicitly) chosen as our target vocabulary: linear
combinations (with coefficients ±1) of roots of unity. We still need to know why this is
a particularly good vocabulary in which to express square roots, and how Kronecker took
off from this to achieve his grand vision.

9 How Gauss solves a fifth degree equation

Although the vocabulary of extracting roots is sufficient to offer (in the 16th century)
formal solutions, and in later centuries also (approximating) numerical solutions to all
polynomial equations in one variable with rational coefficients if they are of degree < 5,
the mechanism of root extraction alone is insufficient for general fifth degree equations
(and also general higher degree equations). Gauss must have known this, and so he tried
his hand on finding roots of what might be considered to be the “smallest” (if this makes
any sense) polynomial unsolvable by radicals alone, namely

X5 + X + 1.

On a page of his private notebooks in the collection of Göttingen mathematical archives one
can find his numerical contemplation of that equation where he finds an approximation
to its roots. I want to thank the director of the Göttingen mathematical archives, and
also Yuri Tschinkel, Professor of the Mathematisches Institut for photographing this page
of Gauss’s notebooks, and allowing me to reproduce it here; and I thank Marie-France
Vigneras for her help in figuring out what Gauss seems to be doing on that page.

Gauss labels his page: Solution of X5 + X + 1 by approximation and he is swifter at
this designated task than any of us would be. For example, he begins by simply figuring
−0.754877 as the unique real root, and it seems that he has just done the computation to
arrive at this entirely in his head—no scratch paper needed at all. But to get the complex
roots he works by expressing them as z := r cos φ+ir sin φ and jots down the equation that
you get between r and φ if the evaluation of the polynomial on z has vanishing imaginary
part. Making a (trial-and-error) guess for the approximate value of φ and knowing log

17Acta Arithmetica LXIV.3 (1993) 271-283
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tables by heart, it seems, he computes r obtaining thereby a candidate z and then checks
whether the real part of the polynomial evaluated on z is respectably small; based on the
computation of this real part he adjusts his trial-and-error guess accordingly, hoping for a
yet smaller real part, etc.18

18Felix Klein, in a comment in one of his notebooks (May 11, 1875: p. 161 of Nr. 1 Protokolle 1872-1880)
writes down the equation X5 − X − k = 0 and says that Kronecker was the first to pose the problem of
studying such equations; Klein refers to Hermite who—he says—showed that the relationship of the five
roots could be expressed via elliptic functions.
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Figure 2:
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10 Gradus ad Parnassum

The collection of rational numbers forms what is referred to as a field which signifies that it
is a collection (of “numbers”) in which we can add, subtract, and multiply any two of them
to get a well-defined result (a “number”) and where the usual rules of addition, subtraction,
and multiplication hold; and we can divide, except, of course, by zero. The rational field
of numbers is a basic object of study, and a key to its hidden properties is to examine the
question of which polynomials (in one variable with coefficients that are rational numbers)
have rational numbers as roots; and in the event that they don’t have rational numbers as
roots, how to express their (then necessarily irrational) roots. So X2 − 3X + 2 presents us
with no conundrum about “how to express its roots” for the roots are simply X = 1 and
X = 2, while X5 −X + 1 might provide us with a greater challenge to “explicitly” present
its roots (especially with the warning of the previous sections in this article, that—strictly
speaking–we don’t really know what the word “explicitly” means without some agree upon
vocabulary in which the sought-for solution is the be explicitly given).

Moreover, just as the word “explicit” is a relative notion, after Galois’ famous treatise,
Algebra itself has come be understood as a relative notion. So if you wish to study any
field of “numbers”–not only the field of rational numbers—the analogous key to its hidden
properties is to examine the question of which polynomials (in one variable with coefficients
in that field) have their roots in that field; and in the event that they don’t have roots in
that field, to cope somehow. If, for example, we adjoin to the rational field some irrational
number (say

√
2) to get a larger field (which also means, of course, throwing into this

larger field numbers like
√

2 + 5, etc. so that we can add, multiply, and appropriately
divide within this larger field) we get an example of a number field one of the italicized
words in section 8 that I had promised to discuss.

One lesson hammered home in Descartes’ treatise “Rules for the Direction of the Nat-
ural Intelligence” is that one should assiduously proceed—in any intellectual work—by
degrees, i.e., that there is (often, always?) a natural succession of steps of thought to go
through (Step 1, Step 2, . . . ) and that you miss a step at your peril. I assume that Descartes
was thinking, in analogy, of the degrees that occur in polynomial equations that cut out
curves in “his” Cartesian plane19. There are linear equations, quadratic equations, and so
on.

Often it makes good sense to go step-by-step, and particularly for the problem of finding
roots of polynomials (say in one variable) with rational coefficients. We can deal with linear
equations, as could the ancient Babylonians; we can deal with quadratic equations thanks
to the “quadratic formula;” with cubic and fourth degree equations, thanks to the work of
the 16th century Italian mathematicians. The issue of quintic equations and beyond is the
mainstay of modern algebraic techniques, beginning with the work of Abel and Galois.

So Descartes’ dictum seem to have been somewhat borne out in this study of equations:
we proceed by steps of increasing difficulty, never skipping any of them.

19For a concise, yet detailed, description of Descartes’ contribution, see page 463 of Robin Hartshorne’s
Teaching Geometry According to Euclid published in the NOTICES of the AMS 47, April (2000) 460-465.
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But there are several ways of cutting steps into this mountain, and in recent times,
following Galois, we have an alternate way of gauging the “difficulty” of an irreducible
polynomial equation which I will hint at in this footnote20, and the abelian number fields
mentioned in section 8 are simply the “step 1” number field extensions—the easiest ones
from this alternate way of grading “difficulty.”

11 The exponential function as spark

Ernst Kummer knew (and this was before Kronecker had his dream) that if you allowed in
your vocabulary a gadget that can extract n-th roots ( for any n = 2, 3, . . . ) you have all the
vocabulary you need to describe any algebraic number contained in an abelian extension
of a given number field. So when Kronecker dreamt his dream, he was seeking more than
this. He–and Weber21—had significantly sharpened what would have been Kummer’s take
on abelian exensions of the rational number field by proving one of the glorious results of
that epoch; namely, that the maximal abelian extension field of the rational numbers is
the field generated by the collection of all roots of unity; i.e., by the values of the complex
analytic function

e2πiz

as z ranges through all rational numbers or equivalently, through all reciprocal positive
integers.

Now it is the “i.e.” of the previous sentence that reflects more accurately the framework
for Kronecker’s vision. Here we have one of the most basic (transcendental) analytic
functions in mathematics, the exponential function, a lone function, one that will take on
transcendental values when z is an algebraic number that is not rational, and will take on
algebraic values if z is rational. And, surprise, it is precisely those algebraic values, the
roots of unity, that turn out to generate precisely the maximal abelian extension of the
rational number field—explicating the modern “Step 1” algebraic extensions of the rational
number field!

Just as in Gauss’s formula, where any square root of a integer can be expressed as
a linear combination of roots of unity with ±1 as coefficients, after Kronecker-Weber we
know that any abelian algebraic number can be expressed as a finite linear combination
(with rational numbers as coefficients) of roots of unity, or equivalently: of the values of

20Here the grading of difficulty comes by considering the structure of the group of symmetries of its roots
(the Galois group of the equation). One marker is the possible degrees of linear representations of this
group. For this other—more modern—notion of degree, Descartes’ operating principle also seems to apply:
we have an immense literature on the degree 1 (i.e., one-dimensional) linear representations of Galois
groups of polynomial equations that have coefficients in the rational field of numbers, and of more general
number fields; we have an impressive, but still less complete, literature on degree 2 linear representations
of these Galois groups, and for degrees ≥ 3 a very interesting literature, but still less complete.

Given a number field K, an abelian number field extension L of K is an extended number field obtained
by adjoining all the roots of a polynomial equation with coefficients in K that has a Galois group that can
be cut out by degree 1 linear representations.

21See Schappacher’s account of the intricacy of the history of the Kronecker-Weber Theorem
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the transcendental function e2πiz as z runs through all rational numbers22. To gauge how
mathematicians, on occasion, expressed exuberance over this, count the “wunderbars” in
the following (word-for-word) transcription of a piece of a lecture David Hilbert gave in
his course (Vorlesung über die Theorie der Algebraischen Zahlen) in 192623.

Das ist etwas ganz Eigenartiges. Wir besitzen eine analytische Funktion e2πiz

mit der wunderbaren Eigenschaft, dass sie für rationale Argumentwert immer
algebraische Werte liefert und dass man durch sie alle Abelschen Körper und
nur diese erhält. Diese zweite Eigenschaft ist ja der Inhalt des grossen Kro-
neckerschen Satzes, dass alle Abelschen Körper Kreiskörper sind. Dass ist nun
in der Tat eine ganz wunderbare Eigenschaft. Schon allein dass eine transzen-
dente Function algebraiche Werte liefert, wenn man das Argument z = a/b
setzt! Dass es so etwas überhaupt gibt! Das Seltsame ist nun dabei, dass man
nur die Funktion e2πiz zu besitzen braucht und dass dann alles andere sich
ganz von selbst, förmlich ohne unser Hinsutun sich einstellt! Dass gilt also für
das Problem, alle Abelschen Körper über den Körper der rationalen Zahlen
aufzustellen. Unser neues Problem heisst nun, alle Abelschen Körper über dem
imaginär quadratischen Körper k(

√
m) m < 0 zu erhalten. Für die Erledigung

des ersten Problems stellte such uns de Funktion e2πiz zur Verfügung, dieser
wunderbare Geschenk des Himmels. Werden wir nun auch für den zweiten Fall
etwas Aehnliches erhalten? Das ist de Frage, die wir auch gar nicht umgehen
können.

But what economy! And what a template! A single analytic function—the exponential
function—a major player in Calculus, and analysis, giving us the explanatory key to a
major piece of number theory, all abelian extensions of the rational field. In sum, a concept
in one field (analysis) explaining with striking economy an important structure in quite a
different field (number theory). And so the quest is on.

• Can we use, or modify, this template to similarly explicate the modern “Step 1”
algebraic extensions of other number fields?

Kronecker dreamt specifically of the following kind of ground number field over which
to consider abelian extensions; namely quadratic imaginary fields which are fields that
are generated over the rational field by the adjunction of some imaginary quadratic

22The fact that we have stated to equivalent formulations parallels the statement, in section 6 that Kro-
necker’s dream uses Algebraic Geometry and/or Analytic Geometry to explain whatever algebraic number
fields (i.e., the ones abelian over the rational field) that it explains: the vocabulary of “roots of unity”
provides the algebraic geometric formulation, which in further aspects of the dream would be replaced
by torsion points in commutative algebraic groups, while the vocabulary of “values of the transcendental
function e2πiz for rational z” gives the analytic geometric formulation where one unravels the algebraic
group analytically and expresses things in terms of values of some uniformizing analytic function.

23I’m thankful to Yuri Tschinkel and the Göttingen library for permission to quote from these notes.
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quantity, i.e.,
√
−1 or

√
−2 or

√
−3, etc. and wished to extend, and/or replace, the

exponential function and its values for rational z—by appropriate values of the elliptic
modular function, and of its companion functions (these being certain Weierstrass
P-functions). The elliptic modular function, also colloquially referred to as the “j-
function,” has a famous Fourier expansion

j(z) = e−2πiz + 744 + 1986884 · e2πiz + 21493760 · e4πiz + 864299970 · e6πiz + . . .

where each of its coefficients tells its own story (these coefficients link to what is
known in the trade as ”monstrous moonshine”).

An example is now necessary:

12 How Cardano, Gauss, Newton, and Kronecker

might solve a cubic equation

For our example I want to take a random equation like the polynomial of degree
three

X3 + 3491750X2 − 5151296875X + 12771880859375.

(Well, it isn’t quite random . . . it is rigged, a bit.) How might the mathematicians
in the title of this section deal with the problem of finding roots of this polynomial?

Cardano: He would use the famous formula giving the solutions of the general cubic
equation in terms of square roots and cube roots of simple expressions involving the
coefficients of the polynomial, and since this cubic polynomial has a single real root,
this will work fine. Having found a real root θ he can then divide the polynomial
by X − θ to get a quadratic polynomial, whose two roots he will get by the classic
quadratic formula.
Gauss: He could, of course, rely on Cardano’s formula. But I imagine that he’d
also just figure in his head an astoundingly good approximation to the real root, and
proceed from there.
Newton: His famous iterative method (Newton Approximation) will do the job of
approximating a real root.
Kronecker: If someone gave him the hint that the polynomial was rigged for his
benefit, he would surely put his cherished j-function to use, and—given the methods
available to him—he could readily see that j

(
1+
√
−23

2

)
is a real root of that displayed

polynomial.

If you adjoin all the roots of this polynomial to the rational number field you get
what is called the Hilbert Class Field of the quadratic imaginary field generated
by

√
−23 that is, the largest abelian field extension of this quadratic imaginary
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field that is everywhere unramified24. It is, in particular an abelian extension of the
quadratic imaginary field and therefore is subject to Kronecker’s very general theory
which guarantees that it—-the field—can be generated by special values of the very
special functions like the j-function that Kronecker works with. In this instance—
Kronecker’s Jugendtraum tells us that the field extension can be generated by the
single value j

(
1+
√
−23

2

)
. Kronecker would know this intimately, since this much is

part of his general framework. What is a particular piece of luck for Kronecker,
is my choice of the polynomial to be the minimal irreducible polynomial over the
rationals that this algebraic number j

(
1+
√
−23

2

)
satisfies25.

This “example” is a pitifully small instance of what Kronecker has given us, for in
the context of quadratic imaginary fields generally, Kronecker’s dream has come to
a strikingly explicit realization!

But this has only sparked the search for ways of extending Kronecker’s template to the
range of other number fields—where the template sometimes fits (so-called CM-fields)
and where the template tantalizes more than it fits (non-CM-fields). Sometimes,
though, it is better for an idea to “tantalize” rather than to “snugly fit,” for then it
stands a chance of being expanded to act as a guide for even grander goals.

• Can we use, or modify, this template to similarly explicate the modern “Step 2”
algebraic extensions of the rational number field or of other number fields?

And here we can only say that the template has been stretched and reshaped to now
embrace the goals of a large part of modern number theory, including the Langlands pro-
gram. The template, in short, is a grand moving frame as—I believe–all great mathematical
visions end up being, in their maturity. But what kind of moving frame?

13 The story of a mathematical vision

The person referred to as “I” in René Descartes’ Discourse on Method claims to have
studied a bit of philosophy, logic, and among types of mathematics, geometrical analysis
and algebra in his youth, and—finding them each deficient for his purposes (logic being
infused with harmful elements, and the various branches of mathematics being generally
confusing and arcane arts)—he sought another “method” which would have the benefits
of the virtues of the separate disciplines, but would be free of their cloistered defects. He
goes on to offer four economical principles that should guide thought, and then much more.

24For an abelian cubic field extension such as this one everywhere unramified means that every prime
ideal in the ring of integers of the quadratic imaginary field either generates a prime ideal in the ring of
integers of the extension field, or else it generates an ideal that splits into the product of three prime ideals.

25Kronecker is not the only person enamored of the j-function for its ability to solve polynomial equa-
tions. Felix Klein’s book The Icosahedron is devoted to the use of the j-function to express the roots of
the general quintic polynomial. And that some such thing was a possibility had also been noted in the
writings of Hermite, and Jacobi.
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I imagine that Descartes’ famous discoveries in mathematics (the union of geometry and
algebra) provided some impetus for this more general view of a method of thought.

And assuming this interpretation, I want to take Discourse on Method as a ready-
at-hand prototype for an entire genre of intellectual voyage where the structure of some
initial fundamental and arresting discovery—by virtue of its energy and explanatory force—
inspires the formation of a template designed to organize,unify, and explicitly survey a much
more general range of ideas; a template that doesn’t quite fit but inspires all the more for
that.

Many great mathematical visions have this trajectory and Kronecker’s Jugendtraum is
very much of this form, where what you take as the initial template depends upon how
far back in the story you wish to go, but the Kronecker-Weber Theorem offers a strong
template—tantalizingly related to, but not perfectly fitting the fully general context of
algebraic number theory, and yet suffusing into grand unifying principles; principles that
promise mathematics of the future capable of surveying a wide range of material—all-in-
one-shot—and explicitly, where the very ground-rules of this explicitness is modeled on the
initial template.

EXPLICITUS26

26“Explicitus” was written at the end of medieval books, originally short for explicitus est liber “the
book is unrolled.”
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