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How much of the algebraic topology of a connected simplicial complex X is captured
by its one-dimensional cohomology? Specifically, how much do you know about X when
you know H1(X,Z) alone?

For a (nearly tautological) answer put GX := the compact, connected abelian Lie
group (i.e., product of circles) which is the Pontrjagin dual of the free abelian group
H1(X,Z). Now H1(GX,Z) is canonically isomorphic to H1(X,Z) = Hom(GX,R/Z) and
there is a canonical homotopy class of mappings

X −→ GX

which induces the identity mapping on H1.

The answer: we know whatever information can be read off from GX; and are ignorant
of anything that gets lost in the projection X → GX.

The theory of Eilenberg-Maclane spaces offers us a somewhat analogous analysis of
what we know and don’t know about X, when we equip ourselves with n-dimensional
cohomology, for any specific n, with specific coefficients.

If we repeat our rhetorical question in the context of algebraic geometry, where the
structure is somewhat richer, can we hope for a similar discussion?

In algebraic topology, the standard cohomology functor is uniquely characterized by
the basic Eilenberg-Steenrod axioms in terms of a simple normalization (the value of the
functor on a single point). In contrast, in algebraic geometry we have a more intricate set-
up to deal with: for one thing, we don’t even have a cohomology theory with coefficients
in Z for varieties over a field k unless we provide a homomorphism k → C, so that we can
form the topological space of complex points on our variety, and compute the cohomology
groups of that topological space. One perplexity here, is that this cohomology construction
may (and in general, does!) depend upon the imbedding k → C. And, of course, there are
fields k not admitting embeddings into C.

In compensation, there is a profusion of different cohomology functors beyond the ones
coming from classical algebraic topology via imbeddings k → C. Some of these theories
come dependent upon the specific ground field k, with their specific rings of coefficients, and
with global requirements on the varieties for which they are defined. Some come with their
own particular attendant structure, and with their relations to all the other cohomology
theories: Hodge cohomology, algebraic de Rham cohomology, crystalline cohomology, the
étale `-adic cohomology theories for each prime number `, . . .
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Is there some systematic and natural way of encapsulating all this information about
the n-dimensional cohomology of projective smooth varieties V (even just for n = 1)?
(The tradition has been to simplify things a bit by tensoring the cohomology theories in
question with Q before asking this question.)

If you restrict your attention only to one-dimensional cohomology, things seem promis-
ing. For example, recall the construction that associates to any smooth projective curve
C over a field k its jacobian J(C), which is an abelian variety over k of dimension equal to
the genus of C. The group of points of J(C) over an algebraic closure of k consists in the
quotient group of divisors of degree zero modulo divisors of zeroes-and-poles of rational
functions on C. The classical construction gives us a clean functor, C 7→ J(C), from the
subcategory of such curves to the additive category of abelian varieties over k, preserving
all 1-dimensional cohomological information. This is somewhat reminiscent of the passage
X 7→ GX described earlier, except for the fact that the target, J(C), is an abelian variety
over k; it has a good deal more structure than the product of circles GX.

Generalizing this, there is a beautiful construction due essentially to Albanese, that
associates to an algebraic variety V of arbitrary dimension an abelian variety A(V ) over k.
We might hope for something similar for higher dimensional cohomology, seeking some sort
of algebraic geometric version of Eilenberg-Maclane spaces to replace the abelian varieties
(up to isogeny) that do the trick for dimension 1. But it’s not that simple.

A strategy to encapsulate all the different cohomology theories in algebraic geometry
was formulated initially by Grothendieck, who is responsible for setting up much of this
marvelous cohomological machinery in the first place. Grothendieck sought a single theory
that is cohomological in nature that acts as a gateway between algebraic geometry and the
assortment of special cohomological theories, such as the ones listed above– that acts as
the motive behind all this cohomological apparatus. Here is his description:

“ Contrary to what occurs in ordinary topology, one finds oneself confronting a dis-
concerting abundance of different cohomological theories. One has the distinct impression
(but in a sense that remains vague) that each of these theories “amount to the same
thing,” that they “give the same results.” In order to express this intuition, of the kinship
of these different cohomological theories, I formulated the notion of “motive” associated
to an algebraic variety. By this term, I want to suggest that it is the “common motive”
(or “common reason”) behind this multitude of cohomological invariants attached to an
algebraic variety, or indeed, behind all cohomological invariants that are a priori possible.”
[G]

Grothendieck goes on, in that text, [G], to work out a musical analogy, referring to
the motivic cohomology he desires to set up as the basic motif from which each particular
cohomology theory draws its thematic material, playing it in a key, major or minor, and a
tempo, all its own.
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Think of axiomatizing a cohomology theory* in algebraic geometry over a field k as
a contravariant functor V 7→ H(V ) from the category of smooth projective varieties over
k to a graded abelian category H (where sets of morphisms between objects of H form
Q-vector spaces) with all the properties we expect. For example, we would want any
correspondence V −− > W (i.e., algebraic cycle in the product V ×W that can be viewed
as the “graph” of a multi-valued algebraic mapping) to induce, contravariantly, a mapping
on cohomology. Moreover, we want our category H to be an adequate receptacle for our
cohomology theory, which should enjoy the standard perquisites of the usual cohomology
theories, like the Künneth formula, and Poincaré duality.

Grothendieck’s initial attempt to fashion a universal cohomology theory is elegant,
and cleanly straightforward. Start with the category of projective varieties, and modify
it in a formal, and most economical, manner to produce a category– one hopes that it is
abelian– that has all the cohomological properties one wants. There are three steps to
this. First change the morphisms of the category of projective varieties, replacing them
by equivalence classes of Q-correspondences, where the equivalence relation is chosen to
be the coarsest one which, by the axioms of cohomology theory, can be seen to induce
well-defined homomorphisms on cohomology. Second, augment the objects of the category
to make it look more like an abelian category (formally deeming, for example, kernels and
images of projectors as new objects of the category) and a category in which, for example,
the Künneth formula can be formulated. Third, let H be the opposite category of what was
constructed in step two. The natural contravariant functor from the category of smooth
projective varieties to H will, by its design, factor through any particular cohomology
theory, and therefore might be considered to be our “theory of motives.”

The first problem with any such construction is its nonexplicit nature. Standing in
the way of any explicit understanding of the category of motives is a constellation of
conjectures that offer cohomological criteria for existence of correspondences, and more
generally for the existence of algebraic cycles (e.g., versions of Hodge Conjectures over C
and/or conjectures of Tate over finite fields). Any concrete realization of the projected the-
ory of motives – even in some limited context–seems to bear directly upon these standard
conjectures, and vice versa.

The dream, then, is of getting a fairly usable description of the universal cohomological
functor,

V 7→ H(V ) ∈ H,

with H a very concretely described category. At its best, we might hope for a theory that
carries forward the successes of the classical theory of 1-dimensional cohomology as em-
bodied in the theory of the jacobian of curves, and as concretized by the theory of abelian
varieties, to treat cohomology of all dimensions. Equally important, just as in the theory

* Compare the notions of a geometric cohomology theory in [M], and the slightly more
restricted version of this called a Weil cohomology theory in [K].
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of group representations where the irreducible representations play a primal role, and have
their own “logic,” we might hope for a similar denouement here, and study direct sum
decompositions in this category of motives, relating H(V ) to irreducible motives, repre-
senting cohomological pieces of algebraic varieties, perhaps isolatable by correspondences,
each of which might be analyzed separately.

Recently, the work of Vladimir Voevodsky and his collaborators have provided us
with a very interesting candidate-category of motives: a category (of sheaves relative to an
extraordinarily fine Grothendieck-style topology on the category of schemes) which in some
intuitive sense “softens algebraic geometry” so as to allow for a good notion of homotopy
in an algebro-geometric set-up, and is sufficiently directly connected to concrete algebraic
geometry to have already yielded some extraordinary applications.

The quest for a full theory motives is a potent driving force in complex analysis, al-
gebraic geometry, automorphic representation theory, the study of L functions, and arith-
metic. It will continue to be so, throughout the current century.
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