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In memory of John Coates

In memory of his energy, his generosity of thought, his
accomplishments.

This talk is an account of joint work with:

Tony Feng, Michael Harris, and Arpon Raksit

—lots of it just in progress.

(See FHM Derived Class Field Theory arXiv:2304.14161)

arXiv:2304.14161


Our work is, among other things, an (elementary) exercise

I to give a precise construction of Derived Weight Space,

I to understand the deep work of Tilouine & Urban in
Derived Iwasawa Theory,

I and the work of Galatius & Venkatesh in Derived Galois
Deformation Theory. . .

I and to install Jacob Lurie’s marvelous (800 page?)
treatise humbly titled Higher Algebra in our central
nervous system.



Classical class field theory

This theory, working over any number field F as base, makes a
neat transition from double quotients related to the
multiplicative group

Gm = GL(1)

(taken as group scheme over OF , the ring of integers of F )

to

Γab
F := Gal(F̄/F )ab

the abelianization of the absolute Galois group of F

ΓF := Gal(F̄/F ) → Γab
F .
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Structurally, Class Field Theory gives:

the basic relation between:

I —abelian— Automorphy (I.e., double quotients arising
from the reductive group GL(1) over OF .)

to

I —abelian—Representation theory (I.e., homomorphisms
of the absolute Galois group of F to GL(1)(R) = R× for
a class of commutative rings R).



The classical set-up

Keep F , our number field, and denote by

I AF :=
∏′

p∈|F | Fp

the ring of adéles of F —i.e., the restricted product of the
local fields,

I A×F the group of idéles (the group of units in AF ),

I IF := F×\A×F the idèle class group of F ,



The idèle class group IF := F×\A×F

has the property that for any abelian Galois extension L/F
there is a natural level—i.e., an open compact subgroup
KL ⊂ A×F attached to L/K allowing for a canonical surjection
of the corresponding double quotient F×\A×F /KL onto the
Galois group of L/F :

IF/KL = F×\A×F /KL
ι−→ Gal(L/K )

and where the kernel of ι is the connected component of the
identity in that double quotient.



How to ’enhance” Class Field Theory by bringing

the (homotopy type of the) kernel into the game?

This “kernel” is the topological heart of the “homogeneous
symmetric space” of the reductive group GL(1), so—following
this thread— one might also ask analogous questions
regarding possible enhancements of the Langlands
Correspondence connected to any reductive group G .

—Questions that bring in the full topology of the
corresponding homogeneous symmetric space or Shimura
variety—

and, in the spirit of John Coates, one could ask for a similar
enhancement of the ‘Iwasawa-theoretic” format of these
structures.
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Connections with derived deformation theory?
Noting that the Idéle Class Group,

IF := F× \ A×F

is the locally symmetric space associated to the reductive
group G = GL(1) over F

— and looking ahead to analogous but perhaps subtler
relation between the topology of locally symmetric spaces
attached to more general reductive groups and their
corresponding Galois representations—

the derived class field theory exercise that we are undertaking
here might serve as a very simple, but—we hope—instructive,
example of the general programs of Tilouine-Urban and
Galatius-Venkatesh. More details of this will appear in an
article that Feng, Harris, Raksit and I are working on.



On the Automorphic side: The Idèle Class Group

We have the exact sequences of topological groups:

1

��

// 1

��
(AF )×{0}

⊂
��

// IF ,{0}

⊂
��

1 // F× //

<<

A×F //

Norm
��

IF
//

Norm
��

1

R× = //

��

R×

��
1 // 1



On the Automorphic side:

The Idèle Class Groupoid

The Idèle Class Groupoid (of ‘level’ K := Kfinite ×K∞) is the
‘double quotient’

IF ,K := IF/K = [F×\A×F /Kfinite · K∞].

which can be viewed as quotient stack.

Here the brackets mean that we take the quotient in the sense
of groupoids, or in other words we form the homotopy
quotient rather than the naive quotient group.
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Group versus groupoid

That is, the “ idèle class group” traditionally considered in
class field theory is the (naive) quotient group

F×\A×F /K,

and modulo the connected component of the identity this can
be thought of as the (group of) connected components of the
groupoid IK:

π0(IK).



Considering the homotopy type of the groupoid IK

is how we will be “bringing in kernel.”

This homotopy type is fairly simple. E.g., If “level K” is
meant to cut out the Hilbert Class Field of F and if F is a
totally imaginary number field then the connected components
of IK have the rational homotopy type of (S1)r2−1, which is
non-trivial as long as F is not a quadratic imaginary field.

We’ll get into these groupoids later. But we’ll be starting on
the Galois side:



Considering the homotopy type of the groupoid IK

is how we will be “bringing in kernel.”

This homotopy type is fairly simple. E.g., If “level K” is
meant to cut out the Hilbert Class Field of F and if F is a
totally imaginary number field then the connected components
of IK have the rational homotopy type of (S1)r2−1, which is
non-trivial as long as F is not a quadratic imaginary field.

We’ll get into these groupoids later. But we’ll be starting on
the Galois side:



Program for this hour

1. The ’Galois side’: derived abelianization.

2. Expressing the ’Galois side’ in the category of chain
complexes—via the setting(s) of Quillen, Lurie,
Dold-Kan. . .

3. The ’Automorphic side’: Picard groupoids.

4. Expressing the ’Automorphic side’ in the category of
chain complexes.

5. Relating the’Galois side’ to the ’Automorphic side’ via an
enhanced version of Finite Flat Duality (i.e., on the level
of cochain complexes).

6. Derived Class Field Theory.



Preview for the ‘Galois side’: Abelianization

Let Γ be a discrete group.

The abelianization of Γ is an abelian group Γab for which the
projection Γ −→ Γab is the universal solution to the problem
of morphisms from Γ to any abelian group.

So, for an abelian group A,

Homgps(Γ,A) = Homgps(Γab,A).

We have
Γab = Γ/[Γ, Γ] = H1(Γ,Z). (0.1)
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Derived abelianization

Just as Γab gives us the one-dimensional homology of the
group Γ

Γab ' H1(Γ,Z)

the derived abelianization of Γ, denoted Γab,•, is represented
by a simplicial abelian group that is constructed canonically in
the appropriate category and captures all of H∗(Γ,Z).



Derived abelianization

Specifically, we’ll see that there is a canonical isomorphism

πi (Γab,•) ' Hi+1(Γ,Z) (0.2)

for i ≥ 0.

For this, we’ll use these classical constructions:

I Classifying Space,

I Infinite symmetric product,

I Loop space.



The Classifying space of a group
Let Γ be a. . . group.

Let (BΓ, e) be its classifying space. There are many ways of
defining BΓ–and understanding what it is. For example,

I If Γ is a topological group acting faithfully and nicely on
some contractible space E , then BΓ has the homotopy
type of the quotient space E/Γ.

I If Γ is a simplicial group then BΓ can be taken to be the
(pointed) simplicial set given by the beautiful
combinatorial (classical) bar construction on Γ.

I If Γ is a discrete group, then BΓ has the homotopy type
of the Eilenberg-Maclane space K (Γ, 1)—i.e., a space
with fundamental group isomorphic to Γ and higher
homotopy groups vanishing.

So Hi (Γ;Z) = Hi (BΓ;Z).
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The Infinite symmetric product of a pointed space

Given any pointed space (X , x), there is the infinite symmetric

product.

Sym(X , x) := lim−→
n

Symn(X )

where Symn(X ) is the quotient of the n-th power of X by the
action of the symmetric group on n letters.

The transition maps Symn(X )→ Symn+1X are given by the
rule (x1, x2, . . . , xn) 7→ (x , x1, x2, . . . , xn).

Sym(X , x) is a topological abelian monoid, under
concatenation.
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The Dold-Thom Theorem: From Homology to

Homotopy

Letting e := the origin, i.e., the image of (x , , x , x , . . . ), there
is a canonical isomorphism:

πi (Sym(X , x); e) ' Hi (X ;Z)

for i = 0, 1, 2, . . .



The Loop Space functor

Given any pointed connected topological space (Y , y) if
Ω(Y , y) is the (topological) space of loops in Y (beginning
and ending at the point y)—letting ω be the constant loop
based at y we have the canonical isomorphism:

πi (Ω(Y , y);ω) ' πi+1(Y , y)



The Derived Abelianization Γab,• of any group Γ

Definition

Γab,• : “ = ” ΩSym(BΓ, e)

where Ω is the (based) loop space functor.

Explain the “ = ”

Categorical Framework



Derived Abelianization versus Abelianization
Note that if Γ is discrete, then:

π0(Γab,•) = π0(ΩSym(BΓ, e)) ∼=

∼= π1(Sym(BΓ, e)) ∼=

∼= H1(BΓ;Z) ∼= H1(Γ;Z) ∼=

∼= Γab.



So, (for discrete Γ)

Γab,• is a group whose underlying group of connected
components is Γab:

Γab,• −→ Γab

and

πi (Γab,•) ∼= πi+1(Sym(BΓ, e)) ∼= Hi+1(Γ;Z), (0.3)



Derived abelianization of profinite groups

Since the Galois groups we are interested in are profinite
groups we need derived abelianization of profinite groups,
which we’ll still call Γab,•.

If Γ = limαΓα is a profinite group with Γα the system of finite
quotients defining Γ, then:

Γab,• ∼= limαΓab,•
α .

Mention issues related to pro-p-completion.



The Categories Involved (an example)

Let S be any finite set of (nonarchimedean) primes of F and
KS the level structure that cuts out the maximal abelian
Galois extension LS/F unramified outside S . Denoting by Γab,•

F ,S

the derived abelianization of ΓF ,S := Gal(LS/F ) The ‘object’

ΩSym(BΓF ,S , e) (“ = Γab,•
F ,S ”)

can be elementarily constructed and realized as a projective
limit of simplicial abelian groups.



But we want to view it in Quillen’s theory of homotopical
algebra.

—Discuss. . .—

Intuitively speaking, the derived abelianization should be a
kind of “derived functor of abelianization”. However, the
process of “deriving” the abelianization functor cannot be
approached as in classical homological algebra, since the
category of (not necessarily abelian) groups is far from being
the sort of abelian category to which the classical theory of
derived functors applies.



The Categories Involved

The Quillen formalism of derived functors has as its equipment
not only simplicial objects, but also of appropriate
generalizations of “quasi-isomorphisms” and “projective
resolutions”.

. . . and with designated classes of morphisms called fibrations
and cofibrations.

We will also be in the framework of ∞-categories1.

With all this in place, one constructs derived functors by a
procedure (roughly) analogous to the traditional calculus in
derived categories, using “projective resolutions,” viewing our
simplicial abelian group as equivalent to a certain chain
complex, in this setting.

1By the way, take a look at Emily Riehl’s great Scientific American
article Infinity Category Theory Offers a Bird’s-Eye View of Mathematics
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Derived Iwasawa-type Theories

:

Climbing the rings of a cyclotomic tower, taking the Derived
abelianizations of the Galois groups of the maximal unramified
extension of the rings of integers of those rungs, one gets an
explicit natural prosystem of (pro-p) simplical abelian
groups—which underlies Derived Classical Iwasawa Theory.

Doing something similar with the knot group of a knot
K ⊂ S3 as one climbs the tower of abelian extensions of the
three-dimensional sphere S3 ramified over K one gets a similar
natural pro-system that encodes—and some way
enhances—the Alexander polynomial of K .



Moving toward the Automorphic side (with the

example)

Recalling that Γab,•
F ,S is the derived abelianization of

ΓF ,S := Gal(LS/F ) we have:

Automorphic side

��

Galois side

��

“IF ,S = F× \ A×F /KS ”−−−? //

?
��

Γab,•
F ,S

π0

��
IF ,S

connected component
−−−' // Γab

F ,S



Passing to Chain Complexes

The mechanism is given by the Dold-Kan theorem.

Theorem
There is an explicit ‘normalization functor’ N that is an
equivalence of categories:

{simplicial abelian groups}

N
��

{chain complexes in non− negative degrees}.
.



Moreover, under the equivalence, the nth homology group of a
chain complex is the nth homotopy group of the corresponding
simplicial abelian group, and a chain homotopy corresponds to
a simplicial homotopy.

(We’ll be making use of Jacob Lurie’s enhanced version of the
Dold-Kan Theorem working in an ambient ‘stable
∞-category.’)



There is also an explicit ‘inverse normalization

functor’ (inverse up to equivalence—call it “N−1”)

that goes backwards from non-positively graded

cochain complexes to simplicial abelian groups that

sends cochains of degree −i in the cochain

complex to simplices of degree i .

Also, a good source, posted last month:
An introduction to derived (algebraic) geometry J.Eugster and
J.P.Pridham https://arxiv.org/pdf/2109.14594.pdf

https://arxiv.org/pdf/2109.14594.pdf


Canonical truncations of chain complexes and

‘connective covers’
Given a Chain complex

C∗ : . . .Cm
dm→ Cm−1

dm−1→ . . .
dn+1→ Cn

dn→ Cn−1
dn−1→ . . .

I we can turn it into a cochain complex by redefining
degrees (n 7→ −n);

I we can take its canonical truncation in degree ≥ 0 to get
the ’connective cover’ of C∗:

C̄∗ : [. . .Cm
dm→ . . .

d1→ ker(d0)→ 0
d−1→ 0 . . . ]



The Dold-Kan equivalence gives that:

Γab,•
F ,S

corresponds to a connective chain complex quasi-isomorphic
to the (reduced, then shifted) homology chain complex

C∗(XF ,S , Ẑ)[−1]

where XF ,S := Spec(OF [1/S ]).



The Chain Complex attached to a commutative

(flat) group scheme over a scheme X

This is canonically given as the Cech cohomology complex
with sections of the group scheme over the relevant
hypercoverings of X in the flat (fppf) topology.



For the rest of this talk

to explain the basic ideas, we will

I suppose that S is empty, so we’re dealing with “level 1”

XF := XF ,ø = Spec(OF ).

I fix a prime p and replace Γab,•
F by its p-completion

—which then corresponds to the chain complex

C ∗(XF ,Zp)[−1],

I and assume that either F is totally complex or p > 2.



The automorphic side: Picard groupoids

For X any scheme consider the Picard groupoid Pic(X ): the
category whose objects are line bundles on X and morphisms
are isomorphisms of line bundles.

One can also put level structures on them. E.g., if
X = Spec(OF ) we can consider locally free rank one
OF -modules L such that for every real embedding
v : OF ↪→ R we have fixed an isomorphism of R-vector spaces

L⊗vR ' R

—with a similar level structure for every complex archimedean
place of F .
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From Picard groupoids to simplicial sets

Picard groupoids may also be viewed as simplicial sets via the
simplicial nerve construction. As we hinted, we follow the
approach to higher category theory offered by Jacob Lurie’s
work where spaces and categories are treated in a unified way
under the umbrella of simplicial sets.



The étale—(also fppf)—cohomology of Gm

Letting X := Spec(OF ), we have:

H0(Xét ,Gm) = O×F

H1(Xét ,Gm) = Pic(X ) = Cl(OF )

H3(Xét ,Gm) = Q/Z

and H r (Xét ,Gm) vanishes for r = 2 and r > 3.



From Picard groupoids to simplicial abelian groups

The tensor product of line bundles induces a symmetric
monoidal structure on the category Pic(X ), and this translates
into an abelian group structure on the corresponding simplicial
set.

We can take the Picard groupoid Pic(X ) (interchangeably) as
a symmetric monoidal category or as a simplicial abelian group.
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The homotopy groups of Pic(X )

We have:

π0(Pic(X )) = H1(Spec(OF ),Gm) = Cl(OF ) (0.4)

I.e., its group of connected components, the group of
equivalence classes of line bundles on X = Spec(OF ) is
Cl(OF ), the ideal class group of OF .

Also
π1(Pic(X )) = H0(Spec(OF ),Gm) = O×F , (0.5)

and πi (Pic(X )) vanishes for i > 0.



The Cochain Complex associated to the Picard

Groupoid

For any scheme X the group of equivalence classes of line
bundles over X , H1(X ,Gm), is the 0th cohomology group of
the (shifted) cohomology complex

C•(X ,Gm[1]),

an object well-defined in the homotopy category of complexes.

More specifically, making use of the appropriate truncation
functor that extracts the connective cover of a complex,
C• −− > C̄•, form

C̄•(X ,Gm[1]),

and we have:



By Dold-Kan

The simplicial abelian group : Pic(X )

'
��

The cochain complex : C̄•(X ,Gm[1])

OO



So,
C̄•(X ,Gm[1])

is the connective cover of the cohomology complex

C•(X ,Gm[1]),

and taking the 0th cohomology group of C̄•(X ,Gm[1]) also
recovers the ideal class group.

This truncation doesn’t do that much except turn it into a
complex that directly compares with its associated simplical
abelian group.



The Picard groupoid and the idèle class groupoid

If F is the function field of a smooth projective curve C over a
finite field, then Weil’s construction identifies the idèle class
group IF ,Kmax with the groupoid of line bundles on C .

Here Kmax is the product over all places v of F of the maximal
compact subgroups of F×v .



The Picard groupoid and the idèle class groupoid

A similar construction can be applied when F is a (totally
complex) number field. Under this assumption we get a
natural homotopy equivalence

Pic(Spec (OF )) ' IF ,Kmax

giving us a ‘Cochain Complex’ description of the idèle class
group:

C̄•(Spec (OF ),Gm[1]) ' Pic(Spec (OF )) ' IF ,Kmax . (0.6)



The profinite completion of the Picard groupoid

and flat cohomology

Consider the Kummer exact sequence

1→ µn → Gm
n→ Gm → 1 (0.7)

which we can write as an isomorphism in the derived category
of sheaves on the flat topology of Spec (OF ):

[Gm
n→ Gm] ' µn[1]; (0.8)

(Gm)̂ := lim←−
n→∞

“Gm/n” ' lim←−
n→∞

µn[1]. (0.9)

(Denote by Tµ the pro-finite flat group scheme limn→∞ µn)



For F an fppf sheaf over X := Spec (OF ), denote by
C ∗(X ,F) the (fppf) cohomology complex of F .

The profinite completion of C ∗(X ,Gm) can be seen to have
the form

C ∗(X ,Gm)̂ := lim←−
n

C ∗(X ,Gm)/n
∼−→ (0.10)

∼−→ C ∗(X , lim←−
n

“Gm/n”) ∼= C ∗(X ,Tµ[1]) (0.11)

So:

C∗(X ,Gm)̂ ' C∗(X ,Tµ[1]) (0.12)

and:



Moving to simplicial sets and simplicial abelian

groups

we can put all this together to get:

{IF ,Kmax }̂
∼−→ Pic(X )̂

∼−→ C∗(X ,Gm[1])̂
∼−→ C∗(X ,Tµ[2]).



The Passage from the Automorphic side to The

Galois side via Finite Flat Duality

For a finite flat fppf commutative group scheme F over a
Zariski-open subscheme

X ↪→ Spec(OF ),

denoting its Cartier dual by FD := Hom(F ,Gm), there are
isomorphisms

Hi (X ,F) ∼= H3−i
c (X ,FD).

E.g.,
Hi (X ,Z/pnZ) ∼= H3−i

c (X , µpn ).



Enhanced finite flat duality

The compactly supported cohomology groups H3−i
c (X ,FD)

are a bit more involved to define in general but under our
simplifying assumptions (S empty and F totally complex) we
will have H3−i

c (OF ,FD) = H3−i (OF ,FD)

and its enhancement as an equivalence of (fppf) chain (and

cochain ) complexes:

C∗(X ,F) ∼= C ∗(X ,FD[3]).



Enhanced finite flat duality

The compactly supported cohomology groups H3−i
c (X ,FD)

are a bit more involved to define in general but under our
simplifying assumptions (S empty and F totally complex) we
will have H3−i

c (OF ,FD) = H3−i (OF ,FD)

and its enhancement as an equivalence of (fppf) chain (and

cochain ) complexes:

C∗(X ,F) ∼= C ∗(X ,FD[3]).



Taking F = Z/nZ

(and taking limits ‘over n’) we get the natural equivalence of

chain complexes

C∗(X , Ẑ) ∼= C ∗flat(X ,Tµ[3]).



Combining this with the Kummer sequence we get:

Pic(X )̂
∼−→ C

∗
flat(X ,Tµ[2])

∼−→

∼−→ C ∗(X , Ẑ[−1])



Derived class field theory

And putting all this together we get:

Theorem
Suppose that F is a totally imaginary number field. Then
there is a natural isomorphism(

π1(Spec (X ))ab,•
)̂
' (IF ,K)̂

where K =
∏

v O
×
F ,v is the maximal compact subgroup of the

finite idèles, such that taking π0 recovers the usual
isomorphism of class field theory

π1(Spec (OF ))ab ∼= π0(IF ,K).


