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Even under the best circumstances, control-
ling our errors is a dicey business. But as a 
recent series of mathematical papers1–3 shows,  
significant strides are being made — in number 
theory at least. The new work amounts to a 
proof of a 40-year-old conjecture, known as 
the Sato–Tate conjecture, for a class of math-
ematical problems with applications 
in cryptography and the high-speed 
factorization of large numbers. This 
conjecture predicts the probability 
distribution of the error terms that 
pop up in these problems. 

In any empirical study, errors accu-
mulate for many reasons. All an exper-
imentalist can hope for is to know the 
sources of most errors, and to be able 
to estimate how much trouble they 
cause. 

The web page of the US Bureau of 
Transportation, for example, lists six 
possible causes of systematic error in 
the 1993 US Census count: inability 
to obtain information about all cases 
in the sample; response errors; defi-
nitional difficulties; differences in the 
interpretation of questions; mistakes 

in coding or recoding the data obtained; and 
other errors of collection, response, coverage 
and estimation4.

In pure mathematics, however, whenever we 
calculate what we hope is a good approxima-
tion to a quantity describing a phenomenon, 
we also have a shot at understanding — in 
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The Sato–Tate conjecture holds that the error term occurring in many major 
problems in number theory conforms to a specific probability distribution. 
That conjecture has now been proved for a large group of cases.

depth, and beyond a shadow of a doubt — the 
nature of the ensuing error term, defined sim-
ply as: error termexact valueour ‘good 
approximation’. 

Of course, if our approximation is at all good, 
the error term should be small. For many prob-
lems, the gold standard of goodness is what we 
might call square-root accuracy: that the error 
term scales as the square root of the quantity 
as it, and the phenomenon it describes, grows 
larger and larger. Great successes in controlling 
error terms in number theory were achieved in 
the last century. Specifically, through the work 
of Helmut Hasse5 in the 1930s, André Weil6 
in the 1940s and Pierre Deligne7 in the 1970s, 
a large class of major approximations were 
proved to have this kind of accuracy. 

Take a (randomly chosen) example. For 
prime numbers p, define N(p) as 
the number of ways in which p can 
be written as a sum of 24 squares of 
whole numbers. (Squares of positive 
numbers, negative numbers and zero 
are all allowed.) The ordering of the 
squares of the numbers that occur in 
this summation also counts. Thus, 
the first prime number, 2, can already 
be written as a sum of 24 squares of 
whole numbers in 1,104 ways, because 
there are that many different ways in 
which two choices of either (1)2 or 
(1)2 can be arranged in a line where 
the 22 other numbers are zeros. 

We know, then, that N(2)1,104. 
What about N(p) for the other prime 
numbers p3,5,7,11,…? A good 
approximation for these values N(p) 
turns out to be (p11�1) . The error 

Figure 1 | Probability distribution of error terms. The Sato–Tate 
distribution √1 − x2π , the smooth red curve in this figure, can be 
compared with the probability distribution of scaled error terms 
(blue bars) for the number of ways N(p) in which a prime number p 
can be written as a sum of 24 square numbers. The data, tabulated 
for primes p less than a million, agree closely with the distribution, 
and give hope that the Sato–Tate conjecture holds for this problem. 
(Courtesy of W. Stein; for details of the computation, see ref. 10.)
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term on this approximation, defined as 

(p11�1)Error(p):�N(p)�  ,

has been proven to be square-root small7. As  
a matter of fact, Error(p) is no larger in absolute 
value than √p11 .

This type of precision in obtaining ‘good 
approximations’ to difficult mathematical 
problems and estimating their error has led 
mathematicians to consider the next, but sig-
nificantly deeper, tier of questions: determin-
ing the probability distribution of those error 
terms whose magnitudes have been shown to 
be square-root small. 

For example, in the problem described above, 
let us rescale our error terms by their proven 
maximum order of magnitude, and ask for the 
probability distribution of the numbers

⁄√p11⁄√p11
N(p)�⁄(p11�1)Error(p)

�

as p ranges through the primes. These num-
bers all lie in the interval between 1 and 1. 
In 1960, Mikio Sato (by studying numerical 
data) and John Tate (following a theoretical 
investigation)8 predicted that the absolute val-
ues of the scaled error terms for data in many 
problems of current interest conform to a 
specific probability distribution; Sato and Tate 
shared the Wolf prize in 2003 (ref. 9). In this 
particular instance, this is the simple distribu-
tion curve √1�x2π , where x ranges through 
the interval between 1 and 1 (Fig. 1). 
Although the Sato–Tate prediction remains 
unproved for this specific example, the agree-
ment with numerical data for the first million 

prime numbers gives cause for optimism.
In March this year, extraordinary strides 

were made towards demonstrating the truth 
of the Sato–Tate conjecture for one class of 
problems1–3 related to elliptic curves. The error 
terms in such problems hold the key to count-
ing solutions of algebraic equations that have a 
wide range of applications, including cryptog-
raphy and analyses of the speed of computer  
algorithms. 

The proof came by combining some wonder-
ful pieces of mathematics, and the key to it is all 
is so-called representation theory. This branch 
of mathematics, in its various guises, studies 
abstract groups by representing them as groups 
of linear transformations of vector spaces. By 
understanding the profound number-theoretic 
structure behind enough of the symmetric  
tensor powers of a certain representation of a 
certain group, one can compute the probabil-
ity distribution of the corresponding scaled 
error terms, and so confirm the Sato–Tate 
conjecture. 

The first article of the three, by Laurent 
Clozel, Michael Harris and Richard Taylor 
(‘Automorphy for some l-adic lifts of automor-
phic mod l representations’)1, deals with the 
relationship between number theory and rep-
resentation theory related to these symmetric 
tensor powers. Harris, Nicholas Shepherd-Bar-
ron and Taylor (in ‘Ihara’s lemma and potential 
automorphy’)2 then show that the necessary 
‘profound number-theoretic understanding’ 
of the nth symmetric tensor power is, for even 
values of n, intimately connected to the alge-
braic geometry of a certain beautiful family of 

(n1)-dimensional vector spaces. This family, 
in the homogeneous variables X0, X1, X2… Xn , is 
defined by the equation

    X0
n+1X1

n+1X2
n+1…Xn

n+1tX0 X1 X2… Xn, 
where t is a parametrization variable. When 
n2, this family — known as the Hessian 
— already played an important role in nine-
teenth-century geometry. The higher examples 
(n2) are well known to theoretical physicists 
because of their relevance to mirror symme-
try and conformal field theory, theories that 
are important in string theory and statistical 
mechanics. Finally, Taylor (in ‘Automorphy 
for some l-adic lifts of automorphic mod l 
representations II’)3 overcame the last obsta-
cle, providing a striking argument that links 
this ‘intimate connection’2 to the truth of the 
Sato–Tate conjecture in the class of problems 
mentioned above. 

This is a magnificent achievement for at 
least two reasons. First, the method brings 
synthetic unity to deep results in quite distinct 
mathematical fields. This coming together is as 
startling as the theory of continental drift that 
connects the shape of disparate continents. 

Second, the work answers a question of deli-
cate nature. Number theorists have long held 
the opinion that the ‘error terms’, despite the 
pejorative name, have a mesmerizingly rich 
structure (they are the Fourier coefficients  
of fascinating mathematical objects known  
as cusp forms) and that the keys to some of  
the deepest issues in their subject lie hidden in 
that structure.  ■
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