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-1 -075 -05 -0.25
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term on this approximation, defined as
Error(p):=N(p) — %(p11 +1),

has been proven to be square-root small’. As
amatter of fact, Error(p) is no larger in absolute
value than %% vp™™

This type of precision in obtaining ‘good
approximations’ to difficult mathematical
problems and estimating their error has led
mathematicians to consider the next, but sig-
nificantly deeper, tier of questions: determin-
ing the probability distribution of those error
terms whose magnitudes have been shown to
be square-root small.

For example, in the problem described above,
let us rescale our error terms by their proven
maximum order of magnitude, and ask for the
probability distribution of the numbers

Error(p) N(p) — e (p" +1)
66304/691'\IPT = 66304/691\/F

as p ranges through the primes. These num-
bers all lie in the interval between —1and + 1.
In 1960, Mikio Sato (by studying numerical
data) and John Tate (following a theoretical
investigation)® predicted that the absolute val-
ues of the scaled error terms for data in many
problems of current interest conform to a
specific probability distribution; Sato and Tate
shared the Wolf prize in 2003 (ref. 9). In this
particular instance, this is the simple distribu-
tion curve 7r V1 — x?, where x ranges through
the interval between —1 and + 1 (Fig. 1).
Although the Sato-Tate prediction remains
unproved for this specific example, the agree-
ment with numerical data for the first million

prime numbers gives cause for optimism.

In March this year, extraordinary strides
were made towards demonstrating the truth
of the Sato-Tate conjecture for one class of
problems'~ related to elliptic curves. The error
terms in such problems hold the key to count-
ing solutions of algebraic equations that have a
wide range of applications, including cryptog-
raphy and analyses of the speed of computer
algorithms.

The proof came by combining some wonder-
ful pieces of mathematics, and the key to it is all
is so-called representation theory. This branch
of mathematics, in its various guises, studies
abstract groups by representing them as groups
of linear transformations of vector spaces. By
understanding the profound number-theoretic
structure behind enough of the symmetric
tensor powers of a certain representation of a
certain group, one can compute the probabil-
ity distribution of the corresponding scaled
error terms, and so confirm the Sato-Tate
conjecture.

The first article of the three, by Laurent
Clozel, Michael Harris and Richard Taylor
(‘Automorphy for some l-adic lifts of automor-
phic mod | representations’)’, deals with the
relationship between number theory and rep-
resentation theory related to these symmetric
tensor powers. Harris, Nicholas Shepherd-Bar-
ron and Taylor (in ‘Thara’s lemma and potential
automorphy’)” then show that the necessary
‘profound number-theoretic understanding’
of the nth symmetric tensor power is, for even
values of #, intimately connected to the alge-
braic geometry of a certain beautiful family of
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(n—1)-dimensional vector spaces. This family,
in the homogeneous variables X, X,, X, X, is
defined by the equation

XM +XM X+ L X =X, X X, X,

where t is a parametrization variable. When
n =2, this family — known as the Hessian
— already played an important role in nine-
teenth-century geometry. The higher examples
(n>2) are well known to theoretical physicists
because of their relevance to mirror symme-
try and conformal field theory, theories that
are important in string theory and statistical
mechanics. Finally, Taylor (in ‘Automorphy
for some l-adic lifts of automorphic mod 1
representations IT") overcame the last obsta-
cle, providing a striking argument that links
this ‘intimate connection” to the truth of the
Sato-Tate conjecture in the class of problems
mentioned above.

This is a magnificent achievement for at
least two reasons. First, the method brings
synthetic unity to deep results in quite distinct
mathematical fields. This coming together is as
startling as the theory of continental drift that
connects the shape of disparate continents.

Second, the work answers a question of deli-
cate nature. Number theorists have long held
the opinion that the ‘error terms, despite the
pejorative name, have a mesmerizingly rich
structure (they are the Fourier coefficients
of fascinating mathematical objects known
as cusp forms) and that the keys to some of
the deepest issues in their subject lie hidden in
that structure. [ ]
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