
WHAT IS THE SURFACE AREA OF A HEDGEHOG?

BARRY MAZUR
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Well, I don’t know the answer to the question of the title and no hedgehog will be
harmed, or even mentioned again, until the very end of my lecture.

It was suggested by Miss Brann that in my Steiner Lecture I address the question “What
is area?” I’m delighted to do this; I’m delighted to be here, and to be among people—you,
the St. Johns community—with whom it will be such a pleasure to contemplate this
question.
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I’ll discuss the concepts of—

• area—how it is familiar to us, and how when we push it to the limit we get some
surprises;
• length—since, at least at first impression it is a more primitive “prior” concept—

seemingly simpler than area;
• proportion—crucial to the understanding of both length and area;
• invariance—as a way of characterizing length and area;
• quadrature—as a crucial “format” for expressing profound area relationships in

geometry.

And I’ll conclude by alluding to Archimedes’ wonderful “mechanical method” where he
transmutes the problem of computing area to computing something akin to weight1 and
thereby achieves the quadrature of the parabola. This offers us a glimpse of the power of
analogy, and thought-experiment as already practiced in ancient mathematics.2. It also
gives us the opportunity to touch, in passing, on broader issues in mathematical thought
such as analogy, heuristic, paradox, invariant and something I’ll call characterization (a
version of axiomatization).
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1Since you read Archimedes’ On the equilibrium of planes in Freshman Lab, this may not come as a
complete surprise.

2I am grateful to Paul VanKoughnett who drew most of the figures, and to Paul Dry for helpful and
incisive comments about early drafts of these notes.
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1. Area as familiar

We all know what the word area signifies. It often refers to a territorial cordon, as in
restricted area or hard-hat area or even area studies. It sometimes comes as a number but
always with a unit attached, such as square miles, square feet, square inches, acres, or if
it’s a bed area you’re interested in, you can ask for it to be King-size or Queen-size, or a
size of lesser nobility.

If you want to approximate the area of this enclosed figure on a grid with the mesh given
by 1 foot by 1 foot squares,

you might count the number of 1-square-foot patches that comprise a union of squares that
completely cover the figure (in the above case it is 81) and count the number of 1-square-
foot patches that the figure covers completely (in the above case it is 39) and you know
that the area of the figure in units of square feet is squeezed between these two numbers;
that is, the area is smaller than the first number (or equal to it), and bigger than the
second. In the above case we would have

81 square feet ≥ area of figure ≥ 39 square feet.

If you want a better estimate, do the same thing with 1” by 1” squares.

If any of us were asked to calculate the square-footage of this auditorium we’d come up
with some figure or other, confident that we could refine it to any degree accuracy required.
And you may be painfully aware of the area of your dorm room. So, what else is there to
say?

2. How good are you at comparing areas?

I’m not very good. Here’s an example. The area of the two shaded triangles in the figure
below
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are equal. I know this thanks to Euclid’s Proposition 37 of Book I of the Elements. You all
either know that proposition now, or will after your freshman year.This is the proposition
that says that triangles with the same base and height have the same area. Proposition 37
of Book I will be a recurring theme in my lecture: a marvelous piece of mathematics that
demonstrates many things, including the maxim that to be profound and to be elementary
are not mutually exclusive virtues.

But if I simply compared those figures visually—without either explicitly remembering
or somehow “internalizing” that proposition—-I would probably grossly underestimate (if
that’s a possible phrase) the area of the spiky triangle in comparison with the seemingly fat
one. In a sense, that proposition then–embedded in my central nervous system as it is—has
therefore improved (a tiny bit, not much) my ability to make off-the-cuff judgements and
rough comparisons. We all have our native intuition, together with a bank of geometric
experiences contributes to how effective we are in making judgements about all sorts of
attributes of objects that we see. I’m guessing that our eyeball judgment of comparison
of straight-line lengths is more reliable than curved lengths3 and much more reliable than
area, and volume, given the variety of possible configurations. Often, in teaching Euclid’s
Elements, one emphasizes ’logical thinking’ as the great thing that students take away from
it. But I also see a type of pre-logical, if I can call it that, or intuition-enriching, benefit
as well; this is hard to pinpoint but comes out as a sharpening of our ways of generally
thinking about, guessing about, negotiating, comparing and relating, geometric objects.

Such a gain is very different from the other valuable reward—e.g., being able to actually
argue the proof of Proposition 37 of Book I by making the elegant construction

3Straight-limbed geometry;
In her arts ingeny
Our wits were sharp and keen.
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To continue our review of how good our intuitions are, let’s pass to a slightly deeper
basic geometric comparison—due to Archimedes—that astonishes me now just as it must
have astonished Archimedes’ contemporaries. We will get into this in more depth later on4

but consider the following striking way of recreating the area of any circle: the area of any
circle is equal to the area of a right-angle triangle defined by the property that the two of
its sides making the right angle have lengths equal to the radius of the circle, and to the
length of the circumference of the circle, respectively.

Here, as in the previous example I “see” it not visually (if this can be said) but only
with the help of my memory of its proof (about which more below).

Let us push a bit further. The two examples we’ve just reviewed are examples of nicely
enclosed—finite—figures. We are even poorer in intuition when faced with planar figures
(no matter how smooth and simple-seeming boundaries they have) that “asymptote” off
to infinity. It may be quite difficult, even if given long chunks of it, to extrapolate, and
guess by eyeball alone, whether it is on the road to extending out to a figure with infinite
area or finite area.

4A sketch of its proof is in the Appendix, i.e., section 20 below.
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For example, consider the figure below, which was drawn as accurately as possible. I
wonder whether you can guess if the area bounded by the blue curve, or the red curve has
finite area. My point is that there’s no reason why you should be able to do it no matter
what talents of visual acuity you may possess.

But. . . in case you are wondering, if you continued tracing the curved regions ad infini-
tum in the manner smoothly begun by the sketch—meaning the red curve is the graph of
the function y = 1/x and the blue curve is the graph of the curve y = 1/x2—the (infinite)
red-bounded region happens to have infinite area while the (infinite) blue-bounded region
has finite area. As a side issue, many Calculus students are amazed to find that if you
“construct” an infinite “trumpet” by rotating the red curve of the above figure around the
x-axis, then its surface area is infinite, even though the volume it subsumes is finite. To
put it into colloquial, but misleading, vibrant language: you can fill this trumpet with a
finite amount of paint, but you need an infinite amount of paint to paint it.

This phenomenon illuminates much, especially for people who know Calculus, and could
be the subject of a question later tonight. But I won’t dwell on this; I mention it as a hint
that there are things to dwell on here.

3. Pushing to the limit

You might wonder what is to be gained by asking questions such as infinite area versus
finite area, or by considering our concept area in various extreme contexts. Mathematics
often does that sort of thing: it is a useful strategy to examine a concept when it is brought
to its limit, in hopes that the tensions one has imposed on the concept will reveal important
facets of it that would be hidden in tamer situations. If you push a concept to its extreme
border, you may see things that would otherwise be overlooked if you always remained in
the comfortable zones: for example, you learn what its precise borders are. Some of the
most beautiful mathematics, and the deepest, have emerged by seeking the extremes.

The issue we have just addressed, areas of infinitely extended regions, can be broadened,
for it raises the question: exactly how many subsets of the plane deserve to have a well-
defined area? Do all subsets have a reasonable notion of area??
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4. Area as paradoxical

To get the blood circulating, let’s contemplate something that is evidently impossible:
Can you

(1) take a square S in the Euclidean plane, cut it (say with a scissors) into four pieces
A,B,C,D of equal area—so no two of these pieces overlap, and the four of them
cover the square?

In standard notation5:

S = A ∪B ∪ C ∪D;

(2) and now can you throw away two of the pieces (say C and D) and move the other
two (A and B) around by Euclidean motions to get congruent shapes A′, B′ in the
plane so that these two pieces cover the exact same square again, i.e.,

S = A′ ∪B′?

The answer, of course, is no: you can’t do this. Certainly not if the concept of area has the
properties that we expect to have. By ’properties’ I’m referring to these two self-evident
axioms:

5The “cup” ∪ notation means union. That is if X and Y are sets, then X ∪Y is the set whose members
are either members of X or members of Y (or members of both).
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(1) the area of a union of nonoverlapping figures is the sum of the areas of each of the
figures, and

(2) the area of a figure is preserved under Euclidean motion.

For, if you could do this, then our two formulas for S displayed above will be giving
contradictory answers to the question: what is the area of S?

With this in mind, consider the following strange fact about spherical rather than Eu-
clidean geometry. Let S be the surface of a ball (that is, what mathematicians call the
two-dimensional sphere). There is a way of separating S into four sets A,B, C,D, no two of
which overlap, such that each of these sets are—in an evident sense—congruent to any of
the others. (This means that, for example, there is a way of rotating the sphere that brings
A precisely to the position that B occupied (before that rotation)—and similarly, there are
ways of rotating the sphere to bring A to B and to C and to D. NEVERTHELESS, you
can throw two of them away (say, C and D) and find a way of rotating the sphere so that
A is brought to a set A′ and a (different) way of rotating the sphere so that B is sent to
a set B′ and these maneuvers have the strange property that A′ and B′ together cover the
sphere; i.e.,

S = A′ ∪ B′.

This is called the Banach-Tarski Paradox. Despite first appearances this is not actually
a paradox although there is indeed a subtlety lurking in the way in which I worded things6.
It is merely a para-dox, that is: contrary to expected opinion.

I brought this seeming-paradox up not to confuse you but rather to point out, at the
very outset, that

• even though area is a concept we tend to feel perfectly at home with, to get closer
to its essence is to appreciate more keenly its complexity, and so

• in our discussion about area this hour we had better start from the very beginning,
by noting that

• despite its reputation for having what are called ’proper foundations’, mathematics
doesn’t seem to have a ’beginning.’

6For people who are familiar with group theory a fairly complete description of what is going on here
can be found in http://en.wikipedia.org/wiki/Banach%E2%80%93Tarski paradox.
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5. Length in everyday life

Nevertheless, let’s begin with something seemingly a bit simpler than area: plain old
length of straight line segments. I say “seemingly” because as often happens in mathemat-
ics, the simpler-seeming concept (in this case, length) contains, in a more visible form, lots
of the essential aspects of its complicated companions (e.g., area and volume).

We all know what is meant when someone says “a ten foot pole.” This is a relative
statement, comparing the pole to some foot-long ruler, and claiming that we can lay ten
copies of our measuring device onto the pole, covering it completely with no overspill or
overlap. Usually, of course, the speaker of this phrase has some thing on his mind other
than this length-measuring thought-experiment.

In small contrast, when we are told that the circumference of this cup is eight inches
long and want to verify this directly, we must set aside our rigid, calibrated, ruler and use
something like a tape-measure, wrapping it around the rim of the cup7. Of course, there
is also a well-known indirect way of verifying this measurement which starts by using our
rigid ruler to calculate the diameter of the cup—but this indirection already involves a
certain amount of mathematical experience with π.

In even greater contrast, when we are told that the star cluster NGC 1929 within the
Large Magellanic Cloud (a satellite galaxy of our own Milky Way) is 179, 000 light-years
away from us, other measuring devices are required, and—given relativistic issues—what
distance means is already a subtle business.

Where Is Now? The Paradox Of The Present
Categories: Science and Philosophy

08:34 am

July 26, 2011

by ADAM FRANK

The night sky is a time machine. Look out and you look back in time. But this "time

travel by eyesight" is not just the province of astronomy. It's as close as the machine

on which you are reading these words. Your present exists at the mercy of many

overlapping pasts. So where, then, is "now"?

13.7: Cosmos And Culture
 

 

The European Southern Observatory's Very Large Telescope in Chile 
view of the nebula around the star cluster NGC 1929 within the Large Magellanic Cloud, a
satellite galaxy of our own Milky Way separated by a mere 
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7A delightful book that discusses modes of calculation of this sort, and of more theoretical sorts, see How
Round is Your Circle? Where Engineering and Mathematics Meet, by John Bryant and Chris Sangwin,
Princeton University Press, 2011.



10 BARRY MAZUR

6. Equality [of Length] in Euclid

The concept length occurs—in a somewhat cryptic form—early in the Elements. It
appears (µη̂κos) in the definition of line (Definition 2):

A line is breadthless length.

The concept reappears as the term διαστη′µα (translated often as distance but meaning,
more specifically, interval or gap) as something of a surprise. Euclid slips it into the
discussion in Book I in the definition of circle (Def. 15) which is described as—and I’ll put
it in modern vocabulary—a figure bounded by a curve the points of which are equidistant
from a given point.

Thanks to this definition and the ability we have—given to us by Postulate 3—of drawing
a circle with any center and any radius—we can begin to construct many line segments
that—in Euclid’s terms—are “equal,” (meaning: are of equal length). Even better, we are
supplied with tools for establishing equality. Euclid wastes no time making use of these
tools: the very first proposition (Proposition 1 of Book I) goes straight to the task of
constructing an equilateral triangle on any line segment, i.e., a triangle where all three
sides are “equal.” And we’re off and running (at least as far as understanding equality of
length).

10 BARRY MAZUR

Euclid’s Proposition 1

When later mathematics takes on the issue of length, things proceed quite differently
from Euclid. In one of the modern formats, length and the allowed transformations (i.e.,
congruences) of Euclidean geometry are yoked concepts, working in tandem:

• The allowed transformations are precisely those transformations that preserve length
of all line-segments,

while

• two line-segments have equal length if and only if there are allowed transformations
bringing any one of them onto the other.

In effect, these notions ({length between points in Euclidean geometry} and {the trans-
formations that preserve Euclidean geometry}) are yoked—chicken & egg style—in that
each can be used to begin the discussion and characterize—i.e., explicitly determine—the
other. Think of it this way: we could invoke each of these concepts to provide the vocabu-
lary for a system of axioms for a geometry, and the other concept would then be one of the



WHAT IS THE SURFACE AREA OF A HEDGEHOG? 11

Euclid’s Proposition 1

There it is in full glory ending with a triumphant hoper edei poiaisai—i.e., “as was to
be constructed”.

When later mathematics takes on the issue of length, things proceed quite differently
from Euclid. Modern mathematics throws a spotlight on transformations, in a way that
ancient mathematics did not. Nowadays, as we introduce a new concept, or new type
of structure, often—at the same time—we make explicit the types of transformations,
or mappings between exemplars of this structure, that we are willing to consider (that
we are willing to allow). These allowed transformations are the ones that respect the
inner coherence of the structure we are studying. In Euclidean geometry, the allowed
transformations are the mappings of the Euclidean plane onto itself that preserve the
notion of congruence. The Euclidean allowed transformations consist of rotations about
points in the plane, translations, and also those transformations that can be viewed as the
composition of a “flip,” (i.e., a symmetry about some straight line) with a translation, or
rotation. In one of the modern formats, the concept of Euclidean length and the collection of
the allowed transformations of Euclidean geometry are yoked concepts, working in tandem:

• The allowed transformations are precisely those transformations that preserve length
of all line-segments,
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while

• two line-segments have equal length if and only if there are allowed transformations
bringing any one of them onto the other.

In effect, these notions ({length between points in Euclidean geometry} and {the trans-
formations that preserve Euclidean geometry}) are yoked—chicken & egg style—in that
each can be used to begin the discussion and characterize—i.e., explicitly determine—the
other. Think of it this way: we could invoke each of these concepts to provide the vocabu-
lary for a system of axioms for a geometry, and the other concept would then be one of the
many features of that geometry. You can have length as your basic concept and stipulate
the transformations that preserve your geometry to be those that preserve length, or you
may start with the stipulation of transformations of your geometry and derive length as
one of its invariants—in effect, deriving the entire geometry from its group of symmetries.
(The second viewpoint represents a celebrated shift of emphasis, known as the Erlangen
Program.) But there is also an important difference of mood between ’axiomatization’
which sets up a theory starting from one direction or the other and presenting things in a
balanced way, where each concept ’characterizes’ the other.

7. Proportions

Length is, at bottom, a relative concept: i.e., “length compared to what?” is a bona fide
question. What are the units? Inches? Feet? Miles?8. That is, when we deal with length,
we are dealing—unavoidably—with a proportion9.This puts us in the mood of Euclid’s
Book V, a work that deals exclusively with proportions of magnitudes.

Say we are interested in the length of our ten-foot pole P . We compare it to our one-
foot ruler F , we might emphasize the proportional aspect of length by recording the answer
symbolically this way:

(∗) P : F “ = ” 10 : 1

8Two cowboys:

A: “My ranch is so big I can ride Old Paint from morning to night and still not cover it.”

B: “I know exactly how you feel. My horse is like that too!”

9This issue is taken up by Kant from a slant perspective (that’s typical for Kant). In Book I Sections 25,
26 of The Critique of Judgment in discussing what he calls the mathematical sublime he points out that in
comprehending in our imagination a specific magnitude (say, this pole is ten feet long) one is engaging in two
acts, of different natures: there is the mathematical one of counting a number of feet (and comprehending
that act of counting) and then there is the essentially aesthetic one of comprehending—or internalizing in
some way or other—what a foot is. From Kant’s perspective, then, considering a proportion, per se, is an act
that extracts the purely mathematical aspect of “comprehension of a magnitude” from the underlying, and
otherwise unavoidable, aesthetic aspect: comprehending the unit. Of course, it is the latter that interests
him.
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I’ve put quotation-marks around the equality sign to emphasize that it is indeed a serious
abbreviation of thought, turning what began as an analogy (P is to F as 10 is to 1) to an
equality (the relationship that P has to F is the relationship that 10 has to 1) turning an as
into a straight is (which is a curious transition). The older notation for our quotation-marks
equality sign is a double-colon,

(∗∗) P : F :: 10 : 1,

capturing equally well—I believe—the “as” aspect of the relationship. That a proportion
of lengths is interpretable as a proportion of numbers may well be self-evident, but that
it is an interpretation is worth bearing in mind.

The legacy of the Pythagoreans offers us yet another interpretation for the versatile
notion of a proportion of lengths:

As the length is to the length,
So the heard tone is to the heard tone.

After this discussion it is safe to remove the quotation marks in formula (*) displayed
above, and write

P

F
=

10

1
.

We thereby see arithmetic in geometry (i.e., by going from left to right in the above
equation). That is, we have an arithmetic (of proportions of straight line segments) that
mirrors “ordinary” arithmetic (of ratios of numbers). For example, you can add proportions
of lengths of line segments:

A · − − −−−− ·B −−−−−−−−−−−−−− · C

D · − − −−−− ·E

AB

DE
+

BC

DE
=

AC

DE

and multiply proportions of lengths of line segments:

A · − − −−−− ·B

C · − − −−−−−−−−−−−− ·D
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E · − − −−−−−−−−−−−−−−−−−− ·F

AB

CD
× CD

EF
=

AB

EF

and we have a natural interpretation of inequalities between these proportions. These
behave formally “just like fractions” as the notation indicates, and we have a veritable
algebra of geometrical proportions.

8. Common Measures, and uncommon measures

All this makes perfect, and natural, sense and conforms to the most elementary basic
ideas we have about arithmetic as long as we treat proportions of lengths that “admit a
common measure.”

That is, imagine that you are given two intervals,

A · − − −−−− ·B

C · − − −−−−−−−−−− ·D
and you know that there is a certain unit measure, say given by another interval EF ,

E · − − ·F
such that AB and CD are measured by (whole) number multiples of EF . For example,

say AB is seventeen EF s long and CD is four hundred ninety one EF s long; so we may
write:

AB
EF = 17

1 and CD
EF = 491

1 .

We then say that EF is a common measure for the line segments AB and CD.

And, in this particular case, we then comfortably write

AB

CD
=

17

491
.
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But the fun, as I think you all know, is already there at the very outset of geometry for
one of the most fundamental of geometric proportions, diagonal to side of a square:

the diagonal AC

the side AB
,

was shown to have no common measure10 and nevertheless the proportion AC
AB (alias:

√
2
1 )

was still regarded as a genuine object of study, with the consequence that forced us—by
the analogy between proportions of lengths and proportions of numbers—to extend our
very idea of what it means to be a number. It is worth thinking about what it means for
geometry to guide us in our evolving concept of number.

For, all this is a beginning of one of the great analogies,

arithmetic ↔ geometry,

where each profoundly influences the other. This type of thinking goes against a view held
by Aristotle (a view often referred to as purity), namely:

. . . we cannot in demonstrating, pass from one genus to another. We cannot,
for instance, prove geometrical truths by arithmetic.

Aristotle, Posterior Analytics, 75a29-75b12

But much of the deepest mathematics goes counter to that view!

10at least if we insist that both intervals be measured by a whole number of multiples of the chosen
“common measure.”
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9. The ubiquity of “analogy” in mathematical thought

In the previous section we have been working through the idea that straight line segments
stand in relation to each other “just as” numerical quantities stand in relation to each
other; i.e., we are faced with—as we’ve mentioned—one of the primordial analogies between
geometry and arithmetic.

That this “just as” relation is an analogy and not a direct equality takes convincing.
A curious phenomenon occurs with many of the mathematical analogies once they get
embedded in our thought. If A is seen to be analogous to something else, B, there is
the impetus to think of A and B as, somehow, special cases of, or aspects of, a single
more encompassing C; and somehow to rethink the analogy as equality. This switch is a
form, but not the only form, of abstraction that is indigenous to mathematical sensibility.
Versatile switching of viewpoints is one of the reasons for the power of a mathematical frame
of thought. This replacement of a pair of analogous contexts for a single encompassing
context occurs so often that people with experience in mathematics have this type of
thought engrained in them, as second nature11.

As I mentioned, replacing the two parts of an analogy by a common generalized concept
is powerful and occurs often in mathematics, but in other contexts of thought it might
seem a strange thing to do. One rarely does this kind of generalizing with analogies and
metaphors that occur in literature: when thinking about the metaphorical comparison in

Shall I compare thee to a summer’s day?

do we conceive of a more general entity that encompasses “thee” and “summer’s day” as
instances?

10. Length and straight line segments

You may have noticed that although I’ve gone on at length I never defined straight line
segment. Now, you can postpone talking about straight line segments if you phrase things
in terms of distance. That is, for any two points P and Q on the Euclidean plane, if you
have a notion of the distance between P and Q—denote it by dist(P,Q)—you can pick out
the points on the straight line segment between P and Q as precisely those points X such
that

dist(P,Q) = dist(P,X) + dist(X,Q).

However, the ancients seem not to have defined straight line segment this way. Euclid’s
definition (Definition 4 of Book I) is elegantly enigmatic:

A straight line is a line which lies evenly with the points on itself.

This is reminiscent of Plato’s definition of straight line segment as “whatever has its middle
in front of its end” (Parmenides 137e). Here, Plato seems to be taking his straight line
segment up to his eye to view it as you would look through a telescope, noting that the

11Here is an important example of this that originated over a century ago, and is everywhere to be seen in
modern mathematics: numbers are analogous to functions. There are whole branches of mathematics where
these concepts are treated as not merely analogous, but as particular exemplars of a larger encompassing
concept.
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only thing he sees is its endpoint. In effect, a straight line is a line of sight.12. A much later
take on the matter defines a straight line segment with endpoints P and Q as the unique
curve joining P and Q such that among all curves joining P and Q it is the one having
the shortest length13. But to make sense of this, at the very least, you must know what it
means for a curve to have a length. Hence . . .

11. Lengths of smooth curves

Nowhere in Euclid’s Elements is the length of a curve that is not a straight line, or
polygonal, segment discussed. The first nonpolygonal curve whose length was considered
(in the texts that I know) is the circumference (called the perimeter) of a circle, as studied
in Archimedes’ The measurement of the circle14. And there the length of the circumference
of a circle enters the mathematical discussion in the context of the elegant statement about
area15 that we have already briefly discussed in section 2.

Here it is as Proposition 1 of Archimedes text:

Proposition 1: Every circle is equal to a right-angled triangle, whose
radius [R] is equal to one of the [sides] around the right angle while the
perimeter [i.e., circumference T of the circle] is equal to the base [of the
triangle].

12See, for example, Thomas Heath’s marvelous essay about all this (pp. 165-169 in Vol. 1 of his
three-volume translation of Euclid’s Elements).

13This property distinguishes straight line segments as geodesics in modern terminology.
14For source material, various translations, commentary, and more related texts, please go to

http://isites.harvard.edu/icb/icb.do?keyword=k53966 (which is on the “Teaching” page of my web site).
15That the ratio of the area of a circle to the length of its circumference is a simple expression in terms

of its radius is what is behind the beauty of Proposition 1. This is a phenomenon that proliferates in higher
dimensions; e.g., the ratio of the volume of a sphere to its surface area is, similarly, a simple expression in
terms of its radius. This is worth pondering.
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This is proved by approximating the circle by a regular polygon with a large number of
sides, and arguing appropriately (as in the appendix below). This is an amazing theorem, of
course, but the more specific reason I’m mentioning it is that it exemplifies the general rule
that the computation of the length of any curvy curve depends—perhaps very indirectly—
on relating it to the length of approximating polygons. This is (quite directly) Archimedes’
method here. He makes use of a result about polygons analogous to Proposition 1, where
the polygons in question will be made to approximate the circle. For a slightly more
extensive sketch of Archimedes’ argument, go to the Appendix (section 20) below.

12. Lengths of crinkly curves

It has been said that there is no way to measure the length of the coastline of Scotland.

It is just too crinkly, and the length you find yourself computing depends on how fine a
grid of measurements you make—the result getting longer and longer as the measurements
grow finer. Mathematicians can easily model such an effect, the most famous construction
being something called the Koch snowflake. This is a closed curve obtained by taking the
limit of an infinite sequence of crinkle-operations. Start with an equilateral triangle and
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on an interval one third the size of each side construct a small equilateral triangle. Here
are the first few stages:

At each stage you are faced with a longer curve, and in the limit, you have seemingly
contained a curve within a finite region that is so crinkly so as to have—in effect—infinite
length.

13. What is area?

We’ll be interested primarily in the areas of figures in the Euclidean plane. Given our
discussion of length it won’t be a surprise to learn that we will be dealing, again, with
proportions; i.e., the proportion of [the area of] one figure to [the area of] another. Nor
will it be much of a surprise to find that just as straight line segments played a fundamental
role in all discussions of length, so too polygonal figures will play such a role in our treatment
of area.

Euclid is again very helpful here. The first time he discusses area, it is—in his vocabulary—
parallelogramatic area: Proposition 34 of Book I tells us that the diagonal of a parallelogram
bisects the [area of] the parallelogram. He follows this up with the propositions (including
the beautiful Proposition 37 that I’ve alluded to already) that state that two triangles with
the same base and height have the same area; and similarly for two parallelograms with
the same base and height.
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And once we have these tools, we are in good shape to deal with areas of polygonal
figures and can even go further, as with Archimedes’ Proposition 1 of The measurement of
the circle that we’ve discussed in Section 11 above. We will discuss it more in the Appendix
(section 20) below.

14. Area as an “invariant”

Here is an exercise: make a (short) list of “axioms” that (you guess) characterizes the
concept of ratios of areas for a large class of (plane) figures. You’ll surely include a number
of basic properties of the intuitive concept of area as hinted at in section 4 above but let
me start the game by insisting that one of your axioms be this:

Axiom of Invariance under Euclidean motions:

If A, B are a pair of plane figures for which you have defined the ratio

area of A

area of B

(or, for short, A
B ,) and if A′ is the image of the figure A under a Euclidean

transformation, then we have the equality:

area of A

area of B
=

area of A′

area of B

This is worth thinking about, but this is just a start, and note that in your personal
“theory of area,” part of the chore is to make precise exactly what class of figures you are
going to be assigning a well-defined area. This might be a bit of fodder for our question
period later this evening. This exercise, in effect, was solved elegantly and in somewhat
astounding generality (before World War II) by the Hungarian mathematician Alfréd Haar.
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15. Shears and Similarities

Given a well-working “theory of area,” certain properties will follow as consequences.
For example, here are two basic features: further invariance properties for the concept of
area.

(1) Shears.
By a horizontal shear transformation let’s mean a transformation of the Eu-
clidean plane to itself that keeps every horizontal line in place, but moves it by a
translation that is dependent on the “height” of that line above the x-axis. That
is, for any point (x, y) in the plane it keeps the y-coordinate fixed but allows the x
coordinate to change by a rule:

x 7→ x+ F (y)

where F (y) is some civilized (e.g., continuous) function of y. This type of motion of
the plane keeps all line parallel to the x-axis intact, but translates them by different
amounts depending on their height. By a general shear transformation let’s
mean an analogous such transformation but with respect to lines parallel to any
fixed line: the line needn’t be the x-axis.

The area of figures are preserved by shears!



22 BARRY MAZUR

Now we’ve actually seen examples of this in our previous discussion: think of
Proposition 37 of Book I of Euclid’s Elements. One way of revisiting the content
of Proposition 37 is to note that any two triangles with the same base and same
height can be brought one to another by a shear.

The three-dimensional version of this (where the question is about volume rather
than area) is sometimes referred to as Cavalieri’s Principle and is illustrated, for
example, by the following picture, where Cavalieri’s Principle would state that these
two stacks of coins occupy the same volume.

(2) The behavior of area under similarity transformations.

If
• A and A′ are in the class of figures for which you have defined the

ratio

area of A

area of A′ ,

and if
• P , Q are points in the figure A with P ′, Q′ the corresponding points

in the similar figure A′,

then the square of the ratio

length of PQ

length of P ′Q′

is equal to the ratio

area of A

area of A′ .
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This square relation tells us that we are dealing with a two-dimensional concept16.

Dimensionality as a concept opens up a host of marvelous questions to explore,
not the least of which is the grand idea, initially due to Hausdorff, that the full
range of possible geometric figures admit a continuous gamut of dimensions—not
just dimension 0, 1, 2, 3, . . . .

That such strange figures possessing non-whole-number-dimensions may have
some bearing on questions in the natural sciences, economics, and finance—let
alone pure mathematics—is the energy behind Benôıt Mandelbrot’s well-known
fractals17.

16. Invariance as feature; Invariance as characterization

I have been alluding to the invariance properties of length and of area. Here is a summary
and comparison.

Euclidean Length and the collection of Euclidean motions suit each other’s
needs perfectly:

• The (Euclidean) concept of length is invariant under the Euclidean motions (i.e.,
translation, rotations, symmetries about straight lines, and compositions of these).
That is, these transformations preserve Euclidean distance.
• Any distance relation between points that satisfies certain natural axioms and that

is invariant under any Euclidean motion is (after appropriate rescaling of its values)
equal to the (Euclidean) concept of length.
• Moreover, any transformation that preserves length between any two points in the

plane is a Euclidean motion.

In contrast to length, The invariance properties of (Euclidean) concept of area
is stranger:

• The (Euclidean) concept of area is invariant under Euclidean motions, of course—
but it is also invariant under a much greater collection of transformations. For
example, any of the shear transformations we have discussed in the previous section
(Section 15) preserves area.
• But as for characterizing this concept by invariance properties, things go the other

way: area is characterized (up to a mere change of scale) by its invariance un-
der translations alone—that’s all the invariance you need invoke to pinpoint this
concept!

16But neither of the above “invariance properties” need be, nor should be, included as axioms, for they
will follow from your list of axioms (if you’ve formulated them correctly.

17See his The Fractal Geometry of Nature. Lecture notes in mathematics 1358. W. H. Freeman.
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It is quite fitting, then, that Euclid inserts his Proposition 37 in Book I, i.e., very early
in his discussion of area: the proposition is, of course, a critical tool in establishing the
simplest arguments regarding area—but from a modern perspective, it also points to one
of the deep properties of the concept vis à vis invariance: there is a huge collection of
transformations—far more of them than just Euclidean motions—that preserve area.

17. Classical Quadrature Problems

The phrase quadrature of . . . loosely refers to the problem of finding the area of . . . ,
which usually means expressing—as some simple numerical ratio—the proportion of the
area of one figure to another figure18. First, here is a simple example related to Euclid’s
Proposition 37 in Book I of the Elements that we discussed earlier, and whose proof can
be found by putting together propositions in Book I of Euclid’s Elements19:

Proposition: Let P be a parallelogram and T a triangle, such that P and T have the
same base and the same height. Then

P:T = 2:1.

This proposition follows the format of what I’ll call a “Classical Quadrature Problem,”
which I want to mean to be a statement that the proportion of areas (or lengths, or volumes)
of two geometric figures, all described entirely in clear general geometric terms20, is equal
to a specific numerical ratio.

There are quite a number of classical problems that fit this mold, e.g., that express
the proportion of the areas of two figures, or volumes of two solids (described in general
terms) to a specific rational number. For example, Proposition 10 of Book XII of Euclid’s
Elements tell us that

the ratio of the volume of a cone to a cylinder that have the same base and the same
height is 1/3.

18Quadrature is the basic topic in the oldest existent Greek text (that of Hippocrates of Chios).
19or, better, by doing it yourself
20This is admittedly a bit vague, but I hope the examples convey the kind of problem I’m referring to.
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This “1/3” reoccurs as the ratio of the volume of a conical solid built on any base to the
cylindrical solid built on the same base, and of the same height. The earliest text I know
that “explains” the “1/3” in this more general context is Arithmetica Infinitorum by John
Wallis who did his work before the full-fledged invention of Calculus; for the people who
know Calculus, this is an exercise21.

As with much of Archimedes’ work there are stories that surround it. In one of his
treatises22, Archimedes showed that

The ratio of the volume of a sphere to that of the cylinder that circumscribes
it is 2/3.

and according to story, this being his favorite result, he had it engraved as a sculpture for
his tomb.

The most intriguing, and thorny, of the ratios of elementary areas or volumes are the
proportion relating the area of a circle to that of the square that circumscribes it, and
the proportion relating the volume of a sphere to that of the volume of the cube that
circumscribes it. The story of the many attempts to understand these ratios leads us in
interesting directions. For example, Hippocrates of Chios in his attempt to square the
circle studied classical quadrature problems relating the areas of lunes (which are figures
consisting of the outer portion of a small circle when superimposed on a larger one, as in
the figure below).

21the hint being that
∫ x

0
t2dt = 1

3
x3.

22One the Sphere and Cylinder I
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to areas of triangles constructed in relation to those lunes. He proves, for example, that
the area of the lune (defined as the region between E and F in the figure above) is equal
to the area of the triangle ABO. His results, however, go signficantly beyond this20.

16. Weighing area

A famous example of a classical quadrature problem is Archimedes’ “Quadrature of the
parabola” and this is dealt with in (not one, but) two of his treatises in quite different
ways:

• Propositions 14-16 of The quadrature of the parabola and
• Proposition 1 in The Method.

The aim is to “find” the area of a segment of a parabola bounded by a chord.

20I think that there are truly interesting (entirely mathematical; not historical) issues that lurk in this
and it is one of my plans to understand it in depth.

to areas of triangles constructed in relation to those lunes. He proves, for example, that
the area of the lune (defined as the region between E and F in the figure above) is equal
to the area of the triangle ABO. His results, however, go signficantly beyond this23.

18. Weighing area

A famous example of a classical quadrature problem is Archimedes’ “Quadrature of the
parabola” and this is dealt with in (not one, but) two of his treatises in quite different
ways:

• Propositions 14-16 of The quadrature of the parabola and
• Proposition 1 in The Method.

The aim is to “find” the area of a segment of a parabola bounded by a chord.

23I think that there are truly interesting (entirely mathematical; not historical) issues that lurk in this
and it is one of my plans to understand it in depth.
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Of course, we know that this means finding a proportion of (the area of) the above kind
of figure to some other figure.

This problem is especially illuminating in that Archimedes offers two approaches to it.
The method in his treatise Quadrature of the parabola is via exhaustion, i.e. approximation
by polygons, which is a method, in effect, similar to the one we have already seen in his
Measurement of the circle. This does prove what he wants. But the more curious method
is the one that he himself refers to as a mechanical method—a mode of reasoning to which
he does not give the full authority of proof: it’s an example of a heuristic24—perhaps,
chronologically, the first such example labeled as not-quite-a-proof that we have any record
of.

A major tool Archimedes will use is his famous “law of the lever”25 which proclaims
that if weights W and w are placed on the plank that is the lever, at opposite sides of

24which is fitting since it comes from the pen of the celebrated shouter of “Eureka,” which comes from
the same root.

25There is an extensive earlier tradition of discussion about equilibrium and disequilibrium on a balance;
and on the action of levers of all sorts. For example,

A small change occurring at the centre makes great and numerous changes at the circum-
ference, just as by shifting the rudder a hair’s breadth you get a wide deviation at the
prow.

This is from Part 7 of Aristotle’s On the motion of animals; I want to thank Jean de Groot for conversations
about this; I look forward to her forthcoming commentary on Aristotle’s Mechanics.

There is also, to be sure, an extensive later tradition of discussion; notably Ernst Mach’s marvelous
critique of the “law” itself, in the Introduction and first few chapters of his wonderful The Science of
Mechanics.
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the fulcrum but at distances D and d from the fulcrum, respectively, then the lever will
balance if and only if

D · w = d ·W.

Now what in the world does this have to do with area? you might ask. The answer is
that Archimedes is engaged, here, in an ingenious thought-experiment, where the rules of
the game are dictated by some basic physical truths, and the link to area (he will also treat
volume problems this way as well) is by a profound analogy: in the figure below, imagine
the point K as the fulcrum of a lever. The plank of the lever is the line segment HK.
Archimedes will have constructed a triangle FAC deployed onto the plank as shown, and
will be “weighing” (yes: weighing) the parabolic segment P by—in a laminar manner—
weighing each line in the parabolic segment parallel to the diameter of the parabola against
corresponding lines in the triangle FAC placed at an appropriate distance (at H) on the
other side of the fulcrum. Archimedes is thinking that you can view the parabolic segment
and triangle as swept through by a continuum of line segments, and the area of these figures
is somehow distributed as slivers dependent on the varying lengths of these line segments.
And he uses his “law of the lever” to find the balance, thereby concluding his heuristic
argument.

We can discuss this at greater length in the question period if people want to do that,
but here—slightly slower—is a recap of what I’ve just said, broken up into the steps that
Archimedes uses.
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In the figure below which is taken from one of the diagrams for Proposition 1 in the
traditional text for The Method,

the chord is AC and the parabolic arc we are to study is the curve bounded by A and C.
We are interested in the area of the parabolic segment (let us call it P). Specifically, P is
that region bounded by that chord AC and the parabolic segment that joins with it. For
this task, the figure will give us all the constructions necessary.

(1) The lever and fulcrum: We are going to weigh things and balance thing so
we need some apparatus. Don’t mind that it is on a slant: but the straight line
through C and K is going to be our lever; and K will be our fulcrum.

(2) The tangent line: We draw the line CF through C tangent to our parabolic arc
at C (I’ll say what F is in a moment).

(3) Let D be the bisector of AC and construct a straight line through D parallel to the
diameter of the parabola. (Parabolas do have well defined “diameters”: in simple
English, if we draw the full parabola, rather than the piece of it as occurs in the
above figure, the diameter is that straight line piercing the parabola around which
the parabola is symmetric: flipping about the diameter preserves the parabola.)
This straight line will intersect CF at a point that we’ll call E, and the parabolic
arc at a point B. So we can call the line ED.
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(4) The basic triangle: Draw the lines AB and BC to form the basic triangle ABC
(which I’ll also call T ).

(5) Note that T sits neatly in the parabolic segment P. Clearly the area of P is
bigger than that of T , but how much bigger? The upshot of this proposition, after
Archimedes finishes proving it, is that we get an exact relationship. Namely:

P : T = 4 : 3.

(6) Laminating by lines parallel to the diameter: The line ED is parallel to
the diameter. In the figure above, you find a couple of other labelled lines parallel
to the diameter: MO, and FA. What Archimedes wants to do is to think of the
family of all lines that are parallel to the diameter, and how, as they sweep across
the figure, they slice (think of them as forming a moving family). We will refer to
any member of that family (and there are finitely many of them!) a laminar slice.
In a moment we will be slicing two figures by the lines of this family.

(7) The big triangle: This is FAC, built with edges the line FA parallel to the
diameter and the chord AC. Simple geometry shows that FAC : T = 4. So,
thinking of the formula above, we want to prove that:

P : FAC = 1 : 3.

(8) Weighing slices on the balance beam: Archimides hangs the big triangle
FAC from its center of gravity, W , on the balance bar HK as indicated in the
figure. He then considers laminar slices of it, comparing them to laminar slices (by
the same line parallel to the diameter) of the parabolic segment ABC. He proves
that to put each laminar slice of the big triangle FAC in equilibrium with the
corresponding slice of the parabolic segment ABC you have to “hang” the laminar
slice of the parabolic segment ABC at the point H on the other side of the fulcrum.
This uses, of course his law of the lever.

(9) Weighing the figures themselves: He then says that he has hung the parabolic
segment at point H and the big triangle at point W and, again, the law of the lever
gives the proportions of their areas.

There is a great amount of geometry that one can learn by considering this result. First,
note that we do indeed have here an example of what I described as a “classical quadrature
problem” in that (a) we specified each of our figures merely by generic prescriptions (take
any parabolic, and cut it with any chord, etc.) and (b) we asserted that the proportions
of these figures are given by a fixed rational ratio (4/3). That alone deserves thought.
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You might wonder: how many other interesting generic geometric proportions can one
come up with that have a fixed rational ratio? Or, perhaps, a fixed ratio involving, say,
surds?26

What is gripping here is how we, using Calculus, could immediately convert into a
genuine theorem what Archimedes does with his “method;” and how a dyed-in-the-wool
Euclidean could also come to terms with this by offering an appropriate menu of axioms
and common notions. Each of these revisions of Archimedes’ work—via Calculus, or via
appropriate axioms—would have the effect of reframing Archimedes’ mechanical analogy by
encompassing it with something non-analogical that has, perhaps, the authority to explain
more. And yet for me, the lesson offered by The Method lies–to return to the issue of
purity I mentioned previously in passage (section 7 above)–in the unconstrained impurity
of the ideas behind it. The Method works on the strength of a correctly guiding, nevertheless
difficult to justify, analogy that combines previously disparate intuitions that had originated
in somewhat different domains: the experience one has with a certain weighing apparatus
and the intuition one has via Euclidean geometry.

This type of thinking (working with profound analogies and relating them to, or turning
them into, equalities) is, today as in Archimedes’ time, the source of much of the most
powerful mathematics.

19. Hedgehogs again

We have largely talked about areas of figures in the plane, except for our excursion in
the spherical geometry with the Banach-Tarsky Paradox. This deserves more discussion,
which I hope will happen in question period.

20. Appendix: Sketch of a proof of Archimedes’ Measurement of the
Circle.

To describe Archimedes’ argument succinctly, we need some vocabulary. Define the
radius of a regular polygon to be the length of a line interval that is obtained by dropping
a perpendicular to any side of the polygon from the center N of the regular polygon.

26i.e., square roots; this is not an idle question.
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Define the perimeter (or circumference) of a polygon to be the length of its perimeter,
i.e., the sum of the lengths of the sides of the polygon. If the polygon is a regular M -gon,
then the circumference is M times the length of any side.

Here is “my” version of Proposition 1 for regular polygons27 analogous to Archimedes’
Proposition 1 for circles:

Archimedes’ Proposition 1, but for regular polygons: The area sub-
sumed by a regular polygon is equal to the area subsumed by a right-angled
triangle for which the two right-angle sides are of lengths equal to the radius
and the circumference (respectively) of the polygon.

In contrast to the actual Proposition 1 (of Measurement of the Circle), this “polygon-
version” of Archimedes’ Proposition 1 is now nicely within the scope of Euclidean vocab-
ulary; its proof is within the scope of Euclid as well.

Some Comments:

(1) Both this “polygon-version” and Archimedes Proposition 1 deal with a right-angle
triangle (with base the circumference and altitude (synonymously: height) the ra-
dius of the figure this triangle is being compared to). One could rephrase these
propositions by omitting the requirement that the triangle be a right-angle trian-
gle.

(2) A visual proof of this polygonal proposition can be effected by simply cutting and
“straightening out to a line” the perimeter of the polygon, and then arguing that
this paper-doll figure has the same area as the triangle displayed below28. (In the
figure below we illustrate this with a 3-gon, alias a triangle, which when cut-and
straightened-out produce the three triangles in a line labeled A,B,C; these each
have the same area as the three triangles that make up the large triangle below
having as base the perimeter and as height the radius.) All this uses is that the
area of a triangle depends only on its base and height.

27I say “my” version because, even though it is—in my opinion—implicitly invoked, in Archimedes’ text,
it isn’t dwelt on.

28I’m thankful to Jim Carlson for this suggestion.
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